diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 459de0803..0ad2ad4f0 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -282,8 +282,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model res["Hires resize-1"] = 0 res["Hires resize-2"] = 0 - if "Img2Img Upscale" not in res: - res["Img2Img Upscale"] = 1 + if "Img2Img upscale" not in res: + res["Img2Img upscale"] = 1 restore_old_hires_fix_params(res) diff --git a/modules/img2img.py b/modules/img2img.py index d05fa7501..959dd96ea 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -78,7 +78,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args): processed_image.save(os.path.join(output_dir, filename)) -def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, scale: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): +def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, scale: float, upscaler: str, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): override_settings = create_override_settings_dict(override_settings_texts) is_batch = mode == 5 @@ -150,6 +150,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s inpainting_mask_invert=inpainting_mask_invert, override_settings=override_settings, scale=scale, + upscaler=upscaler, ) p.scripts = modules.scripts.scripts_txt2img diff --git a/modules/processing.py b/modules/processing.py index fc4b166c7..afb8cfd1c 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -929,7 +929,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): sampler = None - def __init__(self, init_images: Optional[list] = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: Optional[float] = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: Optional[float] = None, scale: float = 0, **kwargs): + def __init__(self, init_images: Optional[list] = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: Optional[float] = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: Optional[float] = None, scale: float = 0, upscaler: Optional[str] = None, **kwargs): super().__init__(**kwargs) self.init_images = init_images @@ -950,6 +950,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.nmask = None self.image_conditioning = None self.scale = scale + self.upscaler = upscaler def get_final_size(self): if self.scale > 1: @@ -966,7 +967,16 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): crop_region = None if self.scale > 1: - self.extra_generation_params["Img2Img Upscale"] = self.scale + self.extra_generation_params["Img2Img upscale"] = self.scale + + # Non-latent upscalers are run before sampling + # Latent upscalers are run during sampling + init_upscaler = None + if self.upscaler is not None: + self.extra_generation_params["Img2Img upscaler"] = self.upscaler + if self.upscaler not in shared.latent_upscale_modes: + assert len([x for x in shared.sd_upscalers if x.name == self.upscaler]) > 0, f"could not find upscaler named {self.upscaler}" + init_upscaler = self.upscaler self.width, self.height = self.get_final_size() @@ -992,7 +1002,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image_mask = images.resize_image(2, mask, self.width, self.height) self.paste_to = (x1, y1, x2-x1, y2-y1) else: - image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height) + image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height, init_upscaler) np_mask = np.array(image_mask) np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8) self.mask_for_overlay = Image.fromarray(np_mask) @@ -1009,7 +1019,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image = images.flatten(img, opts.img2img_background_color) if crop_region is None and self.resize_mode != 3: - image = images.resize_image(self.resize_mode, image, self.width, self.height) + image = images.resize_image(self.resize_mode, image, self.width, self.height, init_upscaler) if image_mask is not None: image_masked = Image.new('RGBa', (image.width, image.height)) @@ -1054,8 +1064,9 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) - if self.resize_mode == 3: - self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") + latent_scale_mode = shared.latent_upscale_modes.get(self.upscaler, None) if self.upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest") + if latent_scale_mode is not None: + self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"]) if image_mask is not None: init_mask = latent_mask diff --git a/modules/ui.py b/modules/ui.py index bb548f92d..24ab0af78 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -767,7 +767,7 @@ def create_ui(): ) with FormRow(): - resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize") + resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize") for category in ordered_ui_categories(): if category == "sampler": @@ -797,7 +797,9 @@ def create_ui(): with FormRow(): cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale") image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit") - denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength") + with FormRow(): + upscaler = gr.Dropdown(label="Upscaler", elem_id="img2img_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) + denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength") elif category == "seed": seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img') @@ -934,6 +936,7 @@ def create_ui(): height, width, scale, + upscaler, resize_mode, inpaint_full_res, inpaint_full_res_padding, @@ -1019,7 +1022,8 @@ def create_ui(): (seed, "Seed"), (width, "Size-1"), (height, "Size-2"), - (scale, "Img2Img Upscale"), + (scale, "Img2Img upscale"), + (upscaler, "Img2Img upscaler"), (batch_size, "Batch size"), (subseed, "Variation seed"), (subseed_strength, "Variation seed strength"), diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 3895a795c..3f6c1997d 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -220,6 +220,7 @@ axis_options = [ AxisOption("Clip skip", int, apply_clip_skip), AxisOption("Denoising", float, apply_field("denoising_strength")), AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]), + AxisOptionImg2Img("Upscaler", str, apply_field("upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]), AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")), AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)), AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)), diff --git a/style.css b/style.css index 7d58b3b27..e824256fa 100644 --- a/style.css +++ b/style.css @@ -779,7 +779,7 @@ footer { #img2img_finalres{ min-height: 0 !important; padding: .625rem .75rem; - margin-left: -0.75em + margin-left: 0.25em } #img2img_finalres .resolution{