diff --git a/webui.py b/webui.py index 8901706de..7bde3715b 100644 --- a/webui.py +++ b/webui.py @@ -404,7 +404,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i os.makedirs(path, exist_ok=True) - filecount = len(os.listdir(path)) + filecount = len([x for x in os.listdir(path) if os.path.splitext(x)[1] == '.' + extension]) fullfn = "a.png" fullfn_without_extension = "a" for i in range(100): @@ -1126,20 +1126,20 @@ def process_images(p: StableDiffusionProcessing) -> Processed: all_prompts = p.batch_size * p.n_iter * [prompt] all_seeds = [seed + x for x in range(len(all_prompts))] - generation_params = { - "Steps": p.steps, - "Sampler": samplers[p.sampler_index].name, - "CFG scale": p.cfg_scale, - "Seed": seed, - "GFPGAN": ("GFPGAN" if p.use_GFPGAN else None) - } + def infotext(iteration=0, position_in_batch=0): + generation_params = { + "Steps": p.steps, + "Sampler": samplers[p.sampler_index].name, + "CFG scale": p.cfg_scale, + "Seed": all_seeds[position_in_batch + iteration * p.batch_size], + "GFPGAN": ("GFPGAN" if p.use_GFPGAN else None) + } - if p.extra_generation_params is not None: - generation_params.update(p.extra_generation_params) + if p.extra_generation_params is not None: + generation_params.update(p.extra_generation_params) - generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None]) + generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None]) - def infotext(): return f"{prompt}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments]) if os.path.exists(cmd_opts.embeddings_dir): @@ -1202,7 +1202,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: image = image.convert('RGB') if opts.samples_save and not p.do_not_save_samples: - save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext()) + save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i)) output_images.append(image) @@ -1573,14 +1573,13 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.mask = torch.asarray(1.0 - latmask).to(device).type(sd_model.dtype) self.nmask = torch.asarray(latmask).to(device).type(sd_model.dtype) - def sample(self, x, conditioning, unconditional_conditioning): - - if self.mask is not None: if self.inpainting_fill == 2: - x = x * self.mask + create_random_tensors(x.shape[1:], [self.seed + x + 1 for x in range(x.shape[0])]) * self.nmask + self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], [self.seed + x + 1 for x in range(self.init_latent.shape[0])]) * self.nmask elif self.inpainting_fill == 3: - x = x * self.mask + self.init_latent = self.init_latent * self.mask + + def sample(self, x, conditioning, unconditional_conditioning): samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning) if self.mask is not None: