diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py index 2be67fe53..93402bb28 100644 --- a/extensions-builtin/Lora/network_oft.py +++ b/extensions-builtin/Lora/network_oft.py @@ -24,12 +24,14 @@ class NetworkModuleOFT(network.NetworkModule): # kohya-ss if "oft_blocks" in weights.w.keys(): self.is_kohya = True - self.oft_blocks = weights.w["oft_blocks"] + self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) self.alpha = weights.w["alpha"] - self.dim = self.oft_blocks.shape[0] + self.dim = self.oft_blocks.shape[0] # lora dim + #self.oft_blocks = rearrange(self.oft_blocks, 'k m ... -> (k m) ...') elif "oft_diag" in weights.w.keys(): self.is_kohya = False - self.oft_blocks = weights.w["oft_diag"] + self.oft_blocks = weights.w["oft_diag"] # (num_blocks, block_size, block_size) + # alpha is rank if alpha is 0 or None if self.alpha is None: pass @@ -51,12 +53,11 @@ class NetworkModuleOFT(network.NetworkModule): raise ValueError("sd_module must be Linear or Conv") if self.is_kohya: - self.num_blocks = self.dim - self.block_size = self.out_dim // self.num_blocks self.constraint = self.alpha * self.out_dim + self.num_blocks, self.block_size = factorization(self.out_dim, self.dim) else: - self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) self.constraint = None + self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) def merge_weight(self, R_weight, org_weight): R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype) @@ -77,7 +78,8 @@ class NetworkModuleOFT(network.NetworkModule): else: new_norm_Q = norm_Q block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) - m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) + m_I = torch.eye(self.num_blocks, device=oft_blocks.device).unsqueeze(0).repeat(self.block_size, 1, 1) + #m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse()) block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I @@ -97,25 +99,33 @@ class NetworkModuleOFT(network.NetworkModule): is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] if not is_other_linear: - if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]: - orig_weight=orig_weight.permute(1, 0) + #if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]: + # orig_weight=orig_weight.permute(1, 0) + + oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) + + # without this line the results are significantly worse / less accurate + oft_blocks = oft_blocks - oft_blocks.transpose(1, 2) + + R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) + R = R * multiplier + torch.eye(self.block_size, device=orig_weight.device) - R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) merged_weight = torch.einsum( 'k n m, k n ... -> k m ...', - R * multiplier + torch.eye(self.block_size, device=orig_weight.device), + R, merged_weight ) merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') - if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]: - orig_weight=orig_weight.permute(1, 0) + #if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]: + # orig_weight=orig_weight.permute(1, 0) updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight output_shape = orig_weight.shape else: # FIXME: skip MultiheadAttention for now + #up = self.lin_module.weight.to(orig_weight.device, dtype=orig_weight.dtype) updown = torch.zeros([orig_weight.shape[1], orig_weight.shape[1]], device=orig_weight.device, dtype=orig_weight.dtype) output_shape = (orig_weight.shape[1], orig_weight.shape[1]) @@ -123,10 +133,10 @@ class NetworkModuleOFT(network.NetworkModule): def calc_updown(self, orig_weight): multiplier = self.multiplier() * self.calc_scale() - if self.is_kohya: - return self.calc_updown_kohya(orig_weight, multiplier) - else: - return self.calc_updown_kb(orig_weight, multiplier) + #if self.is_kohya: + # return self.calc_updown_kohya(orig_weight, multiplier) + #else: + return self.calc_updown_kb(orig_weight, multiplier) # override to remove the multiplier/scale factor; it's already multiplied in get_weight def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):