Merge pull request #15460 from AUTOMATIC1111/create_infotext-index-and-callable

create_infotext allow index and callable, re-work Hires prompt infotext
This commit is contained in:
AUTOMATIC1111 2024-04-09 12:05:02 +03:00
parent 696d6813e0
commit 7f691612ca

View File

@ -608,7 +608,7 @@ class Processed:
"version": self.version, "version": self.version,
} }
return json.dumps(obj) return json.dumps(obj, default=lambda o: None)
def infotext(self, p: StableDiffusionProcessing, index): def infotext(self, p: StableDiffusionProcessing, index):
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size) return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
@ -703,8 +703,54 @@ def program_version():
return res return res
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None, all_hr_prompts=None, all_hr_negative_prompts=None): def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
if index is None: """
this function is used to generate the infotext that is stored in the generated images, it's contains the parameters that are required to generate the imagee
Args:
p: StableDiffusionProcessing
all_prompts: list[str]
all_seeds: list[int]
all_subseeds: list[int]
comments: list[str]
iteration: int
position_in_batch: int
use_main_prompt: bool
index: int
all_negative_prompts: list[str]
Returns: str
Extra generation params
p.extra_generation_params dictionary allows for additional parameters to be added to the infotext
this can be use by the base webui or extensions.
To add a new entry, add a new key value pair, the dictionary key will be used as the key of the parameter in the infotext
the value generation_params can be defined as:
- str | None
- List[str|None]
- callable func(**kwargs) -> str | None
When defined as a string, it will be used as without extra processing; this is this most common use case.
Defining as a list allows for parameter that changes across images in the job, for example, the 'Seed' parameter.
The list should have the same length as the total number of images in the entire job.
Defining as a callable function allows parameter cannot be generated earlier or when extra logic is required.
For example 'Hires prompt', due to reasons the hr_prompt might be changed by process in the pipeline or extensions
and may vary across different images, defining as a static string or list would not work.
The function takes locals() as **kwargs, as such will have access to variables like 'p' and 'index'.
the base signature of the function should be:
func(**kwargs) -> str | None
optionally it can have additional arguments that will be used in the function:
func(p, index, **kwargs) -> str | None
note: for better future compatibility even though this function will have access to all variables in the locals(),
it is recommended to only use the arguments present in the function signature of create_infotext.
For actual implementation examples, see StableDiffusionProcessingTxt2Img.init > get_hr_prompt.
"""
if use_main_prompt:
index = 0
elif index is None:
index = position_in_batch + iteration * p.batch_size index = position_in_batch + iteration * p.batch_size
if all_negative_prompts is None: if all_negative_prompts is None:
@ -715,6 +761,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
token_merging_ratio = p.get_token_merging_ratio() token_merging_ratio = p.get_token_merging_ratio()
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True) token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
negative_prompt = p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]
uses_ensd = opts.eta_noise_seed_delta != 0 uses_ensd = opts.eta_noise_seed_delta != 0
if uses_ensd: if uses_ensd:
uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p) uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
@ -747,22 +796,24 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"RNG": opts.randn_source if opts.randn_source != "GPU" else None, "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
"Tiling": "True" if p.tiling else None, "Tiling": "True" if p.tiling else None,
"Hires prompt": None, # This is set later, insert here to keep order
"Hires negative prompt": None, # This is set later, insert here to keep order
**p.extra_generation_params, **p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None, "Version": program_version() if opts.add_version_to_infotext else None,
"User": p.user if opts.add_user_name_to_info else None, "User": p.user if opts.add_user_name_to_info else None,
} }
if all_hr_prompts := all_hr_prompts or getattr(p, 'all_hr_prompts', None): for key, value in generation_params.items():
generation_params['Hires prompt'] = all_hr_prompts[index] if all_hr_prompts[index] != all_prompts[index] else None try:
if all_hr_negative_prompts := all_hr_negative_prompts or getattr(p, 'all_hr_negative_prompts', None): if isinstance(value, list):
generation_params['Hires negative prompt'] = all_hr_negative_prompts[index] if all_hr_negative_prompts[index] != all_negative_prompts[index] else None generation_params[key] = value[index]
elif callable(value):
generation_params[key] = value(**locals())
except Exception:
errors.report(f'Error creating infotext for key "{key}"', exc_info=True)
generation_params[key] = None
generation_params_text = ", ".join([k if k == v else f'{k}: {infotext_utils.quote(v)}' for k, v in generation_params.items() if v is not None]) generation_params_text = ", ".join([k if k == v else f'{k}: {infotext_utils.quote(v)}' for k, v in generation_params.items() if v is not None])
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index] negative_prompt_text = f"\nNegative prompt: {negative_prompt}" if negative_prompt else ""
negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip() return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
@ -1204,6 +1255,17 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name: if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
def get_hr_prompt(p, index, prompt_text, **kwargs):
hr_prompt = p.all_hr_prompts[index]
return hr_prompt if hr_prompt != prompt_text else None
def get_hr_negative_prompt(p, index, negative_prompt, **kwargs):
hr_negative_prompt = p.all_hr_negative_prompts[index]
return hr_negative_prompt if hr_negative_prompt != negative_prompt else None
self.extra_generation_params["Hires prompt"] = get_hr_prompt
self.extra_generation_params["Hires negative prompt"] = get_hr_negative_prompt
self.extra_generation_params["Hires schedule type"] = None # to be set in sd_samplers_kdiffusion.py self.extra_generation_params["Hires schedule type"] = None # to be set in sd_samplers_kdiffusion.py
if self.hr_scheduler is None: if self.hr_scheduler is None: