diff --git a/modules/sd_schedulers.py b/modules/sd_schedulers.py index 75eb3ac03..10ae4e081 100644 --- a/modules/sd_schedulers.py +++ b/modules/sd_schedulers.py @@ -31,6 +31,15 @@ def sgm_uniform(n, sigma_min, sigma_max, inner_model, device): return torch.FloatTensor(sigs).to(device) +def kl_optimal(n, sigma_min, sigma_max, device): + alpha_min = torch.arctan(torch.tensor(sigma_min, device=device)) + alpha_max = torch.arctan(torch.tensor(sigma_max, device=device)) + sigmas = torch.empty((n+1,), device=device) + for i in range(n+1): + sigmas[i] = torch.tan((i/n) * alpha_min + (1.0-i/n) * alpha_max) + return sigmas + + schedulers = [ Scheduler('automatic', 'Automatic', None), Scheduler('uniform', 'Uniform', uniform, need_inner_model=True), @@ -38,6 +47,7 @@ schedulers = [ Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential), Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0), Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]), + Scheduler('kl_optimal', 'KL Optimal', kl_optimal), ] schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}