From 843b2b64fcd41be4a9e934ba83a3a499c7aff5c0 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 12 Sep 2022 18:40:06 +0300 Subject: [PATCH] Instance of CUDA out of memory on a low-res batch, even with --opt-split-attention-v1 (found cause) #255 --- modules/codeformer_model.py | 32 ++++++++++++++++++-------------- modules/gfpgan_model.py | 15 ++++++++++----- modules/shared.py | 3 ++- modules/ui.py | 2 +- 4 files changed, 31 insertions(+), 21 deletions(-) diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 946b4a305..fd1da6926 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -5,7 +5,7 @@ import traceback import cv2 import torch -from modules import shared +from modules import shared, devices from modules.paths import script_path import modules.shared import modules.face_restoration @@ -51,6 +51,7 @@ def setup_codeformer(): def create_models(self): if self.net is not None and self.face_helper is not None: + self.net.to(shared.device) return self.net, self.face_helper net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(shared.device) @@ -61,9 +62,9 @@ def setup_codeformer(): face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=shared.device) - if not cmd_opts.unload_gfpgan: - self.net = net - self.face_helper = face_helper + self.net = net + self.face_helper = face_helper + self.net.to(shared.device) return net, face_helper @@ -72,20 +73,20 @@ def setup_codeformer(): original_resolution = np_image.shape[0:2] - net, face_helper = self.create_models() - face_helper.clean_all() - face_helper.read_image(np_image) - face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) - face_helper.align_warp_face() + self.create_models() + self.face_helper.clean_all() + self.face_helper.read_image(np_image) + self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) + self.face_helper.align_warp_face() - for idx, cropped_face in enumerate(face_helper.cropped_faces): + for idx, cropped_face in enumerate(self.face_helper.cropped_faces): cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(shared.device) try: with torch.no_grad(): - output = net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] + output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output torch.cuda.empty_cache() @@ -94,16 +95,19 @@ def setup_codeformer(): restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = restored_face.astype('uint8') - face_helper.add_restored_face(restored_face) + self.face_helper.add_restored_face(restored_face) - face_helper.get_inverse_affine(None) + self.face_helper.get_inverse_affine(None) - restored_img = face_helper.paste_faces_to_input_image() + restored_img = self.face_helper.paste_faces_to_input_image() restored_img = restored_img[:, :, ::-1] if original_resolution != restored_img.shape[0:2]: restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR) + if shared.opts.face_restoration_unload: + self.net.to(devices.cpu) + return restored_img global have_codeformer diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py index f697326ca..0af97123a 100644 --- a/modules/gfpgan_model.py +++ b/modules/gfpgan_model.py @@ -2,7 +2,7 @@ import os import sys import traceback -from modules import shared +from modules import shared, devices from modules.shared import cmd_opts from modules.paths import script_path import modules.face_restoration @@ -28,24 +28,29 @@ def gfpgan(): global loaded_gfpgan_model if loaded_gfpgan_model is not None: + loaded_gfpgan_model.gfpgan.to(shared.device) return loaded_gfpgan_model if gfpgan_constructor is None: return None model = gfpgan_constructor(model_path=gfpgan_model_path(), upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None) - - if not cmd_opts.unload_gfpgan: - loaded_gfpgan_model = model + model.gfpgan.to(shared.device) + loaded_gfpgan_model = model return model def gfpgan_fix_faces(np_image): + model = gfpgan() + np_image_bgr = np_image[:, :, ::-1] - cropped_faces, restored_faces, gfpgan_output_bgr = gfpgan().enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True) + cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True) np_image = gfpgan_output_bgr[:, :, ::-1] + if shared.opts.face_restoration_unload: + model.gfpgan.to(devices.cpu) + return np_image diff --git a/modules/shared.py b/modules/shared.py index afee573b7..ea1c879bf 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -30,7 +30,7 @@ parser.add_argument("--allow-code", action='store_true', help="allow custom scri parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage") parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage") parser.add_argument("--always-batch-cond-uncond", action='store_true', help="a workaround test; may help with speed if you use --lowvram") -parser.add_argument("--unload-gfpgan", action='store_true', help="unload GFPGAN every time after processing images. Warning: seems to cause memory leaks") +parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.") parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)") parser.add_argument("--esrgan-models-path", type=str, help="path to directory with ESRGAN models", default=os.path.join(script_path, 'ESRGAN')) @@ -133,6 +133,7 @@ class Options: "face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}), "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."), + "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"), "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"), "interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"), "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), diff --git a/modules/ui.py b/modules/ui.py index 3a28bdabe..c32c50960 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -384,8 +384,8 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): switch_mode = gr.Radio(label='Mode', elem_id="img2img_mode", choices=['Redraw whole image', 'Inpaint a part of image', 'Loopback', 'SD upscale'], value='Redraw whole image', type="index", show_label=False) init_img = gr.Image(label="Image for img2img", source="upload", interactive=True, type="pil") init_img_with_mask = gr.Image(label="Image for inpainting with mask", elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", visible=False, image_mode="RGBA") - init_img_with_mask_comment = gr.HTML(elem_id="mask_bug_info", value="if the editor shows ERROR, switch to another tab and back, then to another img2img mode above and back", visible=False) init_mask = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False) + init_img_with_mask_comment = gr.HTML(elem_id="mask_bug_info", value="if the editor shows ERROR, switch to another tab and back, then to another img2img mode above and back", visible=False) with gr.Row(): resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize")