mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-29 19:05:05 +08:00
Lora support!
update readme to reflect some recent changes
This commit is contained in:
parent
cbfb463258
commit
855b9e3d1c
14
README.md
14
README.md
@ -51,6 +51,7 @@ A browser interface based on Gradio library for Stable Diffusion.
|
||||
- Possible to change defaults/mix/max/step values for UI elements via text config
|
||||
- Tiling support, a checkbox to create images that can be tiled like textures
|
||||
- Progress bar and live image generation preview
|
||||
- Can use a separate neural network to produce previews with almost none VRAM or compute requirement
|
||||
- Negative prompt, an extra text field that allows you to list what you don't want to see in generated image
|
||||
- Styles, a way to save part of prompt and easily apply them via dropdown later
|
||||
- Variations, a way to generate same image but with tiny differences
|
||||
@ -75,13 +76,22 @@ A browser interface based on Gradio library for Stable Diffusion.
|
||||
- hypernetworks and embeddings options
|
||||
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
|
||||
- Clip skip
|
||||
- Use Hypernetworks
|
||||
- Use VAEs
|
||||
- Hypernetworks
|
||||
- Loras (same as Hypernetworks but more pretty)
|
||||
- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt.
|
||||
- Can select to load a different VAE from settings screen
|
||||
- Estimated completion time in progress bar
|
||||
- API
|
||||
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
|
||||
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
|
||||
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
|
||||
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
|
||||
- Now without any bad letters!
|
||||
- Load checkpoints in safetensors format
|
||||
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
|
||||
- Now with a license!
|
||||
- Reorder elements in the UI from settings screen
|
||||
-
|
||||
|
||||
## Installation and Running
|
||||
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
||||
|
20
extensions-builtin/Lora/extra_networks_lora.py
Normal file
20
extensions-builtin/Lora/extra_networks_lora.py
Normal file
@ -0,0 +1,20 @@
|
||||
from modules import extra_networks
|
||||
import lora
|
||||
|
||||
class ExtraNetworkLora(extra_networks.ExtraNetwork):
|
||||
def __init__(self):
|
||||
super().__init__('lora')
|
||||
|
||||
def activate(self, p, params_list):
|
||||
names = []
|
||||
multipliers = []
|
||||
for params in params_list:
|
||||
assert len(params.items) > 0
|
||||
|
||||
names.append(params.items[0])
|
||||
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
|
||||
|
||||
lora.load_loras(names, multipliers)
|
||||
|
||||
def deactivate(self, p):
|
||||
pass
|
198
extensions-builtin/Lora/lora.py
Normal file
198
extensions-builtin/Lora/lora.py
Normal file
@ -0,0 +1,198 @@
|
||||
import glob
|
||||
import os
|
||||
import re
|
||||
import torch
|
||||
|
||||
from modules import shared, devices, sd_models
|
||||
|
||||
re_digits = re.compile(r"\d+")
|
||||
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
|
||||
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
|
||||
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
|
||||
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
|
||||
|
||||
|
||||
def convert_diffusers_name_to_compvis(key):
|
||||
def match(match_list, regex):
|
||||
r = re.match(regex, key)
|
||||
if not r:
|
||||
return False
|
||||
|
||||
match_list.clear()
|
||||
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
|
||||
return True
|
||||
|
||||
m = []
|
||||
|
||||
if match(m, re_unet_down_blocks):
|
||||
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
|
||||
|
||||
if match(m, re_unet_mid_blocks):
|
||||
return f"diffusion_model_middle_block_1_{m[1]}"
|
||||
|
||||
if match(m, re_unet_up_blocks):
|
||||
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
|
||||
|
||||
if match(m, re_text_block):
|
||||
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
|
||||
|
||||
return key
|
||||
|
||||
|
||||
class LoraOnDisk:
|
||||
def __init__(self, name, filename):
|
||||
self.name = name
|
||||
self.filename = filename
|
||||
|
||||
|
||||
class LoraModule:
|
||||
def __init__(self, name):
|
||||
self.name = name
|
||||
self.multiplier = 1.0
|
||||
self.modules = {}
|
||||
self.mtime = None
|
||||
|
||||
|
||||
class LoraUpDownModule:
|
||||
def __init__(self):
|
||||
self.up = None
|
||||
self.down = None
|
||||
|
||||
|
||||
def assign_lora_names_to_compvis_modules(sd_model):
|
||||
lora_layer_mapping = {}
|
||||
|
||||
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
|
||||
lora_name = name.replace(".", "_")
|
||||
lora_layer_mapping[lora_name] = module
|
||||
module.lora_layer_name = lora_name
|
||||
|
||||
for name, module in shared.sd_model.model.named_modules():
|
||||
lora_name = name.replace(".", "_")
|
||||
lora_layer_mapping[lora_name] = module
|
||||
module.lora_layer_name = lora_name
|
||||
|
||||
sd_model.lora_layer_mapping = lora_layer_mapping
|
||||
|
||||
|
||||
def load_lora(name, filename):
|
||||
lora = LoraModule(name)
|
||||
lora.mtime = os.path.getmtime(filename)
|
||||
|
||||
sd = sd_models.read_state_dict(filename)
|
||||
|
||||
keys_failed_to_match = []
|
||||
|
||||
for key_diffusers, weight in sd.items():
|
||||
fullkey = convert_diffusers_name_to_compvis(key_diffusers)
|
||||
key, lora_key = fullkey.split(".", 1)
|
||||
|
||||
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
|
||||
if sd_module is None:
|
||||
keys_failed_to_match.append(key_diffusers)
|
||||
continue
|
||||
|
||||
if type(sd_module) == torch.nn.Linear:
|
||||
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||||
elif type(sd_module) == torch.nn.Conv2d:
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
||||
else:
|
||||
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
|
||||
|
||||
with torch.no_grad():
|
||||
module.weight.copy_(weight)
|
||||
|
||||
module.to(device=devices.device, dtype=devices.dtype)
|
||||
|
||||
lora_module = lora.modules.get(key, None)
|
||||
if lora_module is None:
|
||||
lora_module = LoraUpDownModule()
|
||||
lora.modules[key] = lora_module
|
||||
|
||||
if lora_key == "lora_up.weight":
|
||||
lora_module.up = module
|
||||
elif lora_key == "lora_down.weight":
|
||||
lora_module.down = module
|
||||
else:
|
||||
assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight or lora_down.weight'
|
||||
|
||||
if len(keys_failed_to_match) > 0:
|
||||
print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}")
|
||||
|
||||
return lora
|
||||
|
||||
|
||||
def load_loras(names, multipliers=None):
|
||||
already_loaded = {}
|
||||
|
||||
for lora in loaded_loras:
|
||||
if lora.name in names:
|
||||
already_loaded[lora.name] = lora
|
||||
|
||||
loaded_loras.clear()
|
||||
|
||||
loras_on_disk = [available_loras.get(name, None) for name in names]
|
||||
if any([x is None for x in loras_on_disk]):
|
||||
list_available_loras()
|
||||
|
||||
loras_on_disk = [available_loras.get(name, None) for name in names]
|
||||
|
||||
for i, name in enumerate(names):
|
||||
lora = already_loaded.get(name, None)
|
||||
|
||||
lora_on_disk = loras_on_disk[i]
|
||||
if lora_on_disk is not None:
|
||||
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
|
||||
lora = load_lora(name, lora_on_disk.filename)
|
||||
|
||||
if lora is None:
|
||||
print(f"Couldn't find Lora with name {name}")
|
||||
continue
|
||||
|
||||
lora.multiplier = multipliers[i] if multipliers else 1.0
|
||||
loaded_loras.append(lora)
|
||||
|
||||
|
||||
def lora_forward(module, input, res):
|
||||
if len(loaded_loras) == 0:
|
||||
return res
|
||||
|
||||
lora_layer_name = getattr(module, 'lora_layer_name', None)
|
||||
for lora in loaded_loras:
|
||||
module = lora.modules.get(lora_layer_name, None)
|
||||
if module is not None:
|
||||
res = res + module.up(module.down(input)) * lora.multiplier
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def lora_Linear_forward(self, input):
|
||||
return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
|
||||
|
||||
|
||||
def lora_Conv2d_forward(self, input):
|
||||
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))
|
||||
|
||||
|
||||
def list_available_loras():
|
||||
available_loras.clear()
|
||||
|
||||
os.makedirs(lora_dir, exist_ok=True)
|
||||
|
||||
candidates = glob.glob(os.path.join(lora_dir, '**/*.pt'), recursive=True) + glob.glob(os.path.join(lora_dir, '**/*.safetensors'), recursive=True)
|
||||
|
||||
for filename in sorted(candidates):
|
||||
if os.path.isdir(filename):
|
||||
continue
|
||||
|
||||
name = os.path.splitext(os.path.basename(filename))[0]
|
||||
|
||||
available_loras[name] = LoraOnDisk(name, filename)
|
||||
|
||||
|
||||
lora_dir = os.path.join(shared.models_path, "Lora")
|
||||
available_loras = {}
|
||||
loaded_loras = []
|
||||
|
||||
list_available_loras()
|
||||
|
30
extensions-builtin/Lora/scripts/lora_script.py
Normal file
30
extensions-builtin/Lora/scripts/lora_script.py
Normal file
@ -0,0 +1,30 @@
|
||||
import torch
|
||||
|
||||
import lora
|
||||
import extra_networks_lora
|
||||
import ui_extra_networks_lora
|
||||
from modules import script_callbacks, ui_extra_networks, extra_networks
|
||||
|
||||
|
||||
def unload():
|
||||
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
|
||||
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
|
||||
|
||||
|
||||
def before_ui():
|
||||
ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
|
||||
extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())
|
||||
|
||||
|
||||
if not hasattr(torch.nn, 'Linear_forward_before_lora'):
|
||||
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
|
||||
|
||||
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
|
||||
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
|
||||
|
||||
torch.nn.Linear.forward = lora.lora_Linear_forward
|
||||
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
|
||||
|
||||
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
|
||||
script_callbacks.on_script_unloaded(unload)
|
||||
script_callbacks.on_before_ui(before_ui)
|
35
extensions-builtin/Lora/ui_extra_networks_lora.py
Normal file
35
extensions-builtin/Lora/ui_extra_networks_lora.py
Normal file
@ -0,0 +1,35 @@
|
||||
import os
|
||||
import lora
|
||||
|
||||
from modules import shared, ui_extra_networks
|
||||
|
||||
|
||||
class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
|
||||
def __init__(self):
|
||||
super().__init__('Lora')
|
||||
|
||||
def refresh(self):
|
||||
lora.list_available_loras()
|
||||
|
||||
def list_items(self):
|
||||
for name, lora_on_disk in lora.available_loras.items():
|
||||
path, ext = os.path.splitext(lora_on_disk.filename)
|
||||
previews = [path + ".png", path + ".preview.png"]
|
||||
|
||||
preview = None
|
||||
for file in previews:
|
||||
if os.path.isfile(file):
|
||||
preview = "./file=" + file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(file))
|
||||
break
|
||||
|
||||
yield {
|
||||
"name": name,
|
||||
"filename": path,
|
||||
"preview": preview,
|
||||
"prompt": f"<lora:{name}:1.0>",
|
||||
"local_preview": path + ".png",
|
||||
}
|
||||
|
||||
def allowed_directories_for_previews(self):
|
||||
return [lora.lora_dir]
|
||||
|
@ -17,5 +17,5 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork):
|
||||
|
||||
hypernetwork.load_hypernetworks(names, multipliers)
|
||||
|
||||
def deactivate(p, self):
|
||||
def deactivate(self, p):
|
||||
pass
|
||||
|
@ -73,6 +73,7 @@ callback_map = dict(
|
||||
callbacks_image_grid=[],
|
||||
callbacks_infotext_pasted=[],
|
||||
callbacks_script_unloaded=[],
|
||||
callbacks_before_ui=[],
|
||||
)
|
||||
|
||||
|
||||
@ -189,6 +190,14 @@ def script_unloaded_callback():
|
||||
report_exception(c, 'script_unloaded')
|
||||
|
||||
|
||||
def before_ui_callback():
|
||||
for c in reversed(callback_map['callbacks_before_ui']):
|
||||
try:
|
||||
c.callback()
|
||||
except Exception:
|
||||
report_exception(c, 'before_ui')
|
||||
|
||||
|
||||
def add_callback(callbacks, fun):
|
||||
stack = [x for x in inspect.stack() if x.filename != __file__]
|
||||
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
|
||||
@ -313,3 +322,9 @@ def on_script_unloaded(callback):
|
||||
the script did should be reverted here"""
|
||||
|
||||
add_callback(callback_map['callbacks_script_unloaded'], callback)
|
||||
|
||||
|
||||
def on_before_ui(callback):
|
||||
"""register a function to be called before the UI is created."""
|
||||
|
||||
add_callback(callback_map['callbacks_before_ui'], callback)
|
||||
|
@ -10,7 +10,7 @@ extra_pages = []
|
||||
|
||||
|
||||
def register_page(page):
|
||||
"""registers extra networks page for the UI; recommend doing it in on_app_started() callback for extensions"""
|
||||
"""registers extra networks page for the UI; recommend doing it in on_before_ui() callback for extensions"""
|
||||
|
||||
extra_pages.append(page)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user