diff --git a/modules/shared_options.py b/modules/shared_options.py
new file mode 100644
index 000000000..e9b980a43
--- /dev/null
+++ b/modules/shared_options.py
@@ -0,0 +1,976 @@
+import datetime
+import json
+import os
+import re
+import sys
+import threading
+import time
+import logging
+
+import gradio as gr
+import torch
+import tqdm
+
+import launch
+import modules.interrogate
+import modules.memmon
+import modules.styles
+import modules.devices as devices
+from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args, rng # noqa: F401
+from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401
+from ldm.models.diffusion.ddpm import LatentDiffusion
+from typing import Optional
+
+log = logging.getLogger(__name__)
+
+demo = None
+
+parser = cmd_args.parser
+
+script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file))
+script_loading.preload_extensions(extensions_builtin_dir, parser)
+
+if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
+ cmd_opts = parser.parse_args()
+else:
+ cmd_opts, _ = parser.parse_known_args()
+
+
+restricted_opts = {
+ "samples_filename_pattern",
+ "directories_filename_pattern",
+ "outdir_samples",
+ "outdir_txt2img_samples",
+ "outdir_img2img_samples",
+ "outdir_extras_samples",
+ "outdir_grids",
+ "outdir_txt2img_grids",
+ "outdir_save",
+ "outdir_init_images"
+}
+
+# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
+gradio_hf_hub_themes = [
+ "gradio/base",
+ "gradio/glass",
+ "gradio/monochrome",
+ "gradio/seafoam",
+ "gradio/soft",
+ "gradio/dracula_test",
+ "abidlabs/dracula_test",
+ "abidlabs/Lime",
+ "abidlabs/pakistan",
+ "Ama434/neutral-barlow",
+ "dawood/microsoft_windows",
+ "finlaymacklon/smooth_slate",
+ "Franklisi/darkmode",
+ "freddyaboulton/dracula_revamped",
+ "freddyaboulton/test-blue",
+ "gstaff/xkcd",
+ "Insuz/Mocha",
+ "Insuz/SimpleIndigo",
+ "JohnSmith9982/small_and_pretty",
+ "nota-ai/theme",
+ "nuttea/Softblue",
+ "ParityError/Anime",
+ "reilnuud/polite",
+ "remilia/Ghostly",
+ "rottenlittlecreature/Moon_Goblin",
+ "step-3-profit/Midnight-Deep",
+ "Taithrah/Minimal",
+ "ysharma/huggingface",
+ "ysharma/steampunk"
+]
+
+
+cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
+
+devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
+ (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
+
+devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16
+devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
+
+device = devices.device
+weight_load_location = None if cmd_opts.lowram else "cpu"
+
+batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
+parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
+xformers_available = False
+config_filename = cmd_opts.ui_settings_file
+
+os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
+hypernetworks = {}
+loaded_hypernetworks = []
+
+
+def reload_hypernetworks():
+ from modules.hypernetworks import hypernetwork
+ global hypernetworks
+
+ hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
+
+
+class State:
+ skipped = False
+ interrupted = False
+ job = ""
+ job_no = 0
+ job_count = 0
+ processing_has_refined_job_count = False
+ job_timestamp = '0'
+ sampling_step = 0
+ sampling_steps = 0
+ current_latent = None
+ current_image = None
+ current_image_sampling_step = 0
+ id_live_preview = 0
+ textinfo = None
+ time_start = None
+ server_start = None
+ _server_command_signal = threading.Event()
+ _server_command: Optional[str] = None
+
+ @property
+ def need_restart(self) -> bool:
+ # Compatibility getter for need_restart.
+ return self.server_command == "restart"
+
+ @need_restart.setter
+ def need_restart(self, value: bool) -> None:
+ # Compatibility setter for need_restart.
+ if value:
+ self.server_command = "restart"
+
+ @property
+ def server_command(self):
+ return self._server_command
+
+ @server_command.setter
+ def server_command(self, value: Optional[str]) -> None:
+ """
+ Set the server command to `value` and signal that it's been set.
+ """
+ self._server_command = value
+ self._server_command_signal.set()
+
+ def wait_for_server_command(self, timeout: Optional[float] = None) -> Optional[str]:
+ """
+ Wait for server command to get set; return and clear the value and signal.
+ """
+ if self._server_command_signal.wait(timeout):
+ self._server_command_signal.clear()
+ req = self._server_command
+ self._server_command = None
+ return req
+ return None
+
+ def request_restart(self) -> None:
+ self.interrupt()
+ self.server_command = "restart"
+ log.info("Received restart request")
+
+ def skip(self):
+ self.skipped = True
+ log.info("Received skip request")
+
+ def interrupt(self):
+ self.interrupted = True
+ log.info("Received interrupt request")
+
+ def nextjob(self):
+ if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
+ self.do_set_current_image()
+
+ self.job_no += 1
+ self.sampling_step = 0
+ self.current_image_sampling_step = 0
+
+ def dict(self):
+ obj = {
+ "skipped": self.skipped,
+ "interrupted": self.interrupted,
+ "job": self.job,
+ "job_count": self.job_count,
+ "job_timestamp": self.job_timestamp,
+ "job_no": self.job_no,
+ "sampling_step": self.sampling_step,
+ "sampling_steps": self.sampling_steps,
+ }
+
+ return obj
+
+ def begin(self, job: str = "(unknown)"):
+ self.sampling_step = 0
+ self.job_count = -1
+ self.processing_has_refined_job_count = False
+ self.job_no = 0
+ self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
+ self.current_latent = None
+ self.current_image = None
+ self.current_image_sampling_step = 0
+ self.id_live_preview = 0
+ self.skipped = False
+ self.interrupted = False
+ self.textinfo = None
+ self.time_start = time.time()
+ self.job = job
+ devices.torch_gc()
+ log.info("Starting job %s", job)
+
+ def end(self):
+ duration = time.time() - self.time_start
+ log.info("Ending job %s (%.2f seconds)", self.job, duration)
+ self.job = ""
+ self.job_count = 0
+
+ devices.torch_gc()
+
+ def set_current_image(self):
+ """sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
+ if not parallel_processing_allowed:
+ return
+
+ if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1:
+ self.do_set_current_image()
+
+ def do_set_current_image(self):
+ if self.current_latent is None:
+ return
+
+ import modules.sd_samplers
+
+ try:
+ if opts.show_progress_grid:
+ self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
+ else:
+ self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
+
+ self.current_image_sampling_step = self.sampling_step
+
+ except Exception:
+ # when switching models during genration, VAE would be on CPU, so creating an image will fail.
+ # we silently ignore this error
+ errors.record_exception()
+
+ def assign_current_image(self, image):
+ self.current_image = image
+ self.id_live_preview += 1
+
+
+state = State()
+state.server_start = time.time()
+
+styles_filename = cmd_opts.styles_file
+prompt_styles = modules.styles.StyleDatabase(styles_filename)
+
+interrogator = modules.interrogate.InterrogateModels("interrogate")
+
+face_restorers = []
+
+
+class OptionInfo:
+ def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after=''):
+ self.default = default
+ self.label = label
+ self.component = component
+ self.component_args = component_args
+ self.onchange = onchange
+ self.section = section
+ self.refresh = refresh
+ self.do_not_save = False
+
+ self.comment_before = comment_before
+ """HTML text that will be added after label in UI"""
+
+ self.comment_after = comment_after
+ """HTML text that will be added before label in UI"""
+
+ def link(self, label, url):
+ self.comment_before += f"[{label}]"
+ return self
+
+ def js(self, label, js_func):
+ self.comment_before += f"[{label}]"
+ return self
+
+ def info(self, info):
+ self.comment_after += f"({info})"
+ return self
+
+ def html(self, html):
+ self.comment_after += html
+ return self
+
+ def needs_restart(self):
+ self.comment_after += " (requires restart)"
+ return self
+
+ def needs_reload_ui(self):
+ self.comment_after += " (requires Reload UI)"
+ return self
+
+
+class OptionHTML(OptionInfo):
+ def __init__(self, text):
+ super().__init__(str(text).strip(), label='', component=lambda **kwargs: gr.HTML(elem_classes="settings-info", **kwargs))
+
+ self.do_not_save = True
+
+
+def options_section(section_identifier, options_dict):
+ for v in options_dict.values():
+ v.section = section_identifier
+
+ return options_dict
+
+
+def list_checkpoint_tiles():
+ import modules.sd_models
+ return modules.sd_models.checkpoint_tiles()
+
+
+def refresh_checkpoints():
+ import modules.sd_models
+ return modules.sd_models.list_models()
+
+
+def list_samplers():
+ import modules.sd_samplers
+ return modules.sd_samplers.all_samplers
+
+
+hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
+tab_names = []
+
+options_templates = {}
+
+options_templates.update(options_section(('saving-images', "Saving images/grids"), {
+ "samples_save": OptionInfo(True, "Always save all generated images"),
+ "samples_format": OptionInfo('png', 'File format for images'),
+ "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
+ "save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
+
+ "grid_save": OptionInfo(True, "Always save all generated image grids"),
+ "grid_format": OptionInfo('png', 'File format for grids'),
+ "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
+ "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
+ "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
+ "grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
+ "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
+ "font": OptionInfo("", "Font for image grids that have text"),
+ "grid_text_active_color": OptionInfo("#000000", "Text color for image grids", ui_components.FormColorPicker, {}),
+ "grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}),
+ "grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}),
+
+ "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
+ "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
+ "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
+ "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
+ "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
+ "save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
+ "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
+ "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
+ "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
+ "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"),
+ "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
+ "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
+ "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"),
+
+ "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
+ "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
+ "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
+ "save_init_img": OptionInfo(False, "Save init images when using img2img"),
+
+ "temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
+ "clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
+
+ "save_incomplete_images": OptionInfo(False, "Save incomplete images").info("save images that has been interrupted in mid-generation; even if not saved, they will still show up in webui output."),
+}))
+
+options_templates.update(options_section(('saving-paths', "Paths for saving"), {
+ "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
+ "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
+ "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
+ "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
+ "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
+ "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
+ "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
+ "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
+ "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
+}))
+
+options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
+ "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"),
+ "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"),
+ "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
+ "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
+ "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
+}))
+
+options_templates.update(options_section(('upscaling', "Upscaling"), {
+ "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
+ "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
+ "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
+ "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
+}))
+
+options_templates.update(options_section(('face-restoration', "Face restoration"), {
+ "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
+ "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"),
+ "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
+}))
+
+options_templates.update(options_section(('system', "System"), {
+ "auto_launch_browser": OptionInfo("Local", "Automatically open webui in browser on startup", gr.Radio, lambda: {"choices": ["Disable", "Local", "Remote"]}),
+ "show_warnings": OptionInfo(False, "Show warnings in console.").needs_reload_ui(),
+ "show_gradio_deprecation_warnings": OptionInfo(True, "Show gradio deprecation warnings in console.").needs_reload_ui(),
+ "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
+ "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
+ "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
+ "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
+ "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""),
+ "disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
+ "hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."),
+}))
+
+options_templates.update(options_section(('training', "Training"), {
+ "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
+ "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
+ "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
+ "save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."),
+ "dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
+ "dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
+ "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
+ "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
+ "training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"),
+ "training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
+ "training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
+ "training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
+}))
+
+options_templates.update(options_section(('sd', "Stable Diffusion"), {
+ "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
+ "sd_checkpoints_limit": OptionInfo(1, "Maximum number of checkpoints loaded at the same time", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}),
+ "sd_checkpoints_keep_in_cpu": OptionInfo(True, "Only keep one model on device").info("will keep models other than the currently used one in RAM rather than VRAM"),
+ "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}).info("obsolete; set to 0 and use the two settings above instead"),
+ "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"),
+ "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds").needs_reload_ui(),
+ "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"),
+ "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
+ "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
+ "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
+ "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
+ "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
+}))
+
+options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
+ "sdxl_crop_top": OptionInfo(0, "crop top coordinate"),
+ "sdxl_crop_left": OptionInfo(0, "crop left coordinate"),
+ "sdxl_refiner_low_aesthetic_score": OptionInfo(2.5, "SDXL low aesthetic score", gr.Number).info("used for refiner model negative prompt"),
+ "sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"),
+}))
+
+options_templates.update(options_section(('vae', "VAE"), {
+ "sd_vae_explanation": OptionHTML("""
+VAE is a neural network that transforms a standard RGB
+image into latent space representation and back. Latent space representation is what stable diffusion is working on during sampling
+(i.e. when the progress bar is between empty and full). For txt2img, VAE is used to create a resulting image after the sampling is finished.
+For img2img, VAE is used to process user's input image before the sampling, and to create an image after sampling.
+"""),
+ "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
+ "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
+ "sd_vae_overrides_per_model_preferences": OptionInfo(True, "Selected VAE overrides per-model preferences").info("you can set per-model VAE either by editing user metadata for checkpoints, or by making the VAE have same name as checkpoint"),
+ "auto_vae_precision": OptionInfo(True, "Automatically revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
+ "sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"),
+ "sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to decode latent to image"),
+}))
+
+options_templates.update(options_section(('img2img', "img2img"), {
+ "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
+ "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
+ "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"),
+ "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill transparent parts of the input image with this color.", ui_components.FormColorPicker, {}),
+ "img2img_editor_height": OptionInfo(720, "Height of the image editor", gr.Slider, {"minimum": 80, "maximum": 1600, "step": 1}).info("in pixels").needs_reload_ui(),
+ "img2img_sketch_default_brush_color": OptionInfo("#ffffff", "Sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img sketch").needs_reload_ui(),
+ "img2img_inpaint_mask_brush_color": OptionInfo("#ffffff", "Inpaint mask brush color", ui_components.FormColorPicker, {}).info("brush color of inpaint mask").needs_reload_ui(),
+ "img2img_inpaint_sketch_default_brush_color": OptionInfo("#ffffff", "Inpaint sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img inpaint sketch").needs_reload_ui(),
+ "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
+ "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
+}))
+
+options_templates.update(options_section(('optimizations', "Optimizations"), {
+ "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
+ "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
+ "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
+ "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
+ "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
+ "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length").info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
+ "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("Do not recalculate conds from prompts if prompts have not changed since previous calculation"),
+}))
+
+options_templates.update(options_section(('compatibility', "Compatibility"), {
+ "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
+ "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
+ "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
+ "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
+ "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
+ "hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
+}))
+
+options_templates.update(options_section(('interrogate', "Interrogate"), {
+ "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"),
+ "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"),
+ "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
+ "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
+ "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
+ "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"),
+ "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
+ "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
+ "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"),
+ "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"),
+ "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"),
+ "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"),
+}))
+
+options_templates.update(options_section(('extra_networks', "Extra Networks"), {
+ "extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."),
+ "extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'),
+ "extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}),
+ "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"),
+ "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"),
+ "extra_networks_card_text_scale": OptionInfo(1.0, "Card text scale", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}).info("1 = original size"),
+ "extra_networks_card_show_desc": OptionInfo(True, "Show description on card"),
+ "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
+ "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_reload_ui(),
+ "textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
+ "textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
+ "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks),
+}))
+
+options_templates.update(options_section(('ui', "User interface"), {
+ "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(),
+ "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).info("you can also manually enter any of themes from the gallery.").needs_reload_ui(),
+ "gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"),
+ "return_grid": OptionInfo(True, "Show grid in results for web"),
+ "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
+ "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
+ "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
+ "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
+ "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
+ "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"),
+ "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"),
+ "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
+ "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_reload_ui(),
+ "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_reload_ui(),
+ "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
+ "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
+ "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
+ "keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"),
+ "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(),
+ "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(),
+ "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(),
+ "ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_reload_ui(),
+ "hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires checkpoint and sampler selection").needs_reload_ui(),
+ "hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(),
+ "disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(),
+}))
+
+
+options_templates.update(options_section(('infotext', "Infotext"), {
+ "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
+ "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
+ "add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"),
+ "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"),
+ "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"),
+ "infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html("""
+- Ignore: keep prompt and styles dropdown as it is.
+- Apply: remove style text from prompt, always replace styles dropdown value with found styles (even if none are found).
+- Discard: remove style text from prompt, keep styles dropdown as it is.
+- Apply if any: remove style text from prompt; if any styles are found in prompt, put them into styles dropdown, otherwise keep it as it is.
+
"""),
+
+}))
+
+options_templates.update(options_section(('ui', "Live previews"), {
+ "show_progressbar": OptionInfo(True, "Show progressbar"),
+ "live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
+ "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}),
+ "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
+ "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"),
+ "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"),
+ "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
+ "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
+}))
+
+options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
+ "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_reload_ui(),
+ "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"),
+ "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"),
+ "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
+ 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}).info('amount of stochasticity; only applies to Euler, Heun, and DPM2'),
+ 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}).info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
+ 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}).info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"),
+ 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}).info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'),
+ 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
+ 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
+ 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),
+ 'rho': OptionInfo(0.0, "rho", gr.Number).info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"),
+ 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
+ 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
+ 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
+ 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
+ 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"),
+ 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
+}))
+
+options_templates.update(options_section(('postprocessing', "Postprocessing"), {
+ 'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
+ 'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
+ 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
+}))
+
+options_templates.update(options_section((None, "Hidden options"), {
+ "disabled_extensions": OptionInfo([], "Disable these extensions"),
+ "disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
+ "restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"),
+ "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
+}))
+
+
+options_templates.update()
+
+
+class Options:
+ data = None
+ data_labels = options_templates
+ typemap = {int: float}
+
+ def __init__(self):
+ self.data = {k: v.default for k, v in self.data_labels.items()}
+
+ def __setattr__(self, key, value):
+ if self.data is not None:
+ if key in self.data or key in self.data_labels:
+ assert not cmd_opts.freeze_settings, "changing settings is disabled"
+
+ info = opts.data_labels.get(key, None)
+ if info.do_not_save:
+ return
+
+ comp_args = info.component_args if info else None
+ if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
+ raise RuntimeError(f"not possible to set {key} because it is restricted")
+
+ if cmd_opts.hide_ui_dir_config and key in restricted_opts:
+ raise RuntimeError(f"not possible to set {key} because it is restricted")
+
+ self.data[key] = value
+ return
+
+ return super(Options, self).__setattr__(key, value)
+
+ def __getattr__(self, item):
+ if self.data is not None:
+ if item in self.data:
+ return self.data[item]
+
+ if item in self.data_labels:
+ return self.data_labels[item].default
+
+ return super(Options, self).__getattribute__(item)
+
+ def set(self, key, value):
+ """sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
+
+ oldval = self.data.get(key, None)
+ if oldval == value:
+ return False
+
+ if self.data_labels[key].do_not_save:
+ return False
+
+ try:
+ setattr(self, key, value)
+ except RuntimeError:
+ return False
+
+ if self.data_labels[key].onchange is not None:
+ try:
+ self.data_labels[key].onchange()
+ except Exception as e:
+ errors.display(e, f"changing setting {key} to {value}")
+ setattr(self, key, oldval)
+ return False
+
+ return True
+
+ def get_default(self, key):
+ """returns the default value for the key"""
+
+ data_label = self.data_labels.get(key)
+ if data_label is None:
+ return None
+
+ return data_label.default
+
+ def save(self, filename):
+ assert not cmd_opts.freeze_settings, "saving settings is disabled"
+
+ with open(filename, "w", encoding="utf8") as file:
+ json.dump(self.data, file, indent=4)
+
+ def same_type(self, x, y):
+ if x is None or y is None:
+ return True
+
+ type_x = self.typemap.get(type(x), type(x))
+ type_y = self.typemap.get(type(y), type(y))
+
+ return type_x == type_y
+
+ def load(self, filename):
+ with open(filename, "r", encoding="utf8") as file:
+ self.data = json.load(file)
+
+ # 1.6.0 VAE defaults
+ if self.data.get('sd_vae_as_default') is not None and self.data.get('sd_vae_overrides_per_model_preferences') is None:
+ self.data['sd_vae_overrides_per_model_preferences'] = not self.data.get('sd_vae_as_default')
+
+ # 1.1.1 quicksettings list migration
+ if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
+ self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
+
+ # 1.4.0 ui_reorder
+ if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data:
+ self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')]
+
+ bad_settings = 0
+ for k, v in self.data.items():
+ info = self.data_labels.get(k, None)
+ if info is not None and not self.same_type(info.default, v):
+ print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
+ bad_settings += 1
+
+ if bad_settings > 0:
+ print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
+
+ def onchange(self, key, func, call=True):
+ item = self.data_labels.get(key)
+ item.onchange = func
+
+ if call:
+ func()
+
+ def dumpjson(self):
+ d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()}
+ d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None}
+ d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None}
+ return json.dumps(d)
+
+ def add_option(self, key, info):
+ self.data_labels[key] = info
+
+ def reorder(self):
+ """reorder settings so that all items related to section always go together"""
+
+ section_ids = {}
+ settings_items = self.data_labels.items()
+ for _, item in settings_items:
+ if item.section not in section_ids:
+ section_ids[item.section] = len(section_ids)
+
+ self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section]))
+
+ def cast_value(self, key, value):
+ """casts an arbitrary to the same type as this setting's value with key
+ Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
+ """
+
+ if value is None:
+ return None
+
+ default_value = self.data_labels[key].default
+ if default_value is None:
+ default_value = getattr(self, key, None)
+ if default_value is None:
+ return None
+
+ expected_type = type(default_value)
+ if expected_type == bool and value == "False":
+ value = False
+ else:
+ value = expected_type(value)
+
+ return value
+
+
+opts = Options()
+if os.path.exists(config_filename):
+ opts.load(config_filename)
+
+
+class Shared(sys.modules[__name__].__class__):
+ """
+ this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
+ at program startup.
+ """
+
+ sd_model_val = None
+
+ @property
+ def sd_model(self):
+ import modules.sd_models
+
+ return modules.sd_models.model_data.get_sd_model()
+
+ @sd_model.setter
+ def sd_model(self, value):
+ import modules.sd_models
+
+ modules.sd_models.model_data.set_sd_model(value)
+
+
+sd_model: LatentDiffusion = None # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead
+sys.modules[__name__].__class__ = Shared
+
+settings_components = None
+"""assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
+
+latent_upscale_default_mode = "Latent"
+latent_upscale_modes = {
+ "Latent": {"mode": "bilinear", "antialias": False},
+ "Latent (antialiased)": {"mode": "bilinear", "antialias": True},
+ "Latent (bicubic)": {"mode": "bicubic", "antialias": False},
+ "Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
+ "Latent (nearest)": {"mode": "nearest", "antialias": False},
+ "Latent (nearest-exact)": {"mode": "nearest-exact", "antialias": False},
+}
+
+sd_upscalers = []
+
+clip_model = None
+
+progress_print_out = sys.stdout
+
+gradio_theme = gr.themes.Base()
+
+
+def reload_gradio_theme(theme_name=None):
+ global gradio_theme
+ if not theme_name:
+ theme_name = opts.gradio_theme
+
+ default_theme_args = dict(
+ font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'],
+ font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
+ )
+
+ if theme_name == "Default":
+ gradio_theme = gr.themes.Default(**default_theme_args)
+ else:
+ try:
+ theme_cache_dir = os.path.join(script_path, 'tmp', 'gradio_themes')
+ theme_cache_path = os.path.join(theme_cache_dir, f'{theme_name.replace("/", "_")}.json')
+ if opts.gradio_themes_cache and os.path.exists(theme_cache_path):
+ gradio_theme = gr.themes.ThemeClass.load(theme_cache_path)
+ else:
+ os.makedirs(theme_cache_dir, exist_ok=True)
+ gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
+ gradio_theme.dump(theme_cache_path)
+ except Exception as e:
+ errors.display(e, "changing gradio theme")
+ gradio_theme = gr.themes.Default(**default_theme_args)
+
+
+class TotalTQDM:
+ def __init__(self):
+ self._tqdm = None
+
+ def reset(self):
+ self._tqdm = tqdm.tqdm(
+ desc="Total progress",
+ total=state.job_count * state.sampling_steps,
+ position=1,
+ file=progress_print_out
+ )
+
+ def update(self):
+ if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
+ return
+ if self._tqdm is None:
+ self.reset()
+ self._tqdm.update()
+
+ def updateTotal(self, new_total):
+ if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
+ return
+ if self._tqdm is None:
+ self.reset()
+ self._tqdm.total = new_total
+
+ def clear(self):
+ if self._tqdm is not None:
+ self._tqdm.refresh()
+ self._tqdm.close()
+ self._tqdm = None
+
+
+total_tqdm = TotalTQDM()
+
+mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
+mem_mon.start()
+
+
+def natural_sort_key(s, regex=re.compile('([0-9]+)')):
+ return [int(text) if text.isdigit() else text.lower() for text in regex.split(s)]
+
+
+def listfiles(dirname):
+ filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=natural_sort_key) if not x.startswith(".")]
+ return [file for file in filenames if os.path.isfile(file)]
+
+
+def html_path(filename):
+ return os.path.join(script_path, "html", filename)
+
+
+def html(filename):
+ path = html_path(filename)
+
+ if os.path.exists(path):
+ with open(path, encoding="utf8") as file:
+ return file.read()
+
+ return ""
+
+
+def walk_files(path, allowed_extensions=None):
+ if not os.path.exists(path):
+ return
+
+ if allowed_extensions is not None:
+ allowed_extensions = set(allowed_extensions)
+
+ items = list(os.walk(path, followlinks=True))
+ items = sorted(items, key=lambda x: natural_sort_key(x[0]))
+
+ for root, _, files in items:
+ for filename in sorted(files, key=natural_sort_key):
+ if allowed_extensions is not None:
+ _, ext = os.path.splitext(filename)
+ if ext not in allowed_extensions:
+ continue
+
+ if not opts.list_hidden_files and ("/." in root or "\\." in root):
+ continue
+
+ yield os.path.join(root, filename)
+
+
+def ldm_print(*args, **kwargs):
+ if opts.hide_ldm_prints:
+ return
+
+ print(*args, **kwargs)