mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-04-08 05:49:00 +08:00
Merge 56d79f6dc216a67d1fc5cf2ca702872462f10a8c into 374bb6cc384d2a19422c0b07d69de0a41d1f3f4d
This commit is contained in:
commit
8ff7a1967b
114
modules/colorfix.py
Normal file
114
modules/colorfix.py
Normal file
@ -0,0 +1,114 @@
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch import Tensor
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torchvision.transforms import ToTensor, ToPILImage
|
||||
|
||||
def adain_color_fix(target: Image, source: Image):
|
||||
# Convert images to tensors
|
||||
to_tensor = ToTensor()
|
||||
target_tensor = to_tensor(target).unsqueeze(0)
|
||||
source_tensor = to_tensor(source).unsqueeze(0)
|
||||
|
||||
# Apply adaptive instance normalization
|
||||
result_tensor = adaptive_instance_normalization(target_tensor, source_tensor)
|
||||
|
||||
# Convert tensor back to image
|
||||
to_image = ToPILImage()
|
||||
result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0))
|
||||
|
||||
return result_image
|
||||
|
||||
def wavelet_color_fix(target: Image, source: Image):
|
||||
# Convert images to tensors
|
||||
to_tensor = ToTensor()
|
||||
target_tensor = to_tensor(target).unsqueeze(0)
|
||||
source_tensor = to_tensor(source).unsqueeze(0)
|
||||
|
||||
# Apply wavelet reconstruction
|
||||
result_tensor = wavelet_reconstruction(target_tensor, source_tensor)
|
||||
|
||||
# Convert tensor back to image
|
||||
to_image = ToPILImage()
|
||||
result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0))
|
||||
|
||||
return result_image
|
||||
|
||||
def calc_mean_std(feat: Tensor, eps=1e-5):
|
||||
"""Calculate mean and std for adaptive_instance_normalization.
|
||||
Args:
|
||||
feat (Tensor): 4D tensor.
|
||||
eps (float): A small value added to the variance to avoid
|
||||
divide-by-zero. Default: 1e-5.
|
||||
"""
|
||||
size = feat.size()
|
||||
assert len(size) == 4, 'The input feature should be 4D tensor.'
|
||||
b, c = size[:2]
|
||||
feat_var = feat.view(b, c, -1).var(dim=2) + eps
|
||||
feat_std = feat_var.sqrt().view(b, c, 1, 1)
|
||||
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
|
||||
return feat_mean, feat_std
|
||||
|
||||
def adaptive_instance_normalization(content_feat:Tensor, style_feat:Tensor):
|
||||
"""Adaptive instance normalization.
|
||||
Adjust the reference features to have the similar color and illuminations
|
||||
as those in the degradate features.
|
||||
Args:
|
||||
content_feat (Tensor): The reference feature.
|
||||
style_feat (Tensor): The degradate features.
|
||||
"""
|
||||
size = content_feat.size()
|
||||
style_mean, style_std = calc_mean_std(style_feat)
|
||||
content_mean, content_std = calc_mean_std(content_feat)
|
||||
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
|
||||
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
||||
|
||||
def wavelet_blur(image: Tensor, radius: int):
|
||||
"""
|
||||
Apply wavelet blur to the input tensor.
|
||||
"""
|
||||
# input shape: (1, 3, H, W)
|
||||
# convolution kernel
|
||||
kernel_vals = [
|
||||
[0.0625, 0.125, 0.0625],
|
||||
[0.125, 0.25, 0.125],
|
||||
[0.0625, 0.125, 0.0625],
|
||||
]
|
||||
kernel = torch.tensor(kernel_vals, dtype=image.dtype, device=image.device)
|
||||
# add channel dimensions to the kernel to make it a 4D tensor
|
||||
kernel = kernel[None, None]
|
||||
# repeat the kernel across all input channels
|
||||
kernel = kernel.repeat(3, 1, 1, 1)
|
||||
image = F.pad(image, (radius, radius, radius, radius), mode='replicate')
|
||||
# apply convolution
|
||||
output = F.conv2d(image, kernel, groups=3, dilation=radius)
|
||||
return output
|
||||
|
||||
def wavelet_decomposition(image: Tensor, levels=5):
|
||||
"""
|
||||
Apply wavelet decomposition to the input tensor.
|
||||
This function only returns the low frequency & the high frequency.
|
||||
"""
|
||||
high_freq = torch.zeros_like(image)
|
||||
for i in range(levels):
|
||||
radius = 2 ** i
|
||||
low_freq = wavelet_blur(image, radius)
|
||||
high_freq += (image - low_freq)
|
||||
image = low_freq
|
||||
|
||||
return high_freq, low_freq
|
||||
|
||||
def wavelet_reconstruction(content_feat:Tensor, style_feat:Tensor):
|
||||
"""
|
||||
Apply wavelet decomposition, so that the content will have the same color as the style.
|
||||
"""
|
||||
# calculate the wavelet decomposition of the content feature
|
||||
content_high_freq, content_low_freq = wavelet_decomposition(content_feat)
|
||||
del content_low_freq
|
||||
# calculate the wavelet decomposition of the style feature
|
||||
style_high_freq, style_low_freq = wavelet_decomposition(style_feat)
|
||||
del style_high_freq
|
||||
# reconstruct the content feature with the style's high frequency
|
||||
return content_high_freq + style_low_freq
|
||||
|
@ -22,6 +22,7 @@ import hashlib
|
||||
from modules import sd_samplers, shared, script_callbacks, errors
|
||||
from modules.paths_internal import roboto_ttf_file
|
||||
from modules.shared import opts
|
||||
from modules.colorfix import wavelet_color_fix
|
||||
|
||||
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
||||
|
||||
@ -249,7 +250,7 @@ def draw_prompt_matrix(im, width, height, all_prompts, margin=0):
|
||||
return draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin)
|
||||
|
||||
|
||||
def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
||||
def resize_image(resize_mode, im, width, height, upscaler_name=None, preserve_colors=False):
|
||||
"""
|
||||
Resizes an image with the specified resize_mode, width, and height.
|
||||
|
||||
@ -263,7 +264,7 @@ def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
||||
height: The height to resize the image to.
|
||||
upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img.
|
||||
"""
|
||||
|
||||
before_resize = im
|
||||
upscaler_name = upscaler_name or opts.upscaler_for_img2img
|
||||
|
||||
def resize(im, w, h):
|
||||
@ -285,6 +286,9 @@ def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
||||
if im.width != w or im.height != h:
|
||||
im = im.resize((w, h), resample=LANCZOS)
|
||||
|
||||
if preserve_colors:
|
||||
im = wavelet_color_fix(im, before_resize.resize(im.size))
|
||||
|
||||
return im
|
||||
|
||||
if resize_mode == 0:
|
||||
|
@ -1,3 +1,4 @@
|
||||
import math
|
||||
from PIL import Image, ImageFilter, ImageOps
|
||||
|
||||
|
||||
@ -77,6 +78,43 @@ def expand_crop_region(crop_region, processing_width, processing_height, image_w
|
||||
return x1, y1, x2, y2
|
||||
|
||||
|
||||
def fix_crop_region_integer_scale(crop_region, processing_width, processing_height, image_width, image_height):
|
||||
"""expands crop region get_crop_region() to avoid non-integer scaling artifacts (different pixels size) after applying overlay"""
|
||||
|
||||
x1, y1, x2, y2 = crop_region
|
||||
|
||||
ratio_w = (x2 - x1) / processing_width
|
||||
ratio_h = (y2 - y1) / processing_height
|
||||
|
||||
desired_w = math.ceil(ratio_w) * processing_width
|
||||
diff_w = desired_w - (x2 - x1)
|
||||
diff_w_l = diff_w // 2
|
||||
diff_w_r = diff_w - diff_w_l
|
||||
x1 -= diff_w_l
|
||||
x2 += diff_w_r
|
||||
if x1 < 0:
|
||||
x2 -= x1
|
||||
x1 -= x1
|
||||
if x2 >= image_width:
|
||||
x2 = image_width
|
||||
|
||||
desired_h = math.ceil(ratio_h) * processing_height
|
||||
diff_h = desired_h - (y2 - y1)
|
||||
diff_h_u = diff_h // 2
|
||||
diff_h_d = diff_h - diff_h_u
|
||||
y1 -= diff_h_u
|
||||
y2 += diff_h_d
|
||||
if y1 < 0:
|
||||
y2 -= y1
|
||||
y1 -= y1
|
||||
if y2 >= image_height:
|
||||
y2 = image_height
|
||||
|
||||
print(f"padding was increased by {max(diff_w_l, diff_w_r, diff_h_u, diff_h_d)} after integer upscale correction")
|
||||
|
||||
return x1, y1, x2, y2
|
||||
|
||||
|
||||
def fill(image, mask):
|
||||
"""fills masked regions with colors from image using blur. Not extremely effective."""
|
||||
|
||||
|
@ -65,8 +65,12 @@ def apply_color_correction(correction, original_image):
|
||||
def uncrop(image, dest_size, paste_loc):
|
||||
x, y, w, h = paste_loc
|
||||
base_image = Image.new('RGBA', dest_size)
|
||||
image = images.resize_image(1, image, w, h)
|
||||
base_image.paste(image, (x, y))
|
||||
factor_x = w // image.size[0]
|
||||
factor_y = h // image.size[1]
|
||||
image = images.resize_image(1, image, w, h, preserve_colors=shared.opts.img2img_upscaler_preserve_colors)
|
||||
paste_x = max(x - factor_x, 0)
|
||||
paste_y = max(y - factor_y, 0)
|
||||
base_image.paste(image, (paste_x, paste_y))
|
||||
image = base_image
|
||||
|
||||
return image
|
||||
@ -1642,6 +1646,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
crop_region = masking.get_crop_region_v2(mask, self.inpaint_full_res_padding)
|
||||
if crop_region:
|
||||
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
||||
if shared.opts.integer_only_masked:
|
||||
crop_region = masking.fix_crop_region_integer_scale(crop_region, self.width, self.height, mask.width, mask.height)
|
||||
x1, y1, x2, y2 = crop_region
|
||||
mask = mask.crop(crop_region)
|
||||
image_mask = images.resize_image(2, mask, self.width, self.height)
|
||||
@ -1680,7 +1686,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
image = images.flatten(img, opts.img2img_background_color)
|
||||
|
||||
if crop_region is None and self.resize_mode != 3:
|
||||
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
||||
image = images.resize_image(self.resize_mode, image, self.width, self.height, preserve_colors=shared.opts.img2img_upscaler_preserve_colors)
|
||||
|
||||
if image_mask is not None:
|
||||
if self.mask_for_overlay.size != (image.width, image.height):
|
||||
@ -1693,7 +1699,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
# crop_region is not None if we are doing inpaint full res
|
||||
if crop_region is not None:
|
||||
image = image.crop(crop_region)
|
||||
image = images.resize_image(2, image, self.width, self.height)
|
||||
image = images.resize_image(2, image, self.width, self.height, preserve_colors=shared.opts.img2img_upscaler_preserve_colors)
|
||||
|
||||
if image_mask is not None:
|
||||
if self.inpainting_fill != 1:
|
||||
|
@ -104,6 +104,7 @@ options_templates.update(options_section(('upscaling', "Upscaling", "postprocess
|
||||
"DAT_tile": OptionInfo(192, "Tile size for DAT upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
|
||||
"DAT_tile_overlap": OptionInfo(8, "Tile overlap for DAT upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
|
||||
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in shared.sd_upscalers]}),
|
||||
"img2img_upscaler_preserve_colors": OptionInfo(False, "Preserve colors in upscaler for img2img"),
|
||||
"set_scale_by_when_changing_upscaler": OptionInfo(False, "Automatically set the Scale by factor based on the name of the selected Upscaler."),
|
||||
}))
|
||||
|
||||
@ -228,6 +229,7 @@ options_templates.update(options_section(('img2img', "img2img", "sd"), {
|
||||
"return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
|
||||
"img2img_batch_show_results_limit": OptionInfo(32, "Show the first N batch img2img results in UI", gr.Slider, {"minimum": -1, "maximum": 1000, "step": 1}).info('0: disable, -1: show all images. Too many images can cause lag'),
|
||||
"overlay_inpaint": OptionInfo(True, "Overlay original for inpaint").info("when inpainting, overlay the original image over the areas that weren't inpainted."),
|
||||
"integer_only_masked": OptionInfo(False, "Integer upscale in inpaint only masked").info("Correct inpaint padding for only masked to have integer upscaling after fitting cropped region in original image"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('optimizations', "Optimizations", "sd"), {
|
||||
|
Loading…
x
Reference in New Issue
Block a user