Merge pull request #14973 from AUTOMATIC1111/Fix-new-oft-boft

Fix the OFT/BOFT bugs when using new LyCORIS implementation
This commit is contained in:
AUTOMATIC1111 2024-02-26 07:12:12 +03:00 committed by GitHub
commit 900419e85e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,6 +1,5 @@
import torch import torch
import network import network
from lyco_helpers import factorization
from einops import rearrange from einops import rearrange
@ -22,24 +21,24 @@ class NetworkModuleOFT(network.NetworkModule):
self.org_module: list[torch.Module] = [self.sd_module] self.org_module: list[torch.Module] = [self.sd_module]
self.scale = 1.0 self.scale = 1.0
self.is_kohya = False self.is_R = False
self.is_boft = False self.is_boft = False
# kohya-ss # kohya-ss/New LyCORIS OFT/BOFT
if "oft_blocks" in weights.w.keys(): if "oft_blocks" in weights.w.keys():
self.is_kohya = True
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
self.alpha = weights.w["alpha"] # alpha is constraint self.alpha = weights.w.get("alpha", None) # alpha is constraint
self.dim = self.oft_blocks.shape[0] # lora dim self.dim = self.oft_blocks.shape[0] # lora dim
# LyCORIS OFT # Old LyCORIS OFT
elif "oft_diag" in weights.w.keys(): elif "oft_diag" in weights.w.keys():
self.is_R = True
self.oft_blocks = weights.w["oft_diag"] self.oft_blocks = weights.w["oft_diag"]
# self.alpha is unused # self.alpha is unused
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size) self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
# LyCORIS BOFT # LyCORIS BOFT
if weights.w["oft_diag"].dim() == 4: if self.oft_blocks.dim() == 4:
self.is_boft = True self.is_boft = True
self.rescale = weights.w.get('rescale', None) self.rescale = weights.w.get('rescale', None)
if self.rescale is not None: if self.rescale is not None:
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1)) self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))
@ -55,30 +54,29 @@ class NetworkModuleOFT(network.NetworkModule):
elif is_other_linear: elif is_other_linear:
self.out_dim = self.sd_module.embed_dim self.out_dim = self.sd_module.embed_dim
if self.is_kohya: self.num_blocks = self.dim
self.constraint = self.alpha * self.out_dim self.block_size = self.out_dim // self.dim
self.num_blocks = self.dim self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim
self.block_size = self.out_dim // self.dim if self.is_R:
self.constraint = None
self.block_size = self.dim
self.num_blocks = self.out_dim // self.dim
elif self.is_boft: elif self.is_boft:
self.constraint = None self.boft_m = self.oft_blocks.shape[0]
self.boft_m = weights.w["oft_diag"].shape[0] self.num_blocks = self.oft_blocks.shape[1]
self.block_num = weights.w["oft_diag"].shape[1] self.block_size = self.oft_blocks.shape[2]
self.block_size = weights.w["oft_diag"].shape[2]
self.boft_b = self.block_size self.boft_b = self.block_size
#self.block_size, self.block_num = butterfly_factor(self.out_dim, self.dim)
else:
self.constraint = None
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
def calc_updown(self, orig_weight): def calc_updown(self, orig_weight):
oft_blocks = self.oft_blocks.to(orig_weight.device) oft_blocks = self.oft_blocks.to(orig_weight.device)
eye = torch.eye(self.block_size, device=oft_blocks.device) eye = torch.eye(self.block_size, device=oft_blocks.device)
if self.is_kohya: if not self.is_R:
block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix block_Q = oft_blocks - oft_blocks.transpose(-1, -2) # ensure skew-symmetric orthogonal matrix
norm_Q = torch.norm(block_Q.flatten()) if self.constraint != 0:
new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device)) norm_Q = torch.norm(block_Q.flatten())
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse()) oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
R = oft_blocks.to(orig_weight.device) R = oft_blocks.to(orig_weight.device)