mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-02-10 23:52:54 +08:00
make swinir actually useful
This commit is contained in:
parent
7267b7d2d9
commit
948eff4b3c
@ -12,7 +12,13 @@ import modules.images
|
|||||||
from modules.shared import cmd_opts, opts, device
|
from modules.shared import cmd_opts, opts, device
|
||||||
from modules.swinir_arch import SwinIR as net
|
from modules.swinir_arch import SwinIR as net
|
||||||
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
||||||
def load_model(task = "realsr", large_model = True, model_path=next(os.listdir(cmd_opts.esrgan_models_path))):
|
def load_model(task = "realsr", large_model = True, model_path="C:/sd/ESRGANn/4x-large.pth", scale=4):
|
||||||
|
|
||||||
|
try:
|
||||||
|
modules.shared.sd_upscalers.append(UpscalerSwin("McSwinnySwin"))
|
||||||
|
except Exception:
|
||||||
|
print(f"Error loading ESRGAN model", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
if not large_model:
|
if not large_model:
|
||||||
# use 'nearest+conv' to avoid block artifacts
|
# use 'nearest+conv' to avoid block artifacts
|
||||||
model = net(upscale=scale, in_chans=3, img_size=64, window_size=8,
|
model = net(upscale=scale, in_chans=3, img_size=64, window_size=8,
|
||||||
@ -26,12 +32,16 @@ def load_model(task = "realsr", large_model = True, model_path=next(os.listdir(c
|
|||||||
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
|
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
|
||||||
|
|
||||||
pretrained_model = torch.load(model_path)
|
pretrained_model = torch.load(model_path)
|
||||||
model.load_state_dict(pretrained_model, strict=True)
|
model.load_state_dict(pretrained_model["params_ema"], strict=True)
|
||||||
|
|
||||||
return model.half().to(device)
|
return model.half().to(device)
|
||||||
|
|
||||||
def upscale(img, tile=opts.ESRGAN_tile, tile_overlap=opts.ESRGAN_tile_overlap, window_size = 8, scale = 4):
|
def upscale(img, tile=opts.ESRGAN_tile, tile_overlap=opts.ESRGAN_tile_overlap, window_size = 8, scale = 4):
|
||||||
img = cv2.imread(img, cv2.IMREAD_COLOR).astype(np.float16) / 255.
|
img = np.array(img)
|
||||||
|
img = img[:, :, ::-1]
|
||||||
|
img = np.moveaxis(img, 2, 0) / 255
|
||||||
|
img = torch.from_numpy(img).float()
|
||||||
|
img = img.unsqueeze(0).to(device)
|
||||||
model = load_model()
|
model = load_model()
|
||||||
with torch.no_grad(), precision_scope("cuda"):
|
with torch.no_grad(), precision_scope("cuda"):
|
||||||
_, _, h_old, w_old = img.size()
|
_, _, h_old, w_old = img.size()
|
||||||
@ -45,7 +55,7 @@ def upscale(img, tile=opts.ESRGAN_tile, tile_overlap=opts.ESRGAN_tile_overlap, w
|
|||||||
if output.ndim == 3:
|
if output.ndim == 3:
|
||||||
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
|
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
|
||||||
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
||||||
return output
|
return Image.fromarray(output, 'RGB')
|
||||||
|
|
||||||
|
|
||||||
def inference(img, model, tile, tile_overlap, window_size, scale):
|
def inference(img, model, tile, tile_overlap, window_size, scale):
|
||||||
@ -71,4 +81,12 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
|
|||||||
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
|
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
|
||||||
output = E.div_(W)
|
output = E.div_(W)
|
||||||
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
class UpscalerSwin(modules.images.Upscaler):
|
||||||
|
def __init__(self, title):
|
||||||
|
self.name = title
|
||||||
|
|
||||||
|
def do_upscale(self, img):
|
||||||
|
img = upscale(img)
|
||||||
|
return img
|
Loading…
Reference in New Issue
Block a user