Merge branch 'AUTOMATIC1111:master' into deepdanbooru_pre_process

This commit is contained in:
JC-Array 2022-10-11 17:33:15 -05:00 committed by GitHub
commit 963d986396
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
30 changed files with 883 additions and 241 deletions

View File

@ -2,7 +2,7 @@
name: Feature request name: Feature request
about: Suggest an idea for this project about: Suggest an idea for this project
title: '' title: ''
labels: '' labels: 'suggestion'
assignees: '' assignees: ''
--- ---

1
CODEOWNERS Normal file
View File

@ -0,0 +1 @@
* @AUTOMATIC1111

View File

@ -28,10 +28,12 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- CodeFormer, face restoration tool as an alternative to GFPGAN - CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler - RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models - ESRGAN, neural network upscaler with a lot of third party models
- SwinIR, neural network upscaler - SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling - LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options - Resizing aspect ratio options
- Sampling method selection - Sampling method selection
- Adjust sampler eta values (noise multiplier)
- More advanced noise setting options
- Interrupt processing at any time - Interrupt processing at any time
- 4GB video card support (also reports of 2GB working) - 4GB video card support (also reports of 2GB working)
- Correct seeds for batches - Correct seeds for batches
@ -67,6 +69,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args) - DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
## Installation and Running ## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
@ -116,13 +119,17 @@ The documentation was moved from this README over to the project's [wiki](https:
- CodeFormer - https://github.com/sczhou/CodeFormer - CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN - ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR - SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion - LDSR - https://github.com/Hafiidz/latent-diffusion
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. - Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- InvokeAI, lstein - Cross Attention layer optimization - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Rinon Gal - Textual Inversion - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas). - Rinon Gal - Textual Inversion - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator - CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- DeepDanbooru - interrogator for anime diffusors https://github.com/KichangKim/DeepDanbooru
- (You) - (You)

View File

@ -16,7 +16,7 @@ contextMenuInit = function(){
oldMenu.remove() oldMenu.remove()
} }
let tabButton = gradioApp().querySelector('button') let tabButton = uiCurrentTab
let baseStyle = window.getComputedStyle(tabButton) let baseStyle = window.getComputedStyle(tabButton)
const contextMenu = document.createElement('nav') const contextMenu = document.createElement('nav')
@ -123,16 +123,16 @@ contextMenuInit = function(){
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener] return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
} }
initResponse = contextMenuInit() initResponse = contextMenuInit();
appendContextMenuOption = initResponse[0] appendContextMenuOption = initResponse[0];
removeContextMenuOption = initResponse[1] removeContextMenuOption = initResponse[1];
addContextMenuEventListener = initResponse[2] addContextMenuEventListener = initResponse[2];
(function(){
//Start example Context Menu Items //Start example Context Menu Items
generateOnRepeatId = appendContextMenuOption('#txt2img_generate','Generate forever',function(){ let generateOnRepeat = function(genbuttonid,interruptbuttonid){
let genbutton = gradioApp().querySelector('#txt2img_generate'); let genbutton = gradioApp().querySelector(genbuttonid);
let interruptbutton = gradioApp().querySelector('#txt2img_interrupt'); let interruptbutton = gradioApp().querySelector(interruptbuttonid);
if(!interruptbutton.offsetParent){ if(!interruptbutton.offsetParent){
genbutton.click(); genbutton.click();
} }
@ -142,25 +142,34 @@ generateOnRepeatId = appendContextMenuOption('#txt2img_generate','Generate forev
genbutton.click(); genbutton.click();
} }
}, },
500)} 500)
) }
cancelGenerateForever = function(){ appendContextMenuOption('#txt2img_generate','Generate forever',function(){
generateOnRepeat('#txt2img_generate','#txt2img_interrupt');
})
appendContextMenuOption('#img2img_generate','Generate forever',function(){
generateOnRepeat('#img2img_generate','#img2img_interrupt');
})
let cancelGenerateForever = function(){
clearInterval(window.generateOnRepeatInterval) clearInterval(window.generateOnRepeatInterval)
} }
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever) appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever) appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#roll','Roll three', appendContextMenuOption('#roll','Roll three',
function(){ function(){
let rollbutton = gradioApp().querySelector('#roll'); let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
setTimeout(function(){rollbutton.click()},100) setTimeout(function(){rollbutton.click()},100)
setTimeout(function(){rollbutton.click()},200) setTimeout(function(){rollbutton.click()},200)
setTimeout(function(){rollbutton.click()},300) setTimeout(function(){rollbutton.click()},300)
} }
) )
})();
//End example Context Menu Items //End example Context Menu Items
onUiUpdate(function(){ onUiUpdate(function(){

View File

@ -38,4 +38,7 @@ addEventListener('keydown', (event) => {
target.selectionStart = selectionStart; target.selectionStart = selectionStart;
target.selectionEnd = selectionEnd; target.selectionEnd = selectionEnd;
} }
// Since we've modified a Gradio Textbox component manually, we need to simulate an `input` DOM event to ensure its
// internal Svelte data binding remains in sync.
target.dispatchEvent(new Event("input", { bubbles: true }));
}); });

View File

@ -104,6 +104,7 @@ def prepare_enviroment():
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test') args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
xformers = '--xformers' in args xformers = '--xformers' in args
deepdanbooru = '--deepdanbooru' in args deepdanbooru = '--deepdanbooru' in args
ngrok = '--ngrok' in args
try: try:
commit = run(f"{git} rev-parse HEAD").strip() commit = run(f"{git} rev-parse HEAD").strip()
@ -134,6 +135,9 @@ def prepare_enviroment():
if not is_installed("deepdanbooru") and deepdanbooru: if not is_installed("deepdanbooru") and deepdanbooru:
run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru") run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
if not is_installed("pyngrok") and ngrok:
run_pip("install pyngrok", "ngrok")
os.makedirs(dir_repos, exist_ok=True) os.makedirs(dir_repos, exist_ok=True)
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash) git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)

View File

@ -1,98 +0,0 @@
import glob
import os
import sys
import traceback
import torch
from ldm.util import default
from modules import devices, shared
import torch
from torch import einsum
from einops import rearrange, repeat
class HypernetworkModule(torch.nn.Module):
def __init__(self, dim, state_dict):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim * 2)
self.linear2 = torch.nn.Linear(dim * 2, dim)
self.load_state_dict(state_dict, strict=True)
self.to(devices.device)
def forward(self, x):
return x + (self.linear2(self.linear1(x)))
class Hypernetwork:
filename = None
name = None
def __init__(self, filename):
self.filename = filename
self.name = os.path.splitext(os.path.basename(filename))[0]
self.layers = {}
state_dict = torch.load(filename, map_location='cpu')
for size, sd in state_dict.items():
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
def list_hypernetworks(path):
res = {}
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
name = os.path.splitext(os.path.basename(filename))[0]
res[name] = filename
return res
def load_hypernetwork(filename):
path = shared.hypernetworks.get(filename, None)
if path is not None:
print(f"Loading hypernetwork {filename}")
try:
shared.loaded_hypernetwork = Hypernetwork(path)
except Exception:
print(f"Error loading hypernetwork {path}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
else:
if shared.loaded_hypernetwork is not None:
print(f"Unloading hypernetwork")
shared.loaded_hypernetwork = None
def attention_CrossAttention_forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
hypernetwork = shared.loaded_hypernetwork
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
if hypernetwork_layers is not None:
k = self.to_k(hypernetwork_layers[0](context))
v = self.to_v(hypernetwork_layers[1](context))
else:
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if mask is not None:
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)

View File

@ -0,0 +1,305 @@
import datetime
import glob
import html
import os
import sys
import traceback
import tqdm
import torch
from ldm.util import default
from modules import devices, shared, processing, sd_models
import torch
from torch import einsum
from einops import rearrange, repeat
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnSchedule
class HypernetworkModule(torch.nn.Module):
def __init__(self, dim, state_dict=None):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim * 2)
self.linear2 = torch.nn.Linear(dim * 2, dim)
if state_dict is not None:
self.load_state_dict(state_dict, strict=True)
else:
self.linear1.weight.data.normal_(mean=0.0, std=0.01)
self.linear1.bias.data.zero_()
self.linear2.weight.data.normal_(mean=0.0, std=0.01)
self.linear2.bias.data.zero_()
self.to(devices.device)
def forward(self, x):
return x + (self.linear2(self.linear1(x)))
class Hypernetwork:
filename = None
name = None
def __init__(self, name=None, enable_sizes=None):
self.filename = None
self.name = name
self.layers = {}
self.step = 0
self.sd_checkpoint = None
self.sd_checkpoint_name = None
for size in enable_sizes or []:
self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
def weights(self):
res = []
for k, layers in self.layers.items():
for layer in layers:
layer.train()
res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
return res
def save(self, filename):
state_dict = {}
for k, v in self.layers.items():
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
state_dict['step'] = self.step
state_dict['name'] = self.name
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
torch.save(state_dict, filename)
def load(self, filename):
self.filename = filename
if self.name is None:
self.name = os.path.splitext(os.path.basename(filename))[0]
state_dict = torch.load(filename, map_location='cpu')
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
def list_hypernetworks(path):
res = {}
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
name = os.path.splitext(os.path.basename(filename))[0]
res[name] = filename
return res
def load_hypernetwork(filename):
path = shared.hypernetworks.get(filename, None)
if path is not None:
print(f"Loading hypernetwork {filename}")
try:
shared.loaded_hypernetwork = Hypernetwork()
shared.loaded_hypernetwork.load(path)
except Exception:
print(f"Error loading hypernetwork {path}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
else:
if shared.loaded_hypernetwork is not None:
print(f"Unloading hypernetwork")
shared.loaded_hypernetwork = None
def apply_hypernetwork(hypernetwork, context, layer=None):
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
if hypernetwork_layers is None:
return context, context
if layer is not None:
layer.hyper_k = hypernetwork_layers[0]
layer.hyper_v = hypernetwork_layers[1]
context_k = hypernetwork_layers[0](context)
context_v = hypernetwork_layers[1](context)
return context_k, context_v
def attention_CrossAttention_forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
k = self.to_k(context_k)
v = self.to_v(context_v)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if mask is not None:
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
assert hypernetwork_name, 'embedding not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
shared.loaded_hypernetwork.load(path)
shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
unload = shared.opts.unload_models_when_training
if save_hypernetwork_every > 0:
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
os.makedirs(hypernetwork_dir, exist_ok=True)
else:
hypernetwork_dir = None
if create_image_every > 0:
images_dir = os.path.join(log_directory, "images")
os.makedirs(images_dir, exist_ok=True)
else:
images_dir = None
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
hypernetwork = shared.loaded_hypernetwork
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
losses = torch.zeros((32,))
last_saved_file = "<none>"
last_saved_image = "<none>"
ititial_step = hypernetwork.step or 0
if ititial_step > steps:
return hypernetwork, filename
schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
(learn_rate, end_step) = next(schedules)
print(f'Training at rate of {learn_rate} until step {end_step}')
optimizer = torch.optim.AdamW(weights, lr=learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, (x, text, cond) in pbar:
hypernetwork.step = i + ititial_step
if hypernetwork.step > end_step:
try:
(learn_rate, end_step) = next(schedules)
except Exception:
break
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
for pg in optimizer.param_groups:
pg['lr'] = learn_rate
if shared.state.interrupted:
break
with torch.autocast("cuda"):
cond = cond.to(devices.device)
x = x.to(devices.device)
loss = shared.sd_model(x.unsqueeze(0), cond)[0]
del x
del cond
losses[hypernetwork.step % losses.shape[0]] = loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
pbar.set_description(f"loss: {losses.mean():.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
hypernetwork.save(last_saved_file)
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
preview_text = text if preview_image_prompt == "" else preview_image_prompt
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
prompt=preview_text,
steps=20,
do_not_save_grid=True,
do_not_save_samples=True,
)
processed = processing.process_images(p)
image = processed.images[0]
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
shared.state.current_image = image
image.save(last_saved_image)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
shared.state.textinfo = f"""
<p>
Loss: {losses.mean():.7f}<br/>
Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(text)}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
checkpoint = sd_models.select_checkpoint()
hypernetwork.sd_checkpoint = checkpoint.hash
hypernetwork.sd_checkpoint_name = checkpoint.model_name
hypernetwork.save(filename)
return hypernetwork, filename

View File

@ -0,0 +1,47 @@
import html
import os
import gradio as gr
import modules.textual_inversion.textual_inversion
import modules.textual_inversion.preprocess
from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork
def create_hypernetwork(name, enable_sizes):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes])
hypernet.save(fn)
shared.reload_hypernetworks()
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
def train_hypernetwork(*args):
initial_hypernetwork = shared.loaded_hypernetwork
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
try:
sd_hijack.undo_optimizations()
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
Hypernetwork saved to {html.escape(filename)}
"""
return res, ""
except Exception:
raise
finally:
shared.loaded_hypernetwork = initial_hypernetwork
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
sd_hijack.apply_optimizations()

15
modules/ngrok.py Normal file
View File

@ -0,0 +1,15 @@
from pyngrok import ngrok, conf, exception
def connect(token, port):
if token == None:
token = 'None'
conf.get_default().auth_token = token
try:
public_url = ngrok.connect(port).public_url
except exception.PyngrokNgrokError:
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
else:
print(f'ngrok connected to localhost:{port}! URL: {public_url}\n'
'You can use this link after the launch is complete.')

View File

@ -10,6 +10,7 @@ import torch
import numpy import numpy
import _codecs import _codecs
import zipfile import zipfile
import re
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage # PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
@ -54,11 +55,27 @@ class RestrictedUnpickler(pickle.Unpickler):
raise pickle.UnpicklingError(f"global '{module}/{name}' is forbidden") raise pickle.UnpicklingError(f"global '{module}/{name}' is forbidden")
allowed_zip_names = ["archive/data.pkl", "archive/version"]
allowed_zip_names_re = re.compile(r"^archive/data/\d+$")
def check_zip_filenames(filename, names):
for name in names:
if name in allowed_zip_names:
continue
if allowed_zip_names_re.match(name):
continue
raise Exception(f"bad file inside {filename}: {name}")
def check_pt(filename): def check_pt(filename):
try: try:
# new pytorch format is a zip file # new pytorch format is a zip file
with zipfile.ZipFile(filename) as z: with zipfile.ZipFile(filename) as z:
check_zip_filenames(filename, z.namelist())
with z.open('archive/data.pkl') as file: with z.open('archive/data.pkl') as file:
unpickler = RestrictedUnpickler(file) unpickler = RestrictedUnpickler(file)
unpickler.load() unpickler.load()

View File

@ -8,8 +8,9 @@ from torch import einsum
from torch.nn.functional import silu from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion import modules.textual_inversion.textual_inversion
from modules import prompt_parser, devices, sd_hijack_optimizations, shared, hypernetwork from modules import prompt_parser, devices, sd_hijack_optimizations, shared
from modules.shared import opts, device, cmd_opts from modules.shared import opts, device, cmd_opts
from modules.sd_hijack_optimizations import invokeAI_mps_available
import ldm.modules.attention import ldm.modules.attention
import ldm.modules.diffusionmodules.model import ldm.modules.diffusionmodules.model
@ -30,13 +31,23 @@ def apply_optimizations():
elif cmd_opts.opt_split_attention_v1: elif cmd_opts.opt_split_attention_v1:
print("Applying v1 cross attention optimization.") print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
if not invokeAI_mps_available and shared.device.type == 'mps':
print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
else:
print("Applying cross attention optimization (InvokeAI).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
print("Applying cross attention optimization.") print("Applying cross attention optimization (Doggettx).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
def undo_optimizations(): def undo_optimizations():
from modules.hypernetworks import hypernetwork
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
@ -107,6 +118,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
self.tokenizer = wrapped.tokenizer self.tokenizer = wrapped.tokenizer
self.token_mults = {} self.token_mults = {}
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k] tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens: for text, ident in tokens_with_parens:
mult = 1.0 mult = 1.0
@ -136,6 +149,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
fixes = [] fixes = []
remade_tokens = [] remade_tokens = []
multipliers = [] multipliers = []
last_comma = -1
for tokens, (text, weight) in zip(tokenized, parsed): for tokens, (text, weight) in zip(tokenized, parsed):
i = 0 i = 0
@ -144,6 +158,20 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i) embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
if token == self.comma_token:
last_comma = len(remade_tokens)
elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
last_comma += 1
reloc_tokens = remade_tokens[last_comma:]
reloc_mults = multipliers[last_comma:]
remade_tokens = remade_tokens[:last_comma]
length = len(remade_tokens)
rem = int(math.ceil(length / 75)) * 75 - length
remade_tokens += [id_end] * rem + reloc_tokens
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
if embedding is None: if embedding is None:
remade_tokens.append(token) remade_tokens.append(token)
multipliers.append(weight) multipliers.append(weight)

View File

@ -1,6 +1,7 @@
import math import math
import sys import sys
import traceback import traceback
import importlib
import torch import torch
from torch import einsum from torch import einsum
@ -9,6 +10,8 @@ from ldm.util import default
from einops import rearrange from einops import rearrange
from modules import shared from modules import shared
from modules.hypernetworks import hypernetwork
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
try: try:
@ -26,16 +29,10 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
q_in = self.to_q(x) q_in = self.to_q(x)
context = default(context, x) context = default(context, x)
hypernetwork = shared.loaded_hypernetwork context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
if hypernetwork_layers is not None: del context, context_k, context_v, x
k_in = self.to_k(hypernetwork_layers[0](context))
v_in = self.to_v(hypernetwork_layers[1](context))
else:
k_in = self.to_k(context)
v_in = self.to_v(context)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in del q_in, k_in, v_in
@ -59,22 +56,16 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
return self.to_out(r2) return self.to_out(r2)
# taken from https://github.com/Doggettx/stable-diffusion # taken from https://github.com/Doggettx/stable-diffusion and modified
def split_cross_attention_forward(self, x, context=None, mask=None): def split_cross_attention_forward(self, x, context=None, mask=None):
h = self.heads h = self.heads
q_in = self.to_q(x) q_in = self.to_q(x)
context = default(context, x) context = default(context, x)
hypernetwork = shared.loaded_hypernetwork context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
if hypernetwork_layers is not None:
k_in = self.to_k(hypernetwork_layers[0](context))
v_in = self.to_v(hypernetwork_layers[1](context))
else:
k_in = self.to_k(context)
v_in = self.to_v(context)
k_in *= self.scale k_in *= self.scale
@ -126,18 +117,111 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
return self.to_out(r2) return self.to_out(r2)
def check_for_psutil():
try:
spec = importlib.util.find_spec('psutil')
return spec is not None
except ModuleNotFoundError:
return False
invokeAI_mps_available = check_for_psutil()
# -- Taken from https://github.com/invoke-ai/InvokeAI --
if invokeAI_mps_available:
import psutil
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
def einsum_op_compvis(q, k, v):
s = einsum('b i d, b j d -> b i j', q, k)
s = s.softmax(dim=-1, dtype=s.dtype)
return einsum('b i j, b j d -> b i d', s, v)
def einsum_op_slice_0(q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
end = i + slice_size
r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
return r
def einsum_op_slice_1(q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
return r
def einsum_op_mps_v1(q, k, v):
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
return einsum_op_compvis(q, k, v)
else:
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
return einsum_op_slice_1(q, k, v, slice_size)
def einsum_op_mps_v2(q, k, v):
if mem_total_gb > 8 and q.shape[1] <= 4096:
return einsum_op_compvis(q, k, v)
else:
return einsum_op_slice_0(q, k, v, 1)
def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb:
return einsum_op_compvis(q, k, v)
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
if div <= q.shape[0]:
return einsum_op_slice_0(q, k, v, q.shape[0] // div)
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(q, k, v):
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
# Divide factor of safety as there's copying and fragmentation
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def einsum_op(q, k, v):
if q.device.type == 'cuda':
return einsum_op_cuda(q, k, v)
if q.device.type == 'mps':
if mem_total_gb >= 32:
return einsum_op_mps_v1(q, k, v)
return einsum_op_mps_v2(q, k, v)
# Smaller slices are faster due to L2/L3/SLC caches.
# Tested on i7 with 8MB L3 cache.
return einsum_op_tensor_mem(q, k, v, 32)
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
k = self.to_k(context_k) * self.scale
v = self.to_v(context_v)
del context, context_k, context_v, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
r = einsum_op(q, k, v)
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
# -- End of code from https://github.com/invoke-ai/InvokeAI --
def xformers_attention_forward(self, x, context=None, mask=None): def xformers_attention_forward(self, x, context=None, mask=None):
h = self.heads h = self.heads
q_in = self.to_q(x) q_in = self.to_q(x)
context = default(context, x) context = default(context, x)
hypernetwork = shared.loaded_hypernetwork
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
if hypernetwork_layers is not None: k_in = self.to_k(context_k)
k_in = self.to_k(hypernetwork_layers[0](context)) v_in = self.to_v(context_v)
v_in = self.to_v(hypernetwork_layers[1](context))
else:
k_in = self.to_k(context)
v_in = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in del q_in, k_in, v_in
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)

View File

@ -57,7 +57,7 @@ def set_samplers():
global samplers, samplers_for_img2img global samplers, samplers_for_img2img
hidden = set(opts.hide_samplers) hidden = set(opts.hide_samplers)
hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive']) hidden_img2img = set(opts.hide_samplers + ['PLMS'])
samplers = [x for x in all_samplers if x.name not in hidden] samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
@ -365,16 +365,26 @@ class KDiffusionSampler:
else: else:
sigmas = self.model_wrap.get_sigmas(steps) sigmas = self.model_wrap.get_sigmas(steps)
noise = noise * sigmas[steps - t_enc - 1] sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise xi = x + noise * sigma_sched[0]
extra_params_kwargs = self.initialize(p) extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
sigma_sched = sigmas[steps - t_enc - 1:] ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x self.model_wrap_cfg.init_latent = x
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) return self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None): def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
steps = steps or p.steps steps = steps or p.steps

View File

@ -13,7 +13,8 @@ import modules.memmon
import modules.sd_models import modules.sd_models
import modules.styles import modules.styles
import modules.devices as devices import modules.devices as devices
from modules import sd_samplers, hypernetwork from modules import sd_samplers
from modules.hypernetworks import hypernetwork
from modules.paths import models_path, script_path, sd_path from modules.paths import models_path, script_path, sd_path
sd_model_file = os.path.join(script_path, 'model.ckpt') sd_model_file = os.path.join(script_path, 'model.ckpt')
@ -29,6 +30,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)") parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui") parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage") parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage") parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
@ -36,6 +38,7 @@ parser.add_argument("--always-batch-cond-uncond", action='store_true', help="dis
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.") parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)") parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer')) parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN')) parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN')) parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
@ -47,9 +50,10 @@ parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers") parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work") parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator") parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.") parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization") parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find") parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
parser.add_argument("--use-cpu", nargs='+',choices=['SD', 'GFPGAN', 'BSRGAN', 'ESRGAN', 'SCUNet', 'CodeFormer'], help="use CPU as torch device for specified modules", default=[]) parser.add_argument("--use-cpu", nargs='+',choices=['SD', 'GFPGAN', 'BSRGAN', 'ESRGAN', 'SCUNet', 'CodeFormer'], help="use CPU as torch device for specified modules", default=[])
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests") parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None) parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
@ -82,10 +86,17 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
xformers_available = False xformers_available = False
config_filename = cmd_opts.ui_settings_file config_filename = cmd_opts.ui_settings_file
hypernetworks = hypernetwork.list_hypernetworks(os.path.join(models_path, 'hypernetworks')) hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None loaded_hypernetwork = None
def reload_hypernetworks():
global hypernetworks
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
class State: class State:
skipped = False skipped = False
interrupted = False interrupted = False
@ -217,6 +228,10 @@ options_templates.update(options_section(('system', "System"), {
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
})) }))
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP form VRAM when training"),
}))
options_templates.update(options_section(('sd', "Stable Diffusion"), { options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, show_on_main_page=True), "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, show_on_main_page=True),
"sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}), "sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}),
@ -227,6 +242,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"), "enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."), "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
"filter_nsfw": OptionInfo(False, "Filter NSFW content"), "filter_nsfw": OptionInfo(False, "Filter NSFW content"),
'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), 'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
@ -239,6 +255,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
"interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"), "interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"),
"interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
})) }))
options_templates.update(options_section(('ui', "User interface"), { options_templates.update(options_section(('ui', "User interface"), {

View File

@ -8,14 +8,14 @@ from torchvision import transforms
import random import random
import tqdm import tqdm
from modules import devices from modules import devices, shared
import re import re
re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") re_tag = re.compile(r"[a-zA-Z][_\w\d()]+")
class PersonalizedBase(Dataset): class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False):
self.placeholder_token = placeholder_token self.placeholder_token = placeholder_token
@ -32,12 +32,15 @@ class PersonalizedBase(Dataset):
assert data_root, 'dataset directory not specified' assert data_root, 'dataset directory not specified'
cond_model = shared.sd_model.cond_stage_model
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
print("Preparing dataset...") print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths): for path in tqdm.tqdm(self.image_paths):
image = Image.open(path) try:
image = image.convert('RGB') image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
image = image.resize((self.width, self.height), PIL.Image.BICUBIC) except Exception:
continue
filename = os.path.basename(path) filename = os.path.basename(path)
filename_tokens = os.path.splitext(filename)[0] filename_tokens = os.path.splitext(filename)[0]
@ -52,7 +55,13 @@ class PersonalizedBase(Dataset):
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze() init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
init_latent = init_latent.to(devices.cpu) init_latent = init_latent.to(devices.cpu)
self.dataset.append((init_latent, filename_tokens)) if include_cond:
text = self.create_text(filename_tokens)
cond = cond_model([text]).to(devices.cpu)
else:
cond = None
self.dataset.append((init_latent, filename_tokens, cond))
self.length = len(self.dataset) * repeats self.length = len(self.dataset) * repeats
@ -63,6 +72,12 @@ class PersonalizedBase(Dataset):
def shuffle(self): def shuffle(self):
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])] self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
def create_text(self, filename_tokens):
text = random.choice(self.lines)
text = text.replace("[name]", self.placeholder_token)
text = text.replace("[filewords]", ' '.join(filename_tokens))
return text
def __len__(self): def __len__(self):
return self.length return self.length
@ -71,10 +86,7 @@ class PersonalizedBase(Dataset):
self.shuffle() self.shuffle()
index = self.indexes[i % len(self.indexes)] index = self.indexes[i % len(self.indexes)]
x, filename_tokens = self.dataset[index] x, filename_tokens, cond = self.dataset[index]
text = random.choice(self.lines) text = self.create_text(filename_tokens)
text = text.replace("[name]", self.placeholder_token) return x, text, cond
text = text.replace("[filewords]", ' '.join(filename_tokens))
return x, text

View File

@ -0,0 +1,34 @@
class LearnSchedule:
def __init__(self, learn_rate, max_steps, cur_step=0):
pairs = learn_rate.split(',')
self.rates = []
self.it = 0
self.maxit = 0
for i, pair in enumerate(pairs):
tmp = pair.split(':')
if len(tmp) == 2:
step = int(tmp[1])
if step > cur_step:
self.rates.append((float(tmp[0]), min(step, max_steps)))
self.maxit += 1
if step > max_steps:
return
elif step == -1:
self.rates.append((float(tmp[0]), max_steps))
self.maxit += 1
return
else:
self.rates.append((float(tmp[0]), max_steps))
self.maxit += 1
return
def __iter__(self):
return self
def __next__(self):
if self.it < self.maxit:
self.it += 1
return self.rates[self.it - 1]
else:
raise StopIteration

View File

@ -60,7 +60,10 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
for index, imagefile in enumerate(tqdm.tqdm(files)): for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0] subindex = [0]
filename = os.path.join(src, imagefile) filename = os.path.join(src, imagefile)
try:
img = Image.open(filename).convert("RGB") img = Image.open(filename).convert("RGB")
except Exception:
continue
if shared.state.interrupted: if shared.state.interrupted:
break break

View File

@ -10,6 +10,7 @@ import datetime
from modules import shared, devices, sd_hijack, processing, sd_models from modules import shared, devices, sd_hijack, processing, sd_models
import modules.textual_inversion.dataset import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnSchedule
class Embedding: class Embedding:
@ -156,7 +157,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
return fn return fn
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file): def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt):
assert embedding_name, 'embedding not selected' assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..." shared.state.textinfo = "Initializing textual inversion training..."
@ -189,8 +190,6 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
embedding = hijack.embedding_db.word_embeddings[embedding_name] embedding = hijack.embedding_db.word_embeddings[embedding_name]
embedding.vec.requires_grad = True embedding.vec.requires_grad = True
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
losses = torch.zeros((32,)) losses = torch.zeros((32,))
last_saved_file = "<none>" last_saved_file = "<none>"
@ -200,15 +199,24 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if ititial_step > steps: if ititial_step > steps:
return embedding, filename return embedding, filename
tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
epoch_len = (tr_img_len * num_repeats) + tr_img_len (learn_rate, end_step) = next(schedules)
print(f'Training at rate of {learn_rate} until step {end_step}')
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
for i, (x, text) in pbar: for i, (x, text, _) in pbar:
embedding.step = i + ititial_step embedding.step = i + ititial_step
if embedding.step > steps: if embedding.step > end_step:
try:
(learn_rate, end_step) = next(schedules)
except:
break break
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
for pg in optimizer.param_groups:
pg['lr'] = learn_rate
if shared.state.interrupted: if shared.state.interrupted:
break break
@ -226,10 +234,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
loss.backward() loss.backward()
optimizer.step() optimizer.step()
epoch_num = embedding.step // epoch_len epoch_num = embedding.step // len(ds)
epoch_step = embedding.step - (epoch_num * epoch_len) + 1 epoch_step = embedding.step - (epoch_num * len(ds)) + 1
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}")
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
@ -238,9 +246,11 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
preview_text = text if preview_image_prompt == "" else preview_image_prompt
p = processing.StableDiffusionProcessingTxt2Img( p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model, sd_model=shared.sd_model,
prompt=text, prompt=preview_text,
steps=20, steps=20,
height=training_height, height=training_height,
width=training_width, width=training_width,
@ -254,7 +264,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
shared.state.current_image = image shared.state.current_image = image
image.save(last_saved_image) image.save(last_saved_image)
last_saved_image += f", prompt: {text}" last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = embedding.step shared.state.job_no = embedding.step
@ -276,4 +286,3 @@ Last saved image: {html.escape(last_saved_image)}<br/>
embedding.save(filename) embedding.save(filename)
return embedding, filename return embedding, filename

View File

@ -23,6 +23,8 @@ def preprocess(*args):
def train_embedding(*args): def train_embedding(*args):
assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'
try: try:
sd_hijack.undo_optimizations() sd_hijack.undo_optimizations()

View File

@ -39,6 +39,7 @@ import modules.generation_parameters_copypaste
from modules import prompt_parser from modules import prompt_parser
from modules.images import save_image from modules.images import save_image
import modules.textual_inversion.ui import modules.textual_inversion.ui
import modules.hypernetworks.ui
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init() mimetypes.init()
@ -50,6 +51,11 @@ if not cmd_opts.share and not cmd_opts.listen:
gradio.utils.version_check = lambda: None gradio.utils.version_check = lambda: None
gradio.utils.get_local_ip_address = lambda: '127.0.0.1' gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
if cmd_opts.ngrok != None:
import modules.ngrok as ngrok
print('ngrok authtoken detected, trying to connect...')
ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860)
def gr_show(visible=True): def gr_show(visible=True):
return {"visible": visible, "__type__": "update"} return {"visible": visible, "__type__": "update"}
@ -311,7 +317,7 @@ def interrogate(image):
def interrogate_deepbooru(image): def interrogate_deepbooru(image):
prompt = get_deepbooru_tags(image) prompt = get_deepbooru_tags(image, opts.interrogate_deepbooru_score_threshold)
return gr_show(True) if prompt is None else prompt return gr_show(True) if prompt is None else prompt
@ -428,7 +434,10 @@ def create_toprow(is_img2img):
with gr.Row(): with gr.Row():
with gr.Column(scale=8): with gr.Column(scale=8):
with gr.Row():
negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2) negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2)
with gr.Column(scale=1, elem_id="roll_col"):
sh = gr.Button(elem_id="sh", visible=True)
with gr.Column(scale=1, elem_id="style_neg_col"): with gr.Column(scale=1, elem_id="style_neg_col"):
prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1) prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1)
@ -1022,7 +1031,20 @@ def create_ui(wrap_gradio_gpu_call):
gr.HTML(value="") gr.HTML(value="")
with gr.Column(): with gr.Column():
create_embedding = gr.Button(value="Create", variant='primary') create_embedding = gr.Button(value="Create embedding", variant='primary')
with gr.Group():
gr.HTML(value="<p style='margin-bottom: 0.7em'>Create a new hypernetwork</p>")
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
with gr.Column():
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
with gr.Group(): with gr.Group():
gr.HTML(value="<p style='margin-bottom: 0.7em'>Preprocess images</p>") gr.HTML(value="<p style='margin-bottom: 0.7em'>Preprocess images</p>")
@ -1051,7 +1073,8 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Group(): with gr.Group():
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>") gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>")
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
learn_rate = gr.Number(label='Learning rate', value=5.0e-03) train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
@ -1061,15 +1084,12 @@ def create_ui(wrap_gradio_gpu_call):
num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0) num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0)
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
preview_image_prompt = gr.Textbox(label='Preview prompt', value="")
with gr.Row():
with gr.Column(scale=2):
gr.HTML(value="")
with gr.Column():
with gr.Row(): with gr.Row():
interrupt_training = gr.Button(value="Interrupt") interrupt_training = gr.Button(value="Interrupt")
train_embedding = gr.Button(value="Train", variant='primary') train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary')
train_embedding = gr.Button(value="Train Embedding", variant='primary')
with gr.Column(): with gr.Column():
progressbar = gr.HTML(elem_id="ti_progressbar") progressbar = gr.HTML(elem_id="ti_progressbar")
@ -1095,6 +1115,19 @@ def create_ui(wrap_gradio_gpu_call):
] ]
) )
create_hypernetwork.click(
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
new_hypernetwork_name,
new_hypernetwork_sizes,
],
outputs=[
train_hypernetwork_name,
ti_output,
ti_outcome,
]
)
run_preprocess.click( run_preprocess.click(
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion", _js="start_training_textual_inversion",
@ -1129,6 +1162,27 @@ def create_ui(wrap_gradio_gpu_call):
create_image_every, create_image_every,
save_embedding_every, save_embedding_every,
template_file, template_file,
preview_image_prompt,
],
outputs=[
ti_output,
ti_outcome,
]
)
train_hypernetwork.click(
fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
inputs=[
train_hypernetwork_name,
learn_rate,
dataset_directory,
log_directory,
steps,
create_image_every,
save_embedding_every,
template_file,
preview_image_prompt,
], ],
outputs=[ outputs=[
ti_output, ti_output,
@ -1142,6 +1196,7 @@ def create_ui(wrap_gradio_gpu_call):
outputs=[], outputs=[],
) )
def create_setting_component(key): def create_setting_component(key):
def fun(): def fun():
return opts.data[key] if key in opts.data else opts.data_labels[key].default return opts.data[key] if key in opts.data else opts.data_labels[key].default
@ -1295,6 +1350,7 @@ Requested path was: {f}
shared.state.interrupt() shared.state.interrupt()
settings_interface.gradio_ref.do_restart = True settings_interface.gradio_ref.do_restart = True
restart_gradio.click( restart_gradio.click(
fn=request_restart, fn=request_restart,
inputs=[], inputs=[],
@ -1336,7 +1392,7 @@ Requested path was: {f}
with gr.Tabs() as tabs: with gr.Tabs() as tabs:
for interface, label, ifid in interfaces: for interface, label, ifid in interfaces:
with gr.TabItem(label, id=ifid): with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid):
interface.render() interface.render()
if os.path.exists(os.path.join(script_path, "notification.mp3")): if os.path.exists(os.path.join(script_path, "notification.mp3")):

View File

@ -4,7 +4,7 @@ fairscale==0.4.4
fonts fonts
font-roboto font-roboto
gfpgan gfpgan
gradio==3.4b3 gradio==3.4.1
invisible-watermark invisible-watermark
numpy numpy
omegaconf omegaconf

View File

@ -2,7 +2,7 @@ transformers==4.19.2
diffusers==0.3.0 diffusers==0.3.0
basicsr==1.4.2 basicsr==1.4.2
gfpgan==1.3.8 gfpgan==1.3.8
gradio==3.4b3 gradio==3.4.1
numpy==1.23.3 numpy==1.23.3
Pillow==9.2.0 Pillow==9.2.0
realesrgan==0.3.0 realesrgan==0.3.0

View File

@ -6,6 +6,10 @@ function get_uiCurrentTab() {
return gradioApp().querySelector('.tabs button:not(.border-transparent)') return gradioApp().querySelector('.tabs button:not(.border-transparent)')
} }
function get_uiCurrentTabContent() {
return gradioApp().querySelector('.tabitem[id^=tab_]:not([style*="display: none"])')
}
uiUpdateCallbacks = [] uiUpdateCallbacks = []
uiTabChangeCallbacks = [] uiTabChangeCallbacks = []
let uiCurrentTab = null let uiCurrentTab = null
@ -51,7 +55,10 @@ document.addEventListener("DOMContentLoaded", function() {
if((e.keyCode == 13 && (e.metaKey || e.ctrlKey))) handled = true; if((e.keyCode == 13 && (e.metaKey || e.ctrlKey))) handled = true;
} }
if (handled) { if (handled) {
gradioApp().querySelector("#txt2img_generate").click(); button = get_uiCurrentTabContent().querySelector('button[id$=_generate]');
if (button) {
button.click();
}
e.preventDefault(); e.preventDefault();
} }
}) })

View File

@ -38,6 +38,7 @@ class Script(scripts.Script):
grids = [] grids = []
all_images = [] all_images = []
original_init_image = p.init_images
state.job_count = loops * batch_count state.job_count = loops * batch_count
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])] initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
@ -45,6 +46,9 @@ class Script(scripts.Script):
for n in range(batch_count): for n in range(batch_count):
history = [] history = []
# Reset to original init image at the start of each batch
p.init_images = original_init_image
for i in range(loops): for i in range(loops):
p.n_iter = 1 p.n_iter = 1
p.batch_size = 1 p.batch_size = 1

View File

@ -10,7 +10,8 @@ import numpy as np
import modules.scripts as scripts import modules.scripts as scripts
import gradio as gr import gradio as gr
from modules import images, hypernetwork from modules import images
from modules.hypernetworks import hypernetwork
from modules.processing import process_images, Processed, get_correct_sampler from modules.processing import process_images, Processed, get_correct_sampler
from modules.shared import opts, cmd_opts, state from modules.shared import opts, cmd_opts, state
import modules.shared as shared import modules.shared as shared
@ -27,6 +28,9 @@ def apply_field(field):
def apply_prompt(p, x, xs): def apply_prompt(p, x, xs):
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
p.prompt = p.prompt.replace(xs[0], x) p.prompt = p.prompt.replace(xs[0], x)
p.negative_prompt = p.negative_prompt.replace(xs[0], x) p.negative_prompt = p.negative_prompt.replace(xs[0], x)
@ -193,7 +197,7 @@ class Script(scripts.Script):
x_values = gr.Textbox(label="X values", visible=False, lines=1) x_values = gr.Textbox(label="X values", visible=False, lines=1)
with gr.Row(): with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[4].label, visible=False, type="index", elem_id="y_type") y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[0].label, visible=False, type="index", elem_id="y_type")
y_values = gr.Textbox(label="Y values", visible=False, lines=1) y_values = gr.Textbox(label="Y values", visible=False, lines=1)
draw_legend = gr.Checkbox(label='Draw legend', value=True) draw_legend = gr.Checkbox(label='Draw legend', value=True)

View File

@ -2,6 +2,27 @@
max-width: 100%; max-width: 100%;
} }
#txt2img_token_counter {
height: 0px;
}
#img2img_token_counter {
height: 0px;
}
#sh{
min-width: 2em;
min-height: 2em;
max-width: 2em;
max-height: 2em;
flex-grow: 0;
padding-left: 0.25em;
padding-right: 0.25em;
margin: 0.1em 0;
opacity: 0%;
cursor: default;
}
.output-html p {margin: 0 0.5em;} .output-html p {margin: 0 0.5em;}
.row > *, .row > *,
@ -219,6 +240,7 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s
#settings fieldset span.text-gray-500, #settings .gr-block.gr-box span.text-gray-500, #settings label.block span{ #settings fieldset span.text-gray-500, #settings .gr-block.gr-box span.text-gray-500, #settings label.block span{
position: relative; position: relative;
border: none; border: none;
margin-right: 8em;
} }
.gr-panel div.flex-col div.justify-between label span{ .gr-panel div.flex-col div.justify-between label span{
@ -474,3 +496,13 @@ canvas[key="mask"] {
mix-blend-mode: multiply; mix-blend-mode: multiply;
pointer-events: none; pointer-events: none;
} }
/* gradio 3.4.1 stuff for editable scrollbar values */
.gr-box > div > div > input.gr-text-input{
position: absolute;
right: 0.5em;
top: -0.6em;
z-index: 200;
width: 8em;
}

View File

@ -0,0 +1,27 @@
a photo of a [filewords]
a rendering of a [filewords]
a cropped photo of the [filewords]
the photo of a [filewords]
a photo of a clean [filewords]
a photo of a dirty [filewords]
a dark photo of the [filewords]
a photo of my [filewords]
a photo of the cool [filewords]
a close-up photo of a [filewords]
a bright photo of the [filewords]
a cropped photo of a [filewords]
a photo of the [filewords]
a good photo of the [filewords]
a photo of one [filewords]
a close-up photo of the [filewords]
a rendition of the [filewords]
a photo of the clean [filewords]
a rendition of a [filewords]
a photo of a nice [filewords]
a good photo of a [filewords]
a photo of the nice [filewords]
a photo of the small [filewords]
a photo of the weird [filewords]
a photo of the large [filewords]
a photo of a cool [filewords]
a photo of a small [filewords]

View File

@ -0,0 +1 @@
picture

View File

@ -29,6 +29,7 @@ from modules import devices
from modules import modelloader from modules import modelloader
from modules.paths import script_path from modules.paths import script_path
from modules.shared import cmd_opts from modules.shared import cmd_opts
import modules.hypernetworks.hypernetwork
modelloader.cleanup_models() modelloader.cleanup_models()
modules.sd_models.setup_model() modules.sd_models.setup_model()
@ -82,8 +83,7 @@ modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
shared.sd_model = modules.sd_models.load_model() shared.sd_model = modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
loaded_hypernetwork = modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
def webui(): def webui():
@ -124,6 +124,8 @@ def webui():
modules.scripts.reload_scripts(os.path.join(script_path, "scripts")) modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
print('Reloading modules: modules.ui') print('Reloading modules: modules.ui')
importlib.reload(modules.ui) importlib.reload(modules.ui)
print('Refreshing Model List')
modules.sd_models.list_models()
print('Restarting Gradio') print('Restarting Gradio')