mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
Merge branch 'AUTOMATIC1111:master' into deepdanbooru_pre_process
This commit is contained in:
commit
963d986396
2
.github/ISSUE_TEMPLATE/feature_request.md
vendored
2
.github/ISSUE_TEMPLATE/feature_request.md
vendored
@ -2,7 +2,7 @@
|
|||||||
name: Feature request
|
name: Feature request
|
||||||
about: Suggest an idea for this project
|
about: Suggest an idea for this project
|
||||||
title: ''
|
title: ''
|
||||||
labels: ''
|
labels: 'suggestion'
|
||||||
assignees: ''
|
assignees: ''
|
||||||
|
|
||||||
---
|
---
|
||||||
|
1
CODEOWNERS
Normal file
1
CODEOWNERS
Normal file
@ -0,0 +1 @@
|
|||||||
|
* @AUTOMATIC1111
|
11
README.md
11
README.md
@ -28,10 +28,12 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
|||||||
- CodeFormer, face restoration tool as an alternative to GFPGAN
|
- CodeFormer, face restoration tool as an alternative to GFPGAN
|
||||||
- RealESRGAN, neural network upscaler
|
- RealESRGAN, neural network upscaler
|
||||||
- ESRGAN, neural network upscaler with a lot of third party models
|
- ESRGAN, neural network upscaler with a lot of third party models
|
||||||
- SwinIR, neural network upscaler
|
- SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
|
||||||
- LDSR, Latent diffusion super resolution upscaling
|
- LDSR, Latent diffusion super resolution upscaling
|
||||||
- Resizing aspect ratio options
|
- Resizing aspect ratio options
|
||||||
- Sampling method selection
|
- Sampling method selection
|
||||||
|
- Adjust sampler eta values (noise multiplier)
|
||||||
|
- More advanced noise setting options
|
||||||
- Interrupt processing at any time
|
- Interrupt processing at any time
|
||||||
- 4GB video card support (also reports of 2GB working)
|
- 4GB video card support (also reports of 2GB working)
|
||||||
- Correct seeds for batches
|
- Correct seeds for batches
|
||||||
@ -67,6 +69,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
|||||||
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
|
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
|
||||||
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
|
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
|
||||||
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
|
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
|
||||||
|
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
|
||||||
|
|
||||||
## Installation and Running
|
## Installation and Running
|
||||||
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
||||||
@ -116,13 +119,17 @@ The documentation was moved from this README over to the project's [wiki](https:
|
|||||||
- CodeFormer - https://github.com/sczhou/CodeFormer
|
- CodeFormer - https://github.com/sczhou/CodeFormer
|
||||||
- ESRGAN - https://github.com/xinntao/ESRGAN
|
- ESRGAN - https://github.com/xinntao/ESRGAN
|
||||||
- SwinIR - https://github.com/JingyunLiang/SwinIR
|
- SwinIR - https://github.com/JingyunLiang/SwinIR
|
||||||
|
- Swin2SR - https://github.com/mv-lab/swin2sr
|
||||||
- LDSR - https://github.com/Hafiidz/latent-diffusion
|
- LDSR - https://github.com/Hafiidz/latent-diffusion
|
||||||
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
|
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
|
||||||
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
|
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
|
||||||
|
- InvokeAI, lstein - Cross Attention layer optimization - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
|
||||||
- Rinon Gal - Textual Inversion - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
|
- Rinon Gal - Textual Inversion - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
|
||||||
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
|
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
|
||||||
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
|
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
|
||||||
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
||||||
|
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
|
||||||
|
- xformers - https://github.com/facebookresearch/xformers
|
||||||
|
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
|
||||||
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
||||||
- DeepDanbooru - interrogator for anime diffusors https://github.com/KichangKim/DeepDanbooru
|
|
||||||
- (You)
|
- (You)
|
||||||
|
@ -16,7 +16,7 @@ contextMenuInit = function(){
|
|||||||
oldMenu.remove()
|
oldMenu.remove()
|
||||||
}
|
}
|
||||||
|
|
||||||
let tabButton = gradioApp().querySelector('button')
|
let tabButton = uiCurrentTab
|
||||||
let baseStyle = window.getComputedStyle(tabButton)
|
let baseStyle = window.getComputedStyle(tabButton)
|
||||||
|
|
||||||
const contextMenu = document.createElement('nav')
|
const contextMenu = document.createElement('nav')
|
||||||
@ -123,44 +123,53 @@ contextMenuInit = function(){
|
|||||||
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
|
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
|
||||||
}
|
}
|
||||||
|
|
||||||
initResponse = contextMenuInit()
|
initResponse = contextMenuInit();
|
||||||
appendContextMenuOption = initResponse[0]
|
appendContextMenuOption = initResponse[0];
|
||||||
removeContextMenuOption = initResponse[1]
|
removeContextMenuOption = initResponse[1];
|
||||||
addContextMenuEventListener = initResponse[2]
|
addContextMenuEventListener = initResponse[2];
|
||||||
|
|
||||||
|
(function(){
|
||||||
//Start example Context Menu Items
|
//Start example Context Menu Items
|
||||||
generateOnRepeatId = appendContextMenuOption('#txt2img_generate','Generate forever',function(){
|
let generateOnRepeat = function(genbuttonid,interruptbuttonid){
|
||||||
let genbutton = gradioApp().querySelector('#txt2img_generate');
|
let genbutton = gradioApp().querySelector(genbuttonid);
|
||||||
let interruptbutton = gradioApp().querySelector('#txt2img_interrupt');
|
let interruptbutton = gradioApp().querySelector(interruptbuttonid);
|
||||||
if(!interruptbutton.offsetParent){
|
|
||||||
genbutton.click();
|
|
||||||
}
|
|
||||||
clearInterval(window.generateOnRepeatInterval)
|
|
||||||
window.generateOnRepeatInterval = setInterval(function(){
|
|
||||||
if(!interruptbutton.offsetParent){
|
if(!interruptbutton.offsetParent){
|
||||||
genbutton.click();
|
genbutton.click();
|
||||||
}
|
}
|
||||||
},
|
clearInterval(window.generateOnRepeatInterval)
|
||||||
500)}
|
window.generateOnRepeatInterval = setInterval(function(){
|
||||||
)
|
if(!interruptbutton.offsetParent){
|
||||||
|
genbutton.click();
|
||||||
cancelGenerateForever = function(){
|
}
|
||||||
clearInterval(window.generateOnRepeatInterval)
|
},
|
||||||
}
|
500)
|
||||||
|
|
||||||
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
|
|
||||||
appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
|
|
||||||
|
|
||||||
|
|
||||||
appendContextMenuOption('#roll','Roll three',
|
|
||||||
function(){
|
|
||||||
let rollbutton = gradioApp().querySelector('#roll');
|
|
||||||
setTimeout(function(){rollbutton.click()},100)
|
|
||||||
setTimeout(function(){rollbutton.click()},200)
|
|
||||||
setTimeout(function(){rollbutton.click()},300)
|
|
||||||
}
|
}
|
||||||
)
|
|
||||||
|
appendContextMenuOption('#txt2img_generate','Generate forever',function(){
|
||||||
|
generateOnRepeat('#txt2img_generate','#txt2img_interrupt');
|
||||||
|
})
|
||||||
|
appendContextMenuOption('#img2img_generate','Generate forever',function(){
|
||||||
|
generateOnRepeat('#img2img_generate','#img2img_interrupt');
|
||||||
|
})
|
||||||
|
|
||||||
|
let cancelGenerateForever = function(){
|
||||||
|
clearInterval(window.generateOnRepeatInterval)
|
||||||
|
}
|
||||||
|
|
||||||
|
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
|
||||||
|
appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
|
||||||
|
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
|
||||||
|
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
|
||||||
|
|
||||||
|
appendContextMenuOption('#roll','Roll three',
|
||||||
|
function(){
|
||||||
|
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
|
||||||
|
setTimeout(function(){rollbutton.click()},100)
|
||||||
|
setTimeout(function(){rollbutton.click()},200)
|
||||||
|
setTimeout(function(){rollbutton.click()},300)
|
||||||
|
}
|
||||||
|
)
|
||||||
|
})();
|
||||||
//End example Context Menu Items
|
//End example Context Menu Items
|
||||||
|
|
||||||
onUiUpdate(function(){
|
onUiUpdate(function(){
|
||||||
|
@ -38,4 +38,7 @@ addEventListener('keydown', (event) => {
|
|||||||
target.selectionStart = selectionStart;
|
target.selectionStart = selectionStart;
|
||||||
target.selectionEnd = selectionEnd;
|
target.selectionEnd = selectionEnd;
|
||||||
}
|
}
|
||||||
|
// Since we've modified a Gradio Textbox component manually, we need to simulate an `input` DOM event to ensure its
|
||||||
|
// internal Svelte data binding remains in sync.
|
||||||
|
target.dispatchEvent(new Event("input", { bubbles: true }));
|
||||||
});
|
});
|
||||||
|
@ -104,6 +104,7 @@ def prepare_enviroment():
|
|||||||
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
|
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
|
||||||
xformers = '--xformers' in args
|
xformers = '--xformers' in args
|
||||||
deepdanbooru = '--deepdanbooru' in args
|
deepdanbooru = '--deepdanbooru' in args
|
||||||
|
ngrok = '--ngrok' in args
|
||||||
|
|
||||||
try:
|
try:
|
||||||
commit = run(f"{git} rev-parse HEAD").strip()
|
commit = run(f"{git} rev-parse HEAD").strip()
|
||||||
@ -134,6 +135,9 @@ def prepare_enviroment():
|
|||||||
if not is_installed("deepdanbooru") and deepdanbooru:
|
if not is_installed("deepdanbooru") and deepdanbooru:
|
||||||
run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
|
run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
|
||||||
|
|
||||||
|
if not is_installed("pyngrok") and ngrok:
|
||||||
|
run_pip("install pyngrok", "ngrok")
|
||||||
|
|
||||||
os.makedirs(dir_repos, exist_ok=True)
|
os.makedirs(dir_repos, exist_ok=True)
|
||||||
|
|
||||||
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
||||||
|
@ -1,98 +0,0 @@
|
|||||||
import glob
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
import traceback
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from ldm.util import default
|
|
||||||
from modules import devices, shared
|
|
||||||
import torch
|
|
||||||
from torch import einsum
|
|
||||||
from einops import rearrange, repeat
|
|
||||||
|
|
||||||
|
|
||||||
class HypernetworkModule(torch.nn.Module):
|
|
||||||
def __init__(self, dim, state_dict):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.linear1 = torch.nn.Linear(dim, dim * 2)
|
|
||||||
self.linear2 = torch.nn.Linear(dim * 2, dim)
|
|
||||||
|
|
||||||
self.load_state_dict(state_dict, strict=True)
|
|
||||||
self.to(devices.device)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return x + (self.linear2(self.linear1(x)))
|
|
||||||
|
|
||||||
|
|
||||||
class Hypernetwork:
|
|
||||||
filename = None
|
|
||||||
name = None
|
|
||||||
|
|
||||||
def __init__(self, filename):
|
|
||||||
self.filename = filename
|
|
||||||
self.name = os.path.splitext(os.path.basename(filename))[0]
|
|
||||||
self.layers = {}
|
|
||||||
|
|
||||||
state_dict = torch.load(filename, map_location='cpu')
|
|
||||||
for size, sd in state_dict.items():
|
|
||||||
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
|
|
||||||
|
|
||||||
|
|
||||||
def list_hypernetworks(path):
|
|
||||||
res = {}
|
|
||||||
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
|
||||||
name = os.path.splitext(os.path.basename(filename))[0]
|
|
||||||
res[name] = filename
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
def load_hypernetwork(filename):
|
|
||||||
path = shared.hypernetworks.get(filename, None)
|
|
||||||
if path is not None:
|
|
||||||
print(f"Loading hypernetwork {filename}")
|
|
||||||
try:
|
|
||||||
shared.loaded_hypernetwork = Hypernetwork(path)
|
|
||||||
except Exception:
|
|
||||||
print(f"Error loading hypernetwork {path}", file=sys.stderr)
|
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
|
||||||
else:
|
|
||||||
if shared.loaded_hypernetwork is not None:
|
|
||||||
print(f"Unloading hypernetwork")
|
|
||||||
|
|
||||||
shared.loaded_hypernetwork = None
|
|
||||||
|
|
||||||
|
|
||||||
def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
|
||||||
h = self.heads
|
|
||||||
|
|
||||||
q = self.to_q(x)
|
|
||||||
context = default(context, x)
|
|
||||||
|
|
||||||
hypernetwork = shared.loaded_hypernetwork
|
|
||||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
|
||||||
|
|
||||||
if hypernetwork_layers is not None:
|
|
||||||
k = self.to_k(hypernetwork_layers[0](context))
|
|
||||||
v = self.to_v(hypernetwork_layers[1](context))
|
|
||||||
else:
|
|
||||||
k = self.to_k(context)
|
|
||||||
v = self.to_v(context)
|
|
||||||
|
|
||||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
|
||||||
|
|
||||||
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
|
||||||
|
|
||||||
if mask is not None:
|
|
||||||
mask = rearrange(mask, 'b ... -> b (...)')
|
|
||||||
max_neg_value = -torch.finfo(sim.dtype).max
|
|
||||||
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
|
||||||
sim.masked_fill_(~mask, max_neg_value)
|
|
||||||
|
|
||||||
# attention, what we cannot get enough of
|
|
||||||
attn = sim.softmax(dim=-1)
|
|
||||||
|
|
||||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
|
||||||
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
|
||||||
return self.to_out(out)
|
|
305
modules/hypernetworks/hypernetwork.py
Normal file
305
modules/hypernetworks/hypernetwork.py
Normal file
@ -0,0 +1,305 @@
|
|||||||
|
import datetime
|
||||||
|
import glob
|
||||||
|
import html
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
import tqdm
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from ldm.util import default
|
||||||
|
from modules import devices, shared, processing, sd_models
|
||||||
|
import torch
|
||||||
|
from torch import einsum
|
||||||
|
from einops import rearrange, repeat
|
||||||
|
import modules.textual_inversion.dataset
|
||||||
|
from modules.textual_inversion.learn_schedule import LearnSchedule
|
||||||
|
|
||||||
|
|
||||||
|
class HypernetworkModule(torch.nn.Module):
|
||||||
|
def __init__(self, dim, state_dict=None):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.linear1 = torch.nn.Linear(dim, dim * 2)
|
||||||
|
self.linear2 = torch.nn.Linear(dim * 2, dim)
|
||||||
|
|
||||||
|
if state_dict is not None:
|
||||||
|
self.load_state_dict(state_dict, strict=True)
|
||||||
|
else:
|
||||||
|
|
||||||
|
self.linear1.weight.data.normal_(mean=0.0, std=0.01)
|
||||||
|
self.linear1.bias.data.zero_()
|
||||||
|
self.linear2.weight.data.normal_(mean=0.0, std=0.01)
|
||||||
|
self.linear2.bias.data.zero_()
|
||||||
|
|
||||||
|
self.to(devices.device)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + (self.linear2(self.linear1(x)))
|
||||||
|
|
||||||
|
|
||||||
|
class Hypernetwork:
|
||||||
|
filename = None
|
||||||
|
name = None
|
||||||
|
|
||||||
|
def __init__(self, name=None, enable_sizes=None):
|
||||||
|
self.filename = None
|
||||||
|
self.name = name
|
||||||
|
self.layers = {}
|
||||||
|
self.step = 0
|
||||||
|
self.sd_checkpoint = None
|
||||||
|
self.sd_checkpoint_name = None
|
||||||
|
|
||||||
|
for size in enable_sizes or []:
|
||||||
|
self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
|
||||||
|
|
||||||
|
def weights(self):
|
||||||
|
res = []
|
||||||
|
|
||||||
|
for k, layers in self.layers.items():
|
||||||
|
for layer in layers:
|
||||||
|
layer.train()
|
||||||
|
res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
def save(self, filename):
|
||||||
|
state_dict = {}
|
||||||
|
|
||||||
|
for k, v in self.layers.items():
|
||||||
|
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
|
||||||
|
|
||||||
|
state_dict['step'] = self.step
|
||||||
|
state_dict['name'] = self.name
|
||||||
|
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
||||||
|
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
||||||
|
|
||||||
|
torch.save(state_dict, filename)
|
||||||
|
|
||||||
|
def load(self, filename):
|
||||||
|
self.filename = filename
|
||||||
|
if self.name is None:
|
||||||
|
self.name = os.path.splitext(os.path.basename(filename))[0]
|
||||||
|
|
||||||
|
state_dict = torch.load(filename, map_location='cpu')
|
||||||
|
|
||||||
|
for size, sd in state_dict.items():
|
||||||
|
if type(size) == int:
|
||||||
|
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
|
||||||
|
|
||||||
|
self.name = state_dict.get('name', self.name)
|
||||||
|
self.step = state_dict.get('step', 0)
|
||||||
|
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
|
||||||
|
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
|
||||||
|
|
||||||
|
|
||||||
|
def list_hypernetworks(path):
|
||||||
|
res = {}
|
||||||
|
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
||||||
|
name = os.path.splitext(os.path.basename(filename))[0]
|
||||||
|
res[name] = filename
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def load_hypernetwork(filename):
|
||||||
|
path = shared.hypernetworks.get(filename, None)
|
||||||
|
if path is not None:
|
||||||
|
print(f"Loading hypernetwork {filename}")
|
||||||
|
try:
|
||||||
|
shared.loaded_hypernetwork = Hypernetwork()
|
||||||
|
shared.loaded_hypernetwork.load(path)
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
print(f"Error loading hypernetwork {path}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
else:
|
||||||
|
if shared.loaded_hypernetwork is not None:
|
||||||
|
print(f"Unloading hypernetwork")
|
||||||
|
|
||||||
|
shared.loaded_hypernetwork = None
|
||||||
|
|
||||||
|
|
||||||
|
def apply_hypernetwork(hypernetwork, context, layer=None):
|
||||||
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||||
|
|
||||||
|
if hypernetwork_layers is None:
|
||||||
|
return context, context
|
||||||
|
|
||||||
|
if layer is not None:
|
||||||
|
layer.hyper_k = hypernetwork_layers[0]
|
||||||
|
layer.hyper_v = hypernetwork_layers[1]
|
||||||
|
|
||||||
|
context_k = hypernetwork_layers[0](context)
|
||||||
|
context_v = hypernetwork_layers[1](context)
|
||||||
|
return context_k, context_v
|
||||||
|
|
||||||
|
|
||||||
|
def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
||||||
|
h = self.heads
|
||||||
|
|
||||||
|
q = self.to_q(x)
|
||||||
|
context = default(context, x)
|
||||||
|
|
||||||
|
context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
|
||||||
|
k = self.to_k(context_k)
|
||||||
|
v = self.to_v(context_v)
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||||
|
|
||||||
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
mask = rearrange(mask, 'b ... -> b (...)')
|
||||||
|
max_neg_value = -torch.finfo(sim.dtype).max
|
||||||
|
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
||||||
|
sim.masked_fill_(~mask, max_neg_value)
|
||||||
|
|
||||||
|
# attention, what we cannot get enough of
|
||||||
|
attn = sim.softmax(dim=-1)
|
||||||
|
|
||||||
|
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||||
|
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||||
|
return self.to_out(out)
|
||||||
|
|
||||||
|
|
||||||
|
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
|
||||||
|
assert hypernetwork_name, 'embedding not selected'
|
||||||
|
|
||||||
|
path = shared.hypernetworks.get(hypernetwork_name, None)
|
||||||
|
shared.loaded_hypernetwork = Hypernetwork()
|
||||||
|
shared.loaded_hypernetwork.load(path)
|
||||||
|
|
||||||
|
shared.state.textinfo = "Initializing hypernetwork training..."
|
||||||
|
shared.state.job_count = steps
|
||||||
|
|
||||||
|
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||||
|
|
||||||
|
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
|
||||||
|
unload = shared.opts.unload_models_when_training
|
||||||
|
|
||||||
|
if save_hypernetwork_every > 0:
|
||||||
|
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
|
||||||
|
os.makedirs(hypernetwork_dir, exist_ok=True)
|
||||||
|
else:
|
||||||
|
hypernetwork_dir = None
|
||||||
|
|
||||||
|
if create_image_every > 0:
|
||||||
|
images_dir = os.path.join(log_directory, "images")
|
||||||
|
os.makedirs(images_dir, exist_ok=True)
|
||||||
|
else:
|
||||||
|
images_dir = None
|
||||||
|
|
||||||
|
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||||
|
with torch.autocast("cuda"):
|
||||||
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True)
|
||||||
|
|
||||||
|
if unload:
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||||
|
|
||||||
|
hypernetwork = shared.loaded_hypernetwork
|
||||||
|
weights = hypernetwork.weights()
|
||||||
|
for weight in weights:
|
||||||
|
weight.requires_grad = True
|
||||||
|
|
||||||
|
losses = torch.zeros((32,))
|
||||||
|
|
||||||
|
last_saved_file = "<none>"
|
||||||
|
last_saved_image = "<none>"
|
||||||
|
|
||||||
|
ititial_step = hypernetwork.step or 0
|
||||||
|
if ititial_step > steps:
|
||||||
|
return hypernetwork, filename
|
||||||
|
|
||||||
|
schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
|
||||||
|
(learn_rate, end_step) = next(schedules)
|
||||||
|
print(f'Training at rate of {learn_rate} until step {end_step}')
|
||||||
|
|
||||||
|
optimizer = torch.optim.AdamW(weights, lr=learn_rate)
|
||||||
|
|
||||||
|
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
||||||
|
for i, (x, text, cond) in pbar:
|
||||||
|
hypernetwork.step = i + ititial_step
|
||||||
|
|
||||||
|
if hypernetwork.step > end_step:
|
||||||
|
try:
|
||||||
|
(learn_rate, end_step) = next(schedules)
|
||||||
|
except Exception:
|
||||||
|
break
|
||||||
|
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
|
||||||
|
for pg in optimizer.param_groups:
|
||||||
|
pg['lr'] = learn_rate
|
||||||
|
|
||||||
|
if shared.state.interrupted:
|
||||||
|
break
|
||||||
|
|
||||||
|
with torch.autocast("cuda"):
|
||||||
|
cond = cond.to(devices.device)
|
||||||
|
x = x.to(devices.device)
|
||||||
|
loss = shared.sd_model(x.unsqueeze(0), cond)[0]
|
||||||
|
del x
|
||||||
|
del cond
|
||||||
|
|
||||||
|
losses[hypernetwork.step % losses.shape[0]] = loss.item()
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
pbar.set_description(f"loss: {losses.mean():.7f}")
|
||||||
|
|
||||||
|
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
|
||||||
|
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
|
||||||
|
hypernetwork.save(last_saved_file)
|
||||||
|
|
||||||
|
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
|
||||||
|
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
|
||||||
|
|
||||||
|
preview_text = text if preview_image_prompt == "" else preview_image_prompt
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.device)
|
||||||
|
|
||||||
|
p = processing.StableDiffusionProcessingTxt2Img(
|
||||||
|
sd_model=shared.sd_model,
|
||||||
|
prompt=preview_text,
|
||||||
|
steps=20,
|
||||||
|
do_not_save_grid=True,
|
||||||
|
do_not_save_samples=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
processed = processing.process_images(p)
|
||||||
|
image = processed.images[0]
|
||||||
|
|
||||||
|
if unload:
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||||
|
|
||||||
|
shared.state.current_image = image
|
||||||
|
image.save(last_saved_image)
|
||||||
|
|
||||||
|
last_saved_image += f", prompt: {preview_text}"
|
||||||
|
|
||||||
|
shared.state.job_no = hypernetwork.step
|
||||||
|
|
||||||
|
shared.state.textinfo = f"""
|
||||||
|
<p>
|
||||||
|
Loss: {losses.mean():.7f}<br/>
|
||||||
|
Step: {hypernetwork.step}<br/>
|
||||||
|
Last prompt: {html.escape(text)}<br/>
|
||||||
|
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
||||||
|
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||||
|
</p>
|
||||||
|
"""
|
||||||
|
|
||||||
|
checkpoint = sd_models.select_checkpoint()
|
||||||
|
|
||||||
|
hypernetwork.sd_checkpoint = checkpoint.hash
|
||||||
|
hypernetwork.sd_checkpoint_name = checkpoint.model_name
|
||||||
|
hypernetwork.save(filename)
|
||||||
|
|
||||||
|
return hypernetwork, filename
|
||||||
|
|
||||||
|
|
47
modules/hypernetworks/ui.py
Normal file
47
modules/hypernetworks/ui.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
import html
|
||||||
|
import os
|
||||||
|
|
||||||
|
import gradio as gr
|
||||||
|
|
||||||
|
import modules.textual_inversion.textual_inversion
|
||||||
|
import modules.textual_inversion.preprocess
|
||||||
|
from modules import sd_hijack, shared, devices
|
||||||
|
from modules.hypernetworks import hypernetwork
|
||||||
|
|
||||||
|
|
||||||
|
def create_hypernetwork(name, enable_sizes):
|
||||||
|
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
|
||||||
|
assert not os.path.exists(fn), f"file {fn} already exists"
|
||||||
|
|
||||||
|
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes])
|
||||||
|
hypernet.save(fn)
|
||||||
|
|
||||||
|
shared.reload_hypernetworks()
|
||||||
|
|
||||||
|
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
|
||||||
|
|
||||||
|
|
||||||
|
def train_hypernetwork(*args):
|
||||||
|
|
||||||
|
initial_hypernetwork = shared.loaded_hypernetwork
|
||||||
|
|
||||||
|
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
|
||||||
|
|
||||||
|
try:
|
||||||
|
sd_hijack.undo_optimizations()
|
||||||
|
|
||||||
|
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
|
||||||
|
|
||||||
|
res = f"""
|
||||||
|
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
|
||||||
|
Hypernetwork saved to {html.escape(filename)}
|
||||||
|
"""
|
||||||
|
return res, ""
|
||||||
|
except Exception:
|
||||||
|
raise
|
||||||
|
finally:
|
||||||
|
shared.loaded_hypernetwork = initial_hypernetwork
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.device)
|
||||||
|
sd_hijack.apply_optimizations()
|
||||||
|
|
15
modules/ngrok.py
Normal file
15
modules/ngrok.py
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
from pyngrok import ngrok, conf, exception
|
||||||
|
|
||||||
|
|
||||||
|
def connect(token, port):
|
||||||
|
if token == None:
|
||||||
|
token = 'None'
|
||||||
|
conf.get_default().auth_token = token
|
||||||
|
try:
|
||||||
|
public_url = ngrok.connect(port).public_url
|
||||||
|
except exception.PyngrokNgrokError:
|
||||||
|
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
|
||||||
|
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
|
||||||
|
else:
|
||||||
|
print(f'ngrok connected to localhost:{port}! URL: {public_url}\n'
|
||||||
|
'You can use this link after the launch is complete.')
|
@ -10,6 +10,7 @@ import torch
|
|||||||
import numpy
|
import numpy
|
||||||
import _codecs
|
import _codecs
|
||||||
import zipfile
|
import zipfile
|
||||||
|
import re
|
||||||
|
|
||||||
|
|
||||||
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
|
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
|
||||||
@ -54,11 +55,27 @@ class RestrictedUnpickler(pickle.Unpickler):
|
|||||||
raise pickle.UnpicklingError(f"global '{module}/{name}' is forbidden")
|
raise pickle.UnpicklingError(f"global '{module}/{name}' is forbidden")
|
||||||
|
|
||||||
|
|
||||||
|
allowed_zip_names = ["archive/data.pkl", "archive/version"]
|
||||||
|
allowed_zip_names_re = re.compile(r"^archive/data/\d+$")
|
||||||
|
|
||||||
|
|
||||||
|
def check_zip_filenames(filename, names):
|
||||||
|
for name in names:
|
||||||
|
if name in allowed_zip_names:
|
||||||
|
continue
|
||||||
|
if allowed_zip_names_re.match(name):
|
||||||
|
continue
|
||||||
|
|
||||||
|
raise Exception(f"bad file inside {filename}: {name}")
|
||||||
|
|
||||||
|
|
||||||
def check_pt(filename):
|
def check_pt(filename):
|
||||||
try:
|
try:
|
||||||
|
|
||||||
# new pytorch format is a zip file
|
# new pytorch format is a zip file
|
||||||
with zipfile.ZipFile(filename) as z:
|
with zipfile.ZipFile(filename) as z:
|
||||||
|
check_zip_filenames(filename, z.namelist())
|
||||||
|
|
||||||
with z.open('archive/data.pkl') as file:
|
with z.open('archive/data.pkl') as file:
|
||||||
unpickler = RestrictedUnpickler(file)
|
unpickler = RestrictedUnpickler(file)
|
||||||
unpickler.load()
|
unpickler.load()
|
||||||
|
@ -8,8 +8,9 @@ from torch import einsum
|
|||||||
from torch.nn.functional import silu
|
from torch.nn.functional import silu
|
||||||
|
|
||||||
import modules.textual_inversion.textual_inversion
|
import modules.textual_inversion.textual_inversion
|
||||||
from modules import prompt_parser, devices, sd_hijack_optimizations, shared, hypernetwork
|
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
|
||||||
from modules.shared import opts, device, cmd_opts
|
from modules.shared import opts, device, cmd_opts
|
||||||
|
from modules.sd_hijack_optimizations import invokeAI_mps_available
|
||||||
|
|
||||||
import ldm.modules.attention
|
import ldm.modules.attention
|
||||||
import ldm.modules.diffusionmodules.model
|
import ldm.modules.diffusionmodules.model
|
||||||
@ -30,13 +31,23 @@ def apply_optimizations():
|
|||||||
elif cmd_opts.opt_split_attention_v1:
|
elif cmd_opts.opt_split_attention_v1:
|
||||||
print("Applying v1 cross attention optimization.")
|
print("Applying v1 cross attention optimization.")
|
||||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
|
||||||
|
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
|
||||||
|
if not invokeAI_mps_available and shared.device.type == 'mps':
|
||||||
|
print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
|
||||||
|
print("Applying v1 cross attention optimization.")
|
||||||
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
|
||||||
|
else:
|
||||||
|
print("Applying cross attention optimization (InvokeAI).")
|
||||||
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
|
||||||
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
|
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
|
||||||
print("Applying cross attention optimization.")
|
print("Applying cross attention optimization (Doggettx).")
|
||||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
|
||||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
|
||||||
|
|
||||||
|
|
||||||
def undo_optimizations():
|
def undo_optimizations():
|
||||||
|
from modules.hypernetworks import hypernetwork
|
||||||
|
|
||||||
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
|
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
|
||||||
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
|
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
|
||||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
|
||||||
@ -107,6 +118,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|||||||
self.tokenizer = wrapped.tokenizer
|
self.tokenizer = wrapped.tokenizer
|
||||||
self.token_mults = {}
|
self.token_mults = {}
|
||||||
|
|
||||||
|
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
|
||||||
|
|
||||||
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
||||||
for text, ident in tokens_with_parens:
|
for text, ident in tokens_with_parens:
|
||||||
mult = 1.0
|
mult = 1.0
|
||||||
@ -136,6 +149,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|||||||
fixes = []
|
fixes = []
|
||||||
remade_tokens = []
|
remade_tokens = []
|
||||||
multipliers = []
|
multipliers = []
|
||||||
|
last_comma = -1
|
||||||
|
|
||||||
for tokens, (text, weight) in zip(tokenized, parsed):
|
for tokens, (text, weight) in zip(tokenized, parsed):
|
||||||
i = 0
|
i = 0
|
||||||
@ -144,6 +158,20 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|||||||
|
|
||||||
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
||||||
|
|
||||||
|
if token == self.comma_token:
|
||||||
|
last_comma = len(remade_tokens)
|
||||||
|
elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
|
||||||
|
last_comma += 1
|
||||||
|
reloc_tokens = remade_tokens[last_comma:]
|
||||||
|
reloc_mults = multipliers[last_comma:]
|
||||||
|
|
||||||
|
remade_tokens = remade_tokens[:last_comma]
|
||||||
|
length = len(remade_tokens)
|
||||||
|
|
||||||
|
rem = int(math.ceil(length / 75)) * 75 - length
|
||||||
|
remade_tokens += [id_end] * rem + reloc_tokens
|
||||||
|
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
|
||||||
|
|
||||||
if embedding is None:
|
if embedding is None:
|
||||||
remade_tokens.append(token)
|
remade_tokens.append(token)
|
||||||
multipliers.append(weight)
|
multipliers.append(weight)
|
||||||
@ -284,7 +312,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|||||||
while max(map(len, remade_batch_tokens)) != 0:
|
while max(map(len, remade_batch_tokens)) != 0:
|
||||||
rem_tokens = [x[75:] for x in remade_batch_tokens]
|
rem_tokens = [x[75:] for x in remade_batch_tokens]
|
||||||
rem_multipliers = [x[75:] for x in batch_multipliers]
|
rem_multipliers = [x[75:] for x in batch_multipliers]
|
||||||
|
|
||||||
self.hijack.fixes = []
|
self.hijack.fixes = []
|
||||||
for unfiltered in hijack_fixes:
|
for unfiltered in hijack_fixes:
|
||||||
fixes = []
|
fixes = []
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
import math
|
import math
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
|
import importlib
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch import einsum
|
from torch import einsum
|
||||||
@ -9,6 +10,8 @@ from ldm.util import default
|
|||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
|
|
||||||
from modules import shared
|
from modules import shared
|
||||||
|
from modules.hypernetworks import hypernetwork
|
||||||
|
|
||||||
|
|
||||||
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
|
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
|
||||||
try:
|
try:
|
||||||
@ -26,16 +29,10 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
|||||||
q_in = self.to_q(x)
|
q_in = self.to_q(x)
|
||||||
context = default(context, x)
|
context = default(context, x)
|
||||||
|
|
||||||
hypernetwork = shared.loaded_hypernetwork
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
k_in = self.to_k(context_k)
|
||||||
|
v_in = self.to_v(context_v)
|
||||||
if hypernetwork_layers is not None:
|
del context, context_k, context_v, x
|
||||||
k_in = self.to_k(hypernetwork_layers[0](context))
|
|
||||||
v_in = self.to_v(hypernetwork_layers[1](context))
|
|
||||||
else:
|
|
||||||
k_in = self.to_k(context)
|
|
||||||
v_in = self.to_v(context)
|
|
||||||
del context, x
|
|
||||||
|
|
||||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
||||||
del q_in, k_in, v_in
|
del q_in, k_in, v_in
|
||||||
@ -59,22 +56,16 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
|||||||
return self.to_out(r2)
|
return self.to_out(r2)
|
||||||
|
|
||||||
|
|
||||||
# taken from https://github.com/Doggettx/stable-diffusion
|
# taken from https://github.com/Doggettx/stable-diffusion and modified
|
||||||
def split_cross_attention_forward(self, x, context=None, mask=None):
|
def split_cross_attention_forward(self, x, context=None, mask=None):
|
||||||
h = self.heads
|
h = self.heads
|
||||||
|
|
||||||
q_in = self.to_q(x)
|
q_in = self.to_q(x)
|
||||||
context = default(context, x)
|
context = default(context, x)
|
||||||
|
|
||||||
hypernetwork = shared.loaded_hypernetwork
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
k_in = self.to_k(context_k)
|
||||||
|
v_in = self.to_v(context_v)
|
||||||
if hypernetwork_layers is not None:
|
|
||||||
k_in = self.to_k(hypernetwork_layers[0](context))
|
|
||||||
v_in = self.to_v(hypernetwork_layers[1](context))
|
|
||||||
else:
|
|
||||||
k_in = self.to_k(context)
|
|
||||||
v_in = self.to_v(context)
|
|
||||||
|
|
||||||
k_in *= self.scale
|
k_in *= self.scale
|
||||||
|
|
||||||
@ -126,18 +117,111 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
|
|||||||
|
|
||||||
return self.to_out(r2)
|
return self.to_out(r2)
|
||||||
|
|
||||||
|
|
||||||
|
def check_for_psutil():
|
||||||
|
try:
|
||||||
|
spec = importlib.util.find_spec('psutil')
|
||||||
|
return spec is not None
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
invokeAI_mps_available = check_for_psutil()
|
||||||
|
|
||||||
|
# -- Taken from https://github.com/invoke-ai/InvokeAI --
|
||||||
|
if invokeAI_mps_available:
|
||||||
|
import psutil
|
||||||
|
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
|
||||||
|
|
||||||
|
def einsum_op_compvis(q, k, v):
|
||||||
|
s = einsum('b i d, b j d -> b i j', q, k)
|
||||||
|
s = s.softmax(dim=-1, dtype=s.dtype)
|
||||||
|
return einsum('b i j, b j d -> b i d', s, v)
|
||||||
|
|
||||||
|
def einsum_op_slice_0(q, k, v, slice_size):
|
||||||
|
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||||
|
for i in range(0, q.shape[0], slice_size):
|
||||||
|
end = i + slice_size
|
||||||
|
r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
|
||||||
|
return r
|
||||||
|
|
||||||
|
def einsum_op_slice_1(q, k, v, slice_size):
|
||||||
|
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||||
|
for i in range(0, q.shape[1], slice_size):
|
||||||
|
end = i + slice_size
|
||||||
|
r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
|
||||||
|
return r
|
||||||
|
|
||||||
|
def einsum_op_mps_v1(q, k, v):
|
||||||
|
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
||||||
|
return einsum_op_compvis(q, k, v)
|
||||||
|
else:
|
||||||
|
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
||||||
|
return einsum_op_slice_1(q, k, v, slice_size)
|
||||||
|
|
||||||
|
def einsum_op_mps_v2(q, k, v):
|
||||||
|
if mem_total_gb > 8 and q.shape[1] <= 4096:
|
||||||
|
return einsum_op_compvis(q, k, v)
|
||||||
|
else:
|
||||||
|
return einsum_op_slice_0(q, k, v, 1)
|
||||||
|
|
||||||
|
def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
|
||||||
|
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
|
||||||
|
if size_mb <= max_tensor_mb:
|
||||||
|
return einsum_op_compvis(q, k, v)
|
||||||
|
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
|
||||||
|
if div <= q.shape[0]:
|
||||||
|
return einsum_op_slice_0(q, k, v, q.shape[0] // div)
|
||||||
|
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
|
||||||
|
|
||||||
|
def einsum_op_cuda(q, k, v):
|
||||||
|
stats = torch.cuda.memory_stats(q.device)
|
||||||
|
mem_active = stats['active_bytes.all.current']
|
||||||
|
mem_reserved = stats['reserved_bytes.all.current']
|
||||||
|
mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
|
||||||
|
mem_free_torch = mem_reserved - mem_active
|
||||||
|
mem_free_total = mem_free_cuda + mem_free_torch
|
||||||
|
# Divide factor of safety as there's copying and fragmentation
|
||||||
|
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
|
||||||
|
|
||||||
|
def einsum_op(q, k, v):
|
||||||
|
if q.device.type == 'cuda':
|
||||||
|
return einsum_op_cuda(q, k, v)
|
||||||
|
|
||||||
|
if q.device.type == 'mps':
|
||||||
|
if mem_total_gb >= 32:
|
||||||
|
return einsum_op_mps_v1(q, k, v)
|
||||||
|
return einsum_op_mps_v2(q, k, v)
|
||||||
|
|
||||||
|
# Smaller slices are faster due to L2/L3/SLC caches.
|
||||||
|
# Tested on i7 with 8MB L3 cache.
|
||||||
|
return einsum_op_tensor_mem(q, k, v, 32)
|
||||||
|
|
||||||
|
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
|
||||||
|
h = self.heads
|
||||||
|
|
||||||
|
q = self.to_q(x)
|
||||||
|
context = default(context, x)
|
||||||
|
|
||||||
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||||
|
k = self.to_k(context_k) * self.scale
|
||||||
|
v = self.to_v(context_v)
|
||||||
|
del context, context_k, context_v, x
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||||
|
r = einsum_op(q, k, v)
|
||||||
|
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
|
||||||
|
|
||||||
|
# -- End of code from https://github.com/invoke-ai/InvokeAI --
|
||||||
|
|
||||||
def xformers_attention_forward(self, x, context=None, mask=None):
|
def xformers_attention_forward(self, x, context=None, mask=None):
|
||||||
h = self.heads
|
h = self.heads
|
||||||
q_in = self.to_q(x)
|
q_in = self.to_q(x)
|
||||||
context = default(context, x)
|
context = default(context, x)
|
||||||
hypernetwork = shared.loaded_hypernetwork
|
|
||||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||||
if hypernetwork_layers is not None:
|
k_in = self.to_k(context_k)
|
||||||
k_in = self.to_k(hypernetwork_layers[0](context))
|
v_in = self.to_v(context_v)
|
||||||
v_in = self.to_v(hypernetwork_layers[1](context))
|
|
||||||
else:
|
|
||||||
k_in = self.to_k(context)
|
|
||||||
v_in = self.to_v(context)
|
|
||||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
|
||||||
del q_in, k_in, v_in
|
del q_in, k_in, v_in
|
||||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
||||||
|
@ -57,7 +57,7 @@ def set_samplers():
|
|||||||
global samplers, samplers_for_img2img
|
global samplers, samplers_for_img2img
|
||||||
|
|
||||||
hidden = set(opts.hide_samplers)
|
hidden = set(opts.hide_samplers)
|
||||||
hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive'])
|
hidden_img2img = set(opts.hide_samplers + ['PLMS'])
|
||||||
|
|
||||||
samplers = [x for x in all_samplers if x.name not in hidden]
|
samplers = [x for x in all_samplers if x.name not in hidden]
|
||||||
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
|
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
|
||||||
@ -365,16 +365,26 @@ class KDiffusionSampler:
|
|||||||
else:
|
else:
|
||||||
sigmas = self.model_wrap.get_sigmas(steps)
|
sigmas = self.model_wrap.get_sigmas(steps)
|
||||||
|
|
||||||
noise = noise * sigmas[steps - t_enc - 1]
|
|
||||||
xi = x + noise
|
|
||||||
|
|
||||||
extra_params_kwargs = self.initialize(p)
|
|
||||||
|
|
||||||
sigma_sched = sigmas[steps - t_enc - 1:]
|
sigma_sched = sigmas[steps - t_enc - 1:]
|
||||||
|
xi = x + noise * sigma_sched[0]
|
||||||
|
|
||||||
|
extra_params_kwargs = self.initialize(p)
|
||||||
|
if 'sigma_min' in inspect.signature(self.func).parameters:
|
||||||
|
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
|
||||||
|
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
|
||||||
|
if 'sigma_max' in inspect.signature(self.func).parameters:
|
||||||
|
extra_params_kwargs['sigma_max'] = sigma_sched[0]
|
||||||
|
if 'n' in inspect.signature(self.func).parameters:
|
||||||
|
extra_params_kwargs['n'] = len(sigma_sched) - 1
|
||||||
|
if 'sigma_sched' in inspect.signature(self.func).parameters:
|
||||||
|
extra_params_kwargs['sigma_sched'] = sigma_sched
|
||||||
|
if 'sigmas' in inspect.signature(self.func).parameters:
|
||||||
|
extra_params_kwargs['sigmas'] = sigma_sched
|
||||||
|
|
||||||
self.model_wrap_cfg.init_latent = x
|
self.model_wrap_cfg.init_latent = x
|
||||||
|
|
||||||
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
|
return self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
|
||||||
|
|
||||||
|
|
||||||
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
|
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
|
||||||
steps = steps or p.steps
|
steps = steps or p.steps
|
||||||
|
@ -13,7 +13,8 @@ import modules.memmon
|
|||||||
import modules.sd_models
|
import modules.sd_models
|
||||||
import modules.styles
|
import modules.styles
|
||||||
import modules.devices as devices
|
import modules.devices as devices
|
||||||
from modules import sd_samplers, hypernetwork
|
from modules import sd_samplers
|
||||||
|
from modules.hypernetworks import hypernetwork
|
||||||
from modules.paths import models_path, script_path, sd_path
|
from modules.paths import models_path, script_path, sd_path
|
||||||
|
|
||||||
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
||||||
@ -29,6 +30,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
|
|||||||
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
|
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
|
||||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||||
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
|
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
|
||||||
|
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
|
||||||
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
|
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
|
||||||
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
|
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
|
||||||
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
|
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
|
||||||
@ -36,6 +38,7 @@ parser.add_argument("--always-batch-cond-uncond", action='store_true', help="dis
|
|||||||
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
|
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
|
||||||
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
|
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
|
||||||
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
|
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
|
||||||
|
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
|
||||||
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
|
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
|
||||||
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
|
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
|
||||||
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
|
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
|
||||||
@ -47,9 +50,10 @@ parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with
|
|||||||
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
|
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
|
||||||
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
|
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
|
||||||
parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
|
parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
|
||||||
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.")
|
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
|
||||||
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
|
||||||
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
|
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
|
||||||
|
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
||||||
parser.add_argument("--use-cpu", nargs='+',choices=['SD', 'GFPGAN', 'BSRGAN', 'ESRGAN', 'SCUNet', 'CodeFormer'], help="use CPU as torch device for specified modules", default=[])
|
parser.add_argument("--use-cpu", nargs='+',choices=['SD', 'GFPGAN', 'BSRGAN', 'ESRGAN', 'SCUNet', 'CodeFormer'], help="use CPU as torch device for specified modules", default=[])
|
||||||
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
||||||
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
||||||
@ -82,10 +86,17 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
|
|||||||
xformers_available = False
|
xformers_available = False
|
||||||
config_filename = cmd_opts.ui_settings_file
|
config_filename = cmd_opts.ui_settings_file
|
||||||
|
|
||||||
hypernetworks = hypernetwork.list_hypernetworks(os.path.join(models_path, 'hypernetworks'))
|
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||||
loaded_hypernetwork = None
|
loaded_hypernetwork = None
|
||||||
|
|
||||||
|
|
||||||
|
def reload_hypernetworks():
|
||||||
|
global hypernetworks
|
||||||
|
|
||||||
|
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||||
|
hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
|
||||||
|
|
||||||
|
|
||||||
class State:
|
class State:
|
||||||
skipped = False
|
skipped = False
|
||||||
interrupted = False
|
interrupted = False
|
||||||
@ -217,6 +228,10 @@ options_templates.update(options_section(('system', "System"), {
|
|||||||
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
|
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
|
options_templates.update(options_section(('training', "Training"), {
|
||||||
|
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP form VRAM when training"),
|
||||||
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, show_on_main_page=True),
|
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, show_on_main_page=True),
|
||||||
"sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}),
|
"sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}),
|
||||||
@ -227,6 +242,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
|||||||
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
||||||
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
||||||
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
|
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
|
||||||
|
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
|
||||||
"filter_nsfw": OptionInfo(False, "Filter NSFW content"),
|
"filter_nsfw": OptionInfo(False, "Filter NSFW content"),
|
||||||
'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
|
'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
|
||||||
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
||||||
@ -239,6 +255,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
|
|||||||
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
|
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
|
||||||
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
|
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
|
||||||
"interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"),
|
"interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"),
|
||||||
|
"interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('ui', "User interface"), {
|
options_templates.update(options_section(('ui', "User interface"), {
|
||||||
|
@ -8,14 +8,14 @@ from torchvision import transforms
|
|||||||
|
|
||||||
import random
|
import random
|
||||||
import tqdm
|
import tqdm
|
||||||
from modules import devices
|
from modules import devices, shared
|
||||||
import re
|
import re
|
||||||
|
|
||||||
re_tag = re.compile(r"[a-zA-Z][_\w\d()]+")
|
re_tag = re.compile(r"[a-zA-Z][_\w\d()]+")
|
||||||
|
|
||||||
|
|
||||||
class PersonalizedBase(Dataset):
|
class PersonalizedBase(Dataset):
|
||||||
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None):
|
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False):
|
||||||
|
|
||||||
self.placeholder_token = placeholder_token
|
self.placeholder_token = placeholder_token
|
||||||
|
|
||||||
@ -32,12 +32,15 @@ class PersonalizedBase(Dataset):
|
|||||||
|
|
||||||
assert data_root, 'dataset directory not specified'
|
assert data_root, 'dataset directory not specified'
|
||||||
|
|
||||||
|
cond_model = shared.sd_model.cond_stage_model
|
||||||
|
|
||||||
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
|
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
|
||||||
print("Preparing dataset...")
|
print("Preparing dataset...")
|
||||||
for path in tqdm.tqdm(self.image_paths):
|
for path in tqdm.tqdm(self.image_paths):
|
||||||
image = Image.open(path)
|
try:
|
||||||
image = image.convert('RGB')
|
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
|
||||||
image = image.resize((self.width, self.height), PIL.Image.BICUBIC)
|
except Exception:
|
||||||
|
continue
|
||||||
|
|
||||||
filename = os.path.basename(path)
|
filename = os.path.basename(path)
|
||||||
filename_tokens = os.path.splitext(filename)[0]
|
filename_tokens = os.path.splitext(filename)[0]
|
||||||
@ -52,7 +55,13 @@ class PersonalizedBase(Dataset):
|
|||||||
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
|
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
|
||||||
init_latent = init_latent.to(devices.cpu)
|
init_latent = init_latent.to(devices.cpu)
|
||||||
|
|
||||||
self.dataset.append((init_latent, filename_tokens))
|
if include_cond:
|
||||||
|
text = self.create_text(filename_tokens)
|
||||||
|
cond = cond_model([text]).to(devices.cpu)
|
||||||
|
else:
|
||||||
|
cond = None
|
||||||
|
|
||||||
|
self.dataset.append((init_latent, filename_tokens, cond))
|
||||||
|
|
||||||
self.length = len(self.dataset) * repeats
|
self.length = len(self.dataset) * repeats
|
||||||
|
|
||||||
@ -63,6 +72,12 @@ class PersonalizedBase(Dataset):
|
|||||||
def shuffle(self):
|
def shuffle(self):
|
||||||
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
|
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
|
||||||
|
|
||||||
|
def create_text(self, filename_tokens):
|
||||||
|
text = random.choice(self.lines)
|
||||||
|
text = text.replace("[name]", self.placeholder_token)
|
||||||
|
text = text.replace("[filewords]", ' '.join(filename_tokens))
|
||||||
|
return text
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return self.length
|
return self.length
|
||||||
|
|
||||||
@ -71,10 +86,7 @@ class PersonalizedBase(Dataset):
|
|||||||
self.shuffle()
|
self.shuffle()
|
||||||
|
|
||||||
index = self.indexes[i % len(self.indexes)]
|
index = self.indexes[i % len(self.indexes)]
|
||||||
x, filename_tokens = self.dataset[index]
|
x, filename_tokens, cond = self.dataset[index]
|
||||||
|
|
||||||
text = random.choice(self.lines)
|
text = self.create_text(filename_tokens)
|
||||||
text = text.replace("[name]", self.placeholder_token)
|
return x, text, cond
|
||||||
text = text.replace("[filewords]", ' '.join(filename_tokens))
|
|
||||||
|
|
||||||
return x, text
|
|
||||||
|
34
modules/textual_inversion/learn_schedule.py
Normal file
34
modules/textual_inversion/learn_schedule.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
|
||||||
|
class LearnSchedule:
|
||||||
|
def __init__(self, learn_rate, max_steps, cur_step=0):
|
||||||
|
pairs = learn_rate.split(',')
|
||||||
|
self.rates = []
|
||||||
|
self.it = 0
|
||||||
|
self.maxit = 0
|
||||||
|
for i, pair in enumerate(pairs):
|
||||||
|
tmp = pair.split(':')
|
||||||
|
if len(tmp) == 2:
|
||||||
|
step = int(tmp[1])
|
||||||
|
if step > cur_step:
|
||||||
|
self.rates.append((float(tmp[0]), min(step, max_steps)))
|
||||||
|
self.maxit += 1
|
||||||
|
if step > max_steps:
|
||||||
|
return
|
||||||
|
elif step == -1:
|
||||||
|
self.rates.append((float(tmp[0]), max_steps))
|
||||||
|
self.maxit += 1
|
||||||
|
return
|
||||||
|
else:
|
||||||
|
self.rates.append((float(tmp[0]), max_steps))
|
||||||
|
self.maxit += 1
|
||||||
|
return
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
if self.it < self.maxit:
|
||||||
|
self.it += 1
|
||||||
|
return self.rates[self.it - 1]
|
||||||
|
else:
|
||||||
|
raise StopIteration
|
@ -60,7 +60,10 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
|
|||||||
for index, imagefile in enumerate(tqdm.tqdm(files)):
|
for index, imagefile in enumerate(tqdm.tqdm(files)):
|
||||||
subindex = [0]
|
subindex = [0]
|
||||||
filename = os.path.join(src, imagefile)
|
filename = os.path.join(src, imagefile)
|
||||||
img = Image.open(filename).convert("RGB")
|
try:
|
||||||
|
img = Image.open(filename).convert("RGB")
|
||||||
|
except Exception:
|
||||||
|
continue
|
||||||
|
|
||||||
if shared.state.interrupted:
|
if shared.state.interrupted:
|
||||||
break
|
break
|
||||||
|
@ -10,6 +10,7 @@ import datetime
|
|||||||
|
|
||||||
from modules import shared, devices, sd_hijack, processing, sd_models
|
from modules import shared, devices, sd_hijack, processing, sd_models
|
||||||
import modules.textual_inversion.dataset
|
import modules.textual_inversion.dataset
|
||||||
|
from modules.textual_inversion.learn_schedule import LearnSchedule
|
||||||
|
|
||||||
|
|
||||||
class Embedding:
|
class Embedding:
|
||||||
@ -156,7 +157,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
|
|||||||
return fn
|
return fn
|
||||||
|
|
||||||
|
|
||||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file):
|
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt):
|
||||||
assert embedding_name, 'embedding not selected'
|
assert embedding_name, 'embedding not selected'
|
||||||
|
|
||||||
shared.state.textinfo = "Initializing textual inversion training..."
|
shared.state.textinfo = "Initializing textual inversion training..."
|
||||||
@ -189,8 +190,6 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
|||||||
embedding = hijack.embedding_db.word_embeddings[embedding_name]
|
embedding = hijack.embedding_db.word_embeddings[embedding_name]
|
||||||
embedding.vec.requires_grad = True
|
embedding.vec.requires_grad = True
|
||||||
|
|
||||||
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
|
|
||||||
|
|
||||||
losses = torch.zeros((32,))
|
losses = torch.zeros((32,))
|
||||||
|
|
||||||
last_saved_file = "<none>"
|
last_saved_file = "<none>"
|
||||||
@ -200,15 +199,24 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
|||||||
if ititial_step > steps:
|
if ititial_step > steps:
|
||||||
return embedding, filename
|
return embedding, filename
|
||||||
|
|
||||||
tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)])
|
schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
|
||||||
epoch_len = (tr_img_len * num_repeats) + tr_img_len
|
(learn_rate, end_step) = next(schedules)
|
||||||
|
print(f'Training at rate of {learn_rate} until step {end_step}')
|
||||||
|
|
||||||
|
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
|
||||||
|
|
||||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||||
for i, (x, text) in pbar:
|
for i, (x, text, _) in pbar:
|
||||||
embedding.step = i + ititial_step
|
embedding.step = i + ititial_step
|
||||||
|
|
||||||
if embedding.step > steps:
|
if embedding.step > end_step:
|
||||||
break
|
try:
|
||||||
|
(learn_rate, end_step) = next(schedules)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
|
||||||
|
for pg in optimizer.param_groups:
|
||||||
|
pg['lr'] = learn_rate
|
||||||
|
|
||||||
if shared.state.interrupted:
|
if shared.state.interrupted:
|
||||||
break
|
break
|
||||||
@ -226,10 +234,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
|||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
epoch_num = embedding.step // epoch_len
|
epoch_num = embedding.step // len(ds)
|
||||||
epoch_step = embedding.step - (epoch_num * epoch_len) + 1
|
epoch_step = embedding.step - (epoch_num * len(ds)) + 1
|
||||||
|
|
||||||
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}")
|
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}")
|
||||||
|
|
||||||
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
|
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
|
||||||
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
|
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
|
||||||
@ -238,12 +246,14 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
|||||||
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
|
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
|
||||||
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
|
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
|
||||||
|
|
||||||
|
preview_text = text if preview_image_prompt == "" else preview_image_prompt
|
||||||
|
|
||||||
p = processing.StableDiffusionProcessingTxt2Img(
|
p = processing.StableDiffusionProcessingTxt2Img(
|
||||||
sd_model=shared.sd_model,
|
sd_model=shared.sd_model,
|
||||||
prompt=text,
|
prompt=preview_text,
|
||||||
steps=20,
|
steps=20,
|
||||||
height=training_height,
|
height=training_height,
|
||||||
width=training_width,
|
width=training_width,
|
||||||
do_not_save_grid=True,
|
do_not_save_grid=True,
|
||||||
do_not_save_samples=True,
|
do_not_save_samples=True,
|
||||||
)
|
)
|
||||||
@ -254,7 +264,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
|||||||
shared.state.current_image = image
|
shared.state.current_image = image
|
||||||
image.save(last_saved_image)
|
image.save(last_saved_image)
|
||||||
|
|
||||||
last_saved_image += f", prompt: {text}"
|
last_saved_image += f", prompt: {preview_text}"
|
||||||
|
|
||||||
shared.state.job_no = embedding.step
|
shared.state.job_no = embedding.step
|
||||||
|
|
||||||
@ -276,4 +286,3 @@ Last saved image: {html.escape(last_saved_image)}<br/>
|
|||||||
embedding.save(filename)
|
embedding.save(filename)
|
||||||
|
|
||||||
return embedding, filename
|
return embedding, filename
|
||||||
|
|
||||||
|
@ -23,6 +23,8 @@ def preprocess(*args):
|
|||||||
|
|
||||||
def train_embedding(*args):
|
def train_embedding(*args):
|
||||||
|
|
||||||
|
assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'
|
||||||
|
|
||||||
try:
|
try:
|
||||||
sd_hijack.undo_optimizations()
|
sd_hijack.undo_optimizations()
|
||||||
|
|
||||||
|
108
modules/ui.py
108
modules/ui.py
@ -39,6 +39,7 @@ import modules.generation_parameters_copypaste
|
|||||||
from modules import prompt_parser
|
from modules import prompt_parser
|
||||||
from modules.images import save_image
|
from modules.images import save_image
|
||||||
import modules.textual_inversion.ui
|
import modules.textual_inversion.ui
|
||||||
|
import modules.hypernetworks.ui
|
||||||
|
|
||||||
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
|
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
|
||||||
mimetypes.init()
|
mimetypes.init()
|
||||||
@ -50,6 +51,11 @@ if not cmd_opts.share and not cmd_opts.listen:
|
|||||||
gradio.utils.version_check = lambda: None
|
gradio.utils.version_check = lambda: None
|
||||||
gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
|
gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
|
||||||
|
|
||||||
|
if cmd_opts.ngrok != None:
|
||||||
|
import modules.ngrok as ngrok
|
||||||
|
print('ngrok authtoken detected, trying to connect...')
|
||||||
|
ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860)
|
||||||
|
|
||||||
|
|
||||||
def gr_show(visible=True):
|
def gr_show(visible=True):
|
||||||
return {"visible": visible, "__type__": "update"}
|
return {"visible": visible, "__type__": "update"}
|
||||||
@ -311,7 +317,7 @@ def interrogate(image):
|
|||||||
|
|
||||||
|
|
||||||
def interrogate_deepbooru(image):
|
def interrogate_deepbooru(image):
|
||||||
prompt = get_deepbooru_tags(image)
|
prompt = get_deepbooru_tags(image, opts.interrogate_deepbooru_score_threshold)
|
||||||
return gr_show(True) if prompt is None else prompt
|
return gr_show(True) if prompt is None else prompt
|
||||||
|
|
||||||
|
|
||||||
@ -428,7 +434,10 @@ def create_toprow(is_img2img):
|
|||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column(scale=8):
|
with gr.Column(scale=8):
|
||||||
negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2)
|
with gr.Row():
|
||||||
|
negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2)
|
||||||
|
with gr.Column(scale=1, elem_id="roll_col"):
|
||||||
|
sh = gr.Button(elem_id="sh", visible=True)
|
||||||
|
|
||||||
with gr.Column(scale=1, elem_id="style_neg_col"):
|
with gr.Column(scale=1, elem_id="style_neg_col"):
|
||||||
prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1)
|
prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1)
|
||||||
@ -549,15 +558,15 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
||||||
open_txt2img_folder = gr.Button(folder_symbol, elem_id=button_id)
|
open_txt2img_folder = gr.Button(folder_symbol, elem_id=button_id)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
||||||
|
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
html_info = gr.HTML()
|
html_info = gr.HTML()
|
||||||
generation_info = gr.Textbox(visible=False)
|
generation_info = gr.Textbox(visible=False)
|
||||||
|
|
||||||
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
|
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
|
||||||
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
|
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
|
||||||
@ -737,15 +746,15 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
||||||
open_img2img_folder = gr.Button(folder_symbol, elem_id=button_id)
|
open_img2img_folder = gr.Button(folder_symbol, elem_id=button_id)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
||||||
|
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
html_info = gr.HTML()
|
html_info = gr.HTML()
|
||||||
generation_info = gr.Textbox(visible=False)
|
generation_info = gr.Textbox(visible=False)
|
||||||
|
|
||||||
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
|
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
|
||||||
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
|
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
|
||||||
@ -1022,7 +1031,20 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
gr.HTML(value="")
|
gr.HTML(value="")
|
||||||
|
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
create_embedding = gr.Button(value="Create", variant='primary')
|
create_embedding = gr.Button(value="Create embedding", variant='primary')
|
||||||
|
|
||||||
|
with gr.Group():
|
||||||
|
gr.HTML(value="<p style='margin-bottom: 0.7em'>Create a new hypernetwork</p>")
|
||||||
|
|
||||||
|
new_hypernetwork_name = gr.Textbox(label="Name")
|
||||||
|
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
with gr.Column(scale=3):
|
||||||
|
gr.HTML(value="")
|
||||||
|
|
||||||
|
with gr.Column():
|
||||||
|
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
|
||||||
|
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Preprocess images</p>")
|
gr.HTML(value="<p style='margin-bottom: 0.7em'>Preprocess images</p>")
|
||||||
@ -1051,7 +1073,8 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
with gr.Group():
|
with gr.Group():
|
||||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>")
|
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>")
|
||||||
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
|
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
|
||||||
learn_rate = gr.Number(label='Learning rate', value=5.0e-03)
|
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
|
||||||
|
learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
|
||||||
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
|
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
|
||||||
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
|
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
|
||||||
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
|
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
|
||||||
@ -1061,15 +1084,12 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0)
|
num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0)
|
||||||
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
|
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||||
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
|
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||||
|
preview_image_prompt = gr.Textbox(label='Preview prompt', value="")
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column(scale=2):
|
interrupt_training = gr.Button(value="Interrupt")
|
||||||
gr.HTML(value="")
|
train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary')
|
||||||
|
train_embedding = gr.Button(value="Train Embedding", variant='primary')
|
||||||
with gr.Column():
|
|
||||||
with gr.Row():
|
|
||||||
interrupt_training = gr.Button(value="Interrupt")
|
|
||||||
train_embedding = gr.Button(value="Train", variant='primary')
|
|
||||||
|
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
progressbar = gr.HTML(elem_id="ti_progressbar")
|
progressbar = gr.HTML(elem_id="ti_progressbar")
|
||||||
@ -1095,6 +1115,19 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
create_hypernetwork.click(
|
||||||
|
fn=modules.hypernetworks.ui.create_hypernetwork,
|
||||||
|
inputs=[
|
||||||
|
new_hypernetwork_name,
|
||||||
|
new_hypernetwork_sizes,
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
train_hypernetwork_name,
|
||||||
|
ti_output,
|
||||||
|
ti_outcome,
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
run_preprocess.click(
|
run_preprocess.click(
|
||||||
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]),
|
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]),
|
||||||
_js="start_training_textual_inversion",
|
_js="start_training_textual_inversion",
|
||||||
@ -1129,6 +1162,27 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
create_image_every,
|
create_image_every,
|
||||||
save_embedding_every,
|
save_embedding_every,
|
||||||
template_file,
|
template_file,
|
||||||
|
preview_image_prompt,
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
ti_output,
|
||||||
|
ti_outcome,
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
train_hypernetwork.click(
|
||||||
|
fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]),
|
||||||
|
_js="start_training_textual_inversion",
|
||||||
|
inputs=[
|
||||||
|
train_hypernetwork_name,
|
||||||
|
learn_rate,
|
||||||
|
dataset_directory,
|
||||||
|
log_directory,
|
||||||
|
steps,
|
||||||
|
create_image_every,
|
||||||
|
save_embedding_every,
|
||||||
|
template_file,
|
||||||
|
preview_image_prompt,
|
||||||
],
|
],
|
||||||
outputs=[
|
outputs=[
|
||||||
ti_output,
|
ti_output,
|
||||||
@ -1142,6 +1196,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
outputs=[],
|
outputs=[],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def create_setting_component(key):
|
def create_setting_component(key):
|
||||||
def fun():
|
def fun():
|
||||||
return opts.data[key] if key in opts.data else opts.data_labels[key].default
|
return opts.data[key] if key in opts.data else opts.data_labels[key].default
|
||||||
@ -1295,6 +1350,7 @@ Requested path was: {f}
|
|||||||
shared.state.interrupt()
|
shared.state.interrupt()
|
||||||
settings_interface.gradio_ref.do_restart = True
|
settings_interface.gradio_ref.do_restart = True
|
||||||
|
|
||||||
|
|
||||||
restart_gradio.click(
|
restart_gradio.click(
|
||||||
fn=request_restart,
|
fn=request_restart,
|
||||||
inputs=[],
|
inputs=[],
|
||||||
@ -1336,7 +1392,7 @@ Requested path was: {f}
|
|||||||
|
|
||||||
with gr.Tabs() as tabs:
|
with gr.Tabs() as tabs:
|
||||||
for interface, label, ifid in interfaces:
|
for interface, label, ifid in interfaces:
|
||||||
with gr.TabItem(label, id=ifid):
|
with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid):
|
||||||
interface.render()
|
interface.render()
|
||||||
|
|
||||||
if os.path.exists(os.path.join(script_path, "notification.mp3")):
|
if os.path.exists(os.path.join(script_path, "notification.mp3")):
|
||||||
|
@ -4,7 +4,7 @@ fairscale==0.4.4
|
|||||||
fonts
|
fonts
|
||||||
font-roboto
|
font-roboto
|
||||||
gfpgan
|
gfpgan
|
||||||
gradio==3.4b3
|
gradio==3.4.1
|
||||||
invisible-watermark
|
invisible-watermark
|
||||||
numpy
|
numpy
|
||||||
omegaconf
|
omegaconf
|
||||||
|
@ -2,7 +2,7 @@ transformers==4.19.2
|
|||||||
diffusers==0.3.0
|
diffusers==0.3.0
|
||||||
basicsr==1.4.2
|
basicsr==1.4.2
|
||||||
gfpgan==1.3.8
|
gfpgan==1.3.8
|
||||||
gradio==3.4b3
|
gradio==3.4.1
|
||||||
numpy==1.23.3
|
numpy==1.23.3
|
||||||
Pillow==9.2.0
|
Pillow==9.2.0
|
||||||
realesrgan==0.3.0
|
realesrgan==0.3.0
|
||||||
|
11
script.js
11
script.js
@ -6,6 +6,10 @@ function get_uiCurrentTab() {
|
|||||||
return gradioApp().querySelector('.tabs button:not(.border-transparent)')
|
return gradioApp().querySelector('.tabs button:not(.border-transparent)')
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function get_uiCurrentTabContent() {
|
||||||
|
return gradioApp().querySelector('.tabitem[id^=tab_]:not([style*="display: none"])')
|
||||||
|
}
|
||||||
|
|
||||||
uiUpdateCallbacks = []
|
uiUpdateCallbacks = []
|
||||||
uiTabChangeCallbacks = []
|
uiTabChangeCallbacks = []
|
||||||
let uiCurrentTab = null
|
let uiCurrentTab = null
|
||||||
@ -50,8 +54,11 @@ document.addEventListener("DOMContentLoaded", function() {
|
|||||||
} else if (e.keyCode !== undefined) {
|
} else if (e.keyCode !== undefined) {
|
||||||
if((e.keyCode == 13 && (e.metaKey || e.ctrlKey))) handled = true;
|
if((e.keyCode == 13 && (e.metaKey || e.ctrlKey))) handled = true;
|
||||||
}
|
}
|
||||||
if (handled) {
|
if (handled) {
|
||||||
gradioApp().querySelector("#txt2img_generate").click();
|
button = get_uiCurrentTabContent().querySelector('button[id$=_generate]');
|
||||||
|
if (button) {
|
||||||
|
button.click();
|
||||||
|
}
|
||||||
e.preventDefault();
|
e.preventDefault();
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
|
@ -38,6 +38,7 @@ class Script(scripts.Script):
|
|||||||
|
|
||||||
grids = []
|
grids = []
|
||||||
all_images = []
|
all_images = []
|
||||||
|
original_init_image = p.init_images
|
||||||
state.job_count = loops * batch_count
|
state.job_count = loops * batch_count
|
||||||
|
|
||||||
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
|
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
|
||||||
@ -45,6 +46,9 @@ class Script(scripts.Script):
|
|||||||
for n in range(batch_count):
|
for n in range(batch_count):
|
||||||
history = []
|
history = []
|
||||||
|
|
||||||
|
# Reset to original init image at the start of each batch
|
||||||
|
p.init_images = original_init_image
|
||||||
|
|
||||||
for i in range(loops):
|
for i in range(loops):
|
||||||
p.n_iter = 1
|
p.n_iter = 1
|
||||||
p.batch_size = 1
|
p.batch_size = 1
|
||||||
|
@ -10,7 +10,8 @@ import numpy as np
|
|||||||
import modules.scripts as scripts
|
import modules.scripts as scripts
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
from modules import images, hypernetwork
|
from modules import images
|
||||||
|
from modules.hypernetworks import hypernetwork
|
||||||
from modules.processing import process_images, Processed, get_correct_sampler
|
from modules.processing import process_images, Processed, get_correct_sampler
|
||||||
from modules.shared import opts, cmd_opts, state
|
from modules.shared import opts, cmd_opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
@ -27,6 +28,9 @@ def apply_field(field):
|
|||||||
|
|
||||||
|
|
||||||
def apply_prompt(p, x, xs):
|
def apply_prompt(p, x, xs):
|
||||||
|
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
|
||||||
|
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
|
||||||
|
|
||||||
p.prompt = p.prompt.replace(xs[0], x)
|
p.prompt = p.prompt.replace(xs[0], x)
|
||||||
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
|
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
|
||||||
|
|
||||||
@ -193,7 +197,7 @@ class Script(scripts.Script):
|
|||||||
x_values = gr.Textbox(label="X values", visible=False, lines=1)
|
x_values = gr.Textbox(label="X values", visible=False, lines=1)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[4].label, visible=False, type="index", elem_id="y_type")
|
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[0].label, visible=False, type="index", elem_id="y_type")
|
||||||
y_values = gr.Textbox(label="Y values", visible=False, lines=1)
|
y_values = gr.Textbox(label="Y values", visible=False, lines=1)
|
||||||
|
|
||||||
draw_legend = gr.Checkbox(label='Draw legend', value=True)
|
draw_legend = gr.Checkbox(label='Draw legend', value=True)
|
||||||
|
32
style.css
32
style.css
@ -2,6 +2,27 @@
|
|||||||
max-width: 100%;
|
max-width: 100%;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#txt2img_token_counter {
|
||||||
|
height: 0px;
|
||||||
|
}
|
||||||
|
|
||||||
|
#img2img_token_counter {
|
||||||
|
height: 0px;
|
||||||
|
}
|
||||||
|
|
||||||
|
#sh{
|
||||||
|
min-width: 2em;
|
||||||
|
min-height: 2em;
|
||||||
|
max-width: 2em;
|
||||||
|
max-height: 2em;
|
||||||
|
flex-grow: 0;
|
||||||
|
padding-left: 0.25em;
|
||||||
|
padding-right: 0.25em;
|
||||||
|
margin: 0.1em 0;
|
||||||
|
opacity: 0%;
|
||||||
|
cursor: default;
|
||||||
|
}
|
||||||
|
|
||||||
.output-html p {margin: 0 0.5em;}
|
.output-html p {margin: 0 0.5em;}
|
||||||
|
|
||||||
.row > *,
|
.row > *,
|
||||||
@ -219,6 +240,7 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s
|
|||||||
#settings fieldset span.text-gray-500, #settings .gr-block.gr-box span.text-gray-500, #settings label.block span{
|
#settings fieldset span.text-gray-500, #settings .gr-block.gr-box span.text-gray-500, #settings label.block span{
|
||||||
position: relative;
|
position: relative;
|
||||||
border: none;
|
border: none;
|
||||||
|
margin-right: 8em;
|
||||||
}
|
}
|
||||||
|
|
||||||
.gr-panel div.flex-col div.justify-between label span{
|
.gr-panel div.flex-col div.justify-between label span{
|
||||||
@ -474,3 +496,13 @@ canvas[key="mask"] {
|
|||||||
mix-blend-mode: multiply;
|
mix-blend-mode: multiply;
|
||||||
pointer-events: none;
|
pointer-events: none;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* gradio 3.4.1 stuff for editable scrollbar values */
|
||||||
|
.gr-box > div > div > input.gr-text-input{
|
||||||
|
position: absolute;
|
||||||
|
right: 0.5em;
|
||||||
|
top: -0.6em;
|
||||||
|
z-index: 200;
|
||||||
|
width: 8em;
|
||||||
|
}
|
||||||
|
27
textual_inversion_templates/hypernetwork.txt
Normal file
27
textual_inversion_templates/hypernetwork.txt
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
a photo of a [filewords]
|
||||||
|
a rendering of a [filewords]
|
||||||
|
a cropped photo of the [filewords]
|
||||||
|
the photo of a [filewords]
|
||||||
|
a photo of a clean [filewords]
|
||||||
|
a photo of a dirty [filewords]
|
||||||
|
a dark photo of the [filewords]
|
||||||
|
a photo of my [filewords]
|
||||||
|
a photo of the cool [filewords]
|
||||||
|
a close-up photo of a [filewords]
|
||||||
|
a bright photo of the [filewords]
|
||||||
|
a cropped photo of a [filewords]
|
||||||
|
a photo of the [filewords]
|
||||||
|
a good photo of the [filewords]
|
||||||
|
a photo of one [filewords]
|
||||||
|
a close-up photo of the [filewords]
|
||||||
|
a rendition of the [filewords]
|
||||||
|
a photo of the clean [filewords]
|
||||||
|
a rendition of a [filewords]
|
||||||
|
a photo of a nice [filewords]
|
||||||
|
a good photo of a [filewords]
|
||||||
|
a photo of the nice [filewords]
|
||||||
|
a photo of the small [filewords]
|
||||||
|
a photo of the weird [filewords]
|
||||||
|
a photo of the large [filewords]
|
||||||
|
a photo of a cool [filewords]
|
||||||
|
a photo of a small [filewords]
|
1
textual_inversion_templates/none.txt
Normal file
1
textual_inversion_templates/none.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
picture
|
8
webui.py
8
webui.py
@ -29,6 +29,7 @@ from modules import devices
|
|||||||
from modules import modelloader
|
from modules import modelloader
|
||||||
from modules.paths import script_path
|
from modules.paths import script_path
|
||||||
from modules.shared import cmd_opts
|
from modules.shared import cmd_opts
|
||||||
|
import modules.hypernetworks.hypernetwork
|
||||||
|
|
||||||
modelloader.cleanup_models()
|
modelloader.cleanup_models()
|
||||||
modules.sd_models.setup_model()
|
modules.sd_models.setup_model()
|
||||||
@ -82,8 +83,7 @@ modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
|
|||||||
shared.sd_model = modules.sd_models.load_model()
|
shared.sd_model = modules.sd_models.load_model()
|
||||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
||||||
|
|
||||||
loaded_hypernetwork = modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)
|
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
|
||||||
|
|
||||||
|
|
||||||
def webui():
|
def webui():
|
||||||
@ -108,7 +108,7 @@ def webui():
|
|||||||
prevent_thread_lock=True
|
prevent_thread_lock=True
|
||||||
)
|
)
|
||||||
|
|
||||||
app.add_middleware(GZipMiddleware,minimum_size=1000)
|
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
||||||
|
|
||||||
while 1:
|
while 1:
|
||||||
time.sleep(0.5)
|
time.sleep(0.5)
|
||||||
@ -124,6 +124,8 @@ def webui():
|
|||||||
modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
|
modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
|
||||||
print('Reloading modules: modules.ui')
|
print('Reloading modules: modules.ui')
|
||||||
importlib.reload(modules.ui)
|
importlib.reload(modules.ui)
|
||||||
|
print('Refreshing Model List')
|
||||||
|
modules.sd_models.list_models()
|
||||||
print('Restarting Gradio')
|
print('Restarting Gradio')
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user