fix double gc and decoding with unet context

This commit is contained in:
aria1th 2023-11-17 10:05:28 +09:00
parent ffd0f8ddc3
commit 97431f29fe

View File

@ -874,7 +874,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
else:
if opts.sd_vae_decode_method != 'Full':
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
with hypertile_context_unet(p.sd_model.model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
with hypertile_context_vae(p.sd_model.first_stage_model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), opts=shared.opts):
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
x_samples_ddim = torch.stack(x_samples_ddim).float()
@ -1146,11 +1146,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
tile_size = largest_tile_size_available(self.width, self.height)
with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
devices.torch_gc()
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
del x
if not self.enable_hr:
return samples
devices.torch_gc()
if self.latent_scale_mode is None:
with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
@ -1536,7 +1536,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
tile_size = largest_tile_size_available(self.width, self.height)
with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
devices.torch_gc()
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None: