mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-21 13:50:12 +08:00
Cleaned up code, moved main code contributions into soft_inpainting.py
This commit is contained in:
parent
259d33c3c8
commit
976c1053ef
@ -892,55 +892,13 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
|
||||
# Generate the mask(s) based on similarity between the original and denoised latent vectors
|
||||
if getattr(p, "image_mask", None) is not None and getattr(p, "soft_inpainting", None) is not None:
|
||||
# latent_mask = p.nmask[0].float().cpu()
|
||||
|
||||
# convert the original mask into a form we use to scale distances for thresholding
|
||||
# mask_scalar = 1-(torch.clamp(latent_mask, min=0, max=1) ** (p.mask_blend_scale / 2))
|
||||
# mask_scalar = mask_scalar / (1.00001-mask_scalar)
|
||||
# mask_scalar = mask_scalar.numpy()
|
||||
|
||||
latent_orig = p.init_latent
|
||||
latent_proc = samples_ddim
|
||||
latent_distance = torch.norm(latent_proc - latent_orig, p=2, dim=1)
|
||||
|
||||
kernel, kernel_center = images.get_gaussian_kernel(stddev_radius=1.5, max_radius=2)
|
||||
|
||||
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, p.overlay_images)):
|
||||
converted_mask = distance_map.float().cpu().numpy()
|
||||
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
||||
percentile_min=0.9, percentile_max=1, min_width=1)
|
||||
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
||||
percentile_min=0.25, percentile_max=0.75, min_width=1)
|
||||
|
||||
# The distance at which opacity of original decreases to 50%
|
||||
# half_weighted_distance = 1 # * mask_scalar
|
||||
# converted_mask = converted_mask / half_weighted_distance
|
||||
|
||||
converted_mask = 1 / (1 + converted_mask ** 2)
|
||||
converted_mask = images.smootherstep(converted_mask)
|
||||
converted_mask = 1 - converted_mask
|
||||
converted_mask = 255. * converted_mask
|
||||
converted_mask = converted_mask.astype(np.uint8)
|
||||
converted_mask = Image.fromarray(converted_mask)
|
||||
converted_mask = images.resize_image(2, converted_mask, p.width, p.height)
|
||||
converted_mask = create_binary_mask(converted_mask, round=False)
|
||||
|
||||
# Remove aliasing artifacts using a gaussian blur.
|
||||
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
|
||||
|
||||
# Expand the mask to fit the whole image if needed.
|
||||
if p.paste_to is not None:
|
||||
converted_mask = uncrop(converted_mask,
|
||||
(overlay_image.width, overlay_image.height),
|
||||
p.paste_to)
|
||||
|
||||
p.masks_for_overlay[i] = converted_mask
|
||||
|
||||
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
|
||||
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
|
||||
mask=ImageOps.invert(converted_mask.convert('L')))
|
||||
|
||||
p.overlay_images[i] = image_masked.convert('RGBA')
|
||||
si.generate_adaptive_masks(latent_orig=p.init_latent,
|
||||
latent_processed=samples_ddim,
|
||||
overlay_images=p.overlay_images,
|
||||
masks_for_overlay=p.masks_for_overlay,
|
||||
width=p.width,
|
||||
height=p.height,
|
||||
paste_to=p.paste_to)
|
||||
|
||||
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim,
|
||||
target_device=devices.cpu,
|
||||
|
@ -94,76 +94,6 @@ class CFGDenoiser(torch.nn.Module):
|
||||
self.sampler.sampler_extra_args['uncond'] = uc
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
|
||||
def latent_blend(a, b, t, one_minus_t=None):
|
||||
|
||||
"""
|
||||
Interpolates two latent image representations according to the parameter t,
|
||||
where the interpolated vectors' magnitudes are also interpolated separately.
|
||||
The "detail_preservation" factor biases the magnitude interpolation towards
|
||||
the larger of the two magnitudes.
|
||||
"""
|
||||
# NOTE: We use inplace operations wherever possible.
|
||||
|
||||
if one_minus_t is None:
|
||||
one_minus_t = 1 - t
|
||||
|
||||
if self.soft_inpainting is None:
|
||||
return a * one_minus_t + b * t
|
||||
|
||||
# Linearly interpolate the image vectors.
|
||||
a_scaled = a * one_minus_t
|
||||
b_scaled = b * t
|
||||
image_interp = a_scaled
|
||||
image_interp.add_(b_scaled)
|
||||
result_type = image_interp.dtype
|
||||
del a_scaled, b_scaled
|
||||
|
||||
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
|
||||
# 64-bit operations are used here to allow large exponents.
|
||||
current_magnitude = torch.norm(image_interp, p=2, dim=1).to(torch.float64).add_(0.00001)
|
||||
|
||||
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
|
||||
a_magnitude = torch.norm(a, p=2, dim=1).to(torch.float64).pow_(self.soft_inpainting.inpaint_detail_preservation) * one_minus_t
|
||||
b_magnitude = torch.norm(b, p=2, dim=1).to(torch.float64).pow_(self.soft_inpainting.inpaint_detail_preservation) * t
|
||||
desired_magnitude = a_magnitude
|
||||
desired_magnitude.add_(b_magnitude).pow_(1 / self.soft_inpainting.inpaint_detail_preservation)
|
||||
del a_magnitude, b_magnitude, one_minus_t
|
||||
|
||||
# Change the linearly interpolated image vectors' magnitudes to the value we want.
|
||||
# This is the last 64-bit operation.
|
||||
image_interp_scaling_factor = desired_magnitude
|
||||
image_interp_scaling_factor.div_(current_magnitude)
|
||||
image_interp_scaled = image_interp
|
||||
image_interp_scaled.mul_(image_interp_scaling_factor)
|
||||
del current_magnitude
|
||||
del desired_magnitude
|
||||
del image_interp
|
||||
del image_interp_scaling_factor
|
||||
|
||||
image_interp_scaled = image_interp_scaled.to(result_type)
|
||||
del result_type
|
||||
|
||||
return image_interp_scaled
|
||||
|
||||
def get_modified_nmask(nmask, _sigma):
|
||||
"""
|
||||
Converts a negative mask representing the transparency of the original latent vectors being overlayed
|
||||
to a mask that is scaled according to the denoising strength for this step.
|
||||
|
||||
Where:
|
||||
0 = fully opaque, infinite density, fully masked
|
||||
1 = fully transparent, zero density, fully unmasked
|
||||
|
||||
We bring this transparency to a power, as this allows one to simulate N number of blending operations
|
||||
where N can be any positive real value. Using this one can control the balance of influence between
|
||||
the denoiser and the original latents according to the sigma value.
|
||||
|
||||
NOTE: "mask" is not used
|
||||
"""
|
||||
if self.soft_inpainting is None:
|
||||
return nmask
|
||||
|
||||
return torch.pow(nmask, (_sigma ** self.soft_inpainting.mask_blend_power) * self.soft_inpainting.mask_blend_scale)
|
||||
|
||||
if state.interrupted or state.skipped:
|
||||
raise sd_samplers_common.InterruptedException
|
||||
@ -184,9 +114,12 @@ class CFGDenoiser(torch.nn.Module):
|
||||
# Blend in the original latents (before)
|
||||
if self.mask_before_denoising and self.mask is not None:
|
||||
if self.soft_inpainting is None:
|
||||
x = latent_blend(self.init_latent, x, self.nmask, self.mask)
|
||||
x = self.init_latent * self.mask + self.nmask * x
|
||||
else:
|
||||
x = latent_blend(self.init_latent, x, get_modified_nmask(self.nmask, sigma))
|
||||
x = si.latent_blend(self.soft_inpainting,
|
||||
self.init_latent,
|
||||
x,
|
||||
si.get_modified_nmask(self.soft_inpainting, self.nmask, sigma))
|
||||
|
||||
batch_size = len(conds_list)
|
||||
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
||||
@ -290,9 +223,12 @@ class CFGDenoiser(torch.nn.Module):
|
||||
# Blend in the original latents (after)
|
||||
if not self.mask_before_denoising and self.mask is not None:
|
||||
if self.soft_inpainting is None:
|
||||
denoised = latent_blend(self.init_latent, denoised, self.nmask, self.mask)
|
||||
denoised = self.init_latent * self.mask + self.nmask * denoised
|
||||
else:
|
||||
denoised = latent_blend(self.init_latent, denoised, get_modified_nmask(self.nmask, sigma))
|
||||
denoised = si.latent_blend(self.soft_inpainting,
|
||||
self.init_latent,
|
||||
denoised,
|
||||
si.get_modified_nmask(self.soft_inpainting, self.nmask, sigma))
|
||||
|
||||
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
|
||||
|
||||
|
@ -4,13 +4,6 @@ class SoftInpaintingSettings:
|
||||
self.mask_blend_scale = mask_blend_scale
|
||||
self.inpaint_detail_preservation = inpaint_detail_preservation
|
||||
|
||||
def get_paste_fields(self):
|
||||
return [
|
||||
(self.mask_blend_power, gen_param_labels.mask_blend_power),
|
||||
(self.mask_blend_scale, gen_param_labels.mask_blend_scale),
|
||||
(self.inpaint_detail_preservation, gen_param_labels.inpaint_detail_preservation),
|
||||
]
|
||||
|
||||
def add_generation_params(self, dest):
|
||||
dest[enabled_gen_param_label] = True
|
||||
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power
|
||||
@ -18,25 +11,169 @@ class SoftInpaintingSettings:
|
||||
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation
|
||||
|
||||
|
||||
# ------------------- Methods -------------------
|
||||
|
||||
|
||||
def latent_blend(soft_inpainting, a, b, t):
|
||||
"""
|
||||
Interpolates two latent image representations according to the parameter t,
|
||||
where the interpolated vectors' magnitudes are also interpolated separately.
|
||||
The "detail_preservation" factor biases the magnitude interpolation towards
|
||||
the larger of the two magnitudes.
|
||||
"""
|
||||
import torch
|
||||
|
||||
# NOTE: We use inplace operations wherever possible.
|
||||
|
||||
one_minus_t = 1 - t
|
||||
|
||||
# Linearly interpolate the image vectors.
|
||||
a_scaled = a * one_minus_t
|
||||
b_scaled = b * t
|
||||
image_interp = a_scaled
|
||||
image_interp.add_(b_scaled)
|
||||
result_type = image_interp.dtype
|
||||
del a_scaled, b_scaled
|
||||
|
||||
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
|
||||
# 64-bit operations are used here to allow large exponents.
|
||||
current_magnitude = torch.norm(image_interp, p=2, dim=1).to(torch.float64).add_(0.00001)
|
||||
|
||||
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
|
||||
a_magnitude = torch.norm(a, p=2, dim=1).to(torch.float64).pow_(soft_inpainting.inpaint_detail_preservation) * one_minus_t
|
||||
b_magnitude = torch.norm(b, p=2, dim=1).to(torch.float64).pow_(soft_inpainting.inpaint_detail_preservation) * t
|
||||
desired_magnitude = a_magnitude
|
||||
desired_magnitude.add_(b_magnitude).pow_(1 / soft_inpainting.inpaint_detail_preservation)
|
||||
del a_magnitude, b_magnitude, one_minus_t
|
||||
|
||||
# Change the linearly interpolated image vectors' magnitudes to the value we want.
|
||||
# This is the last 64-bit operation.
|
||||
image_interp_scaling_factor = desired_magnitude
|
||||
image_interp_scaling_factor.div_(current_magnitude)
|
||||
image_interp_scaling_factor = image_interp_scaling_factor.to(result_type)
|
||||
image_interp_scaled = image_interp
|
||||
image_interp_scaled.mul_(image_interp_scaling_factor)
|
||||
del current_magnitude
|
||||
del desired_magnitude
|
||||
del image_interp
|
||||
del image_interp_scaling_factor
|
||||
del result_type
|
||||
|
||||
return image_interp_scaled
|
||||
|
||||
|
||||
def get_modified_nmask(soft_inpainting, nmask, sigma):
|
||||
"""
|
||||
Converts a negative mask representing the transparency of the original latent vectors being overlayed
|
||||
to a mask that is scaled according to the denoising strength for this step.
|
||||
|
||||
Where:
|
||||
0 = fully opaque, infinite density, fully masked
|
||||
1 = fully transparent, zero density, fully unmasked
|
||||
|
||||
We bring this transparency to a power, as this allows one to simulate N number of blending operations
|
||||
where N can be any positive real value. Using this one can control the balance of influence between
|
||||
the denoiser and the original latents according to the sigma value.
|
||||
|
||||
NOTE: "mask" is not used
|
||||
"""
|
||||
import torch
|
||||
return torch.pow(nmask, (sigma ** soft_inpainting.mask_blend_power) * soft_inpainting.mask_blend_scale)
|
||||
|
||||
|
||||
def generate_adaptive_masks(
|
||||
latent_orig,
|
||||
latent_processed,
|
||||
overlay_images,
|
||||
masks_for_overlay,
|
||||
width, height,
|
||||
paste_to):
|
||||
import torch
|
||||
import numpy as np
|
||||
import modules.processing as proc
|
||||
import modules.images as images
|
||||
from PIL import Image, ImageOps, ImageFilter
|
||||
|
||||
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
|
||||
# latent_mask = p.nmask[0].float().cpu()
|
||||
# convert the original mask into a form we use to scale distances for thresholding
|
||||
# mask_scalar = 1-(torch.clamp(latent_mask, min=0, max=1) ** (p.mask_blend_scale / 2))
|
||||
# mask_scalar = mask_scalar / (1.00001-mask_scalar)
|
||||
# mask_scalar = mask_scalar.numpy()
|
||||
|
||||
latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1)
|
||||
|
||||
kernel, kernel_center = images.get_gaussian_kernel(stddev_radius=1.5, max_radius=2)
|
||||
|
||||
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)):
|
||||
converted_mask = distance_map.float().cpu().numpy()
|
||||
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
||||
percentile_min=0.9, percentile_max=1, min_width=1)
|
||||
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
||||
percentile_min=0.25, percentile_max=0.75, min_width=1)
|
||||
|
||||
# The distance at which opacity of original decreases to 50%
|
||||
# half_weighted_distance = 1 # * mask_scalar
|
||||
# converted_mask = converted_mask / half_weighted_distance
|
||||
|
||||
converted_mask = 1 / (1 + converted_mask ** 2)
|
||||
converted_mask = images.smootherstep(converted_mask)
|
||||
converted_mask = 1 - converted_mask
|
||||
converted_mask = 255. * converted_mask
|
||||
converted_mask = converted_mask.astype(np.uint8)
|
||||
converted_mask = Image.fromarray(converted_mask)
|
||||
converted_mask = images.resize_image(2, converted_mask, width, height)
|
||||
converted_mask = proc.create_binary_mask(converted_mask, round=False)
|
||||
|
||||
# Remove aliasing artifacts using a gaussian blur.
|
||||
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
|
||||
|
||||
# Expand the mask to fit the whole image if needed.
|
||||
if paste_to is not None:
|
||||
converted_mask = proc. uncrop(converted_mask,
|
||||
(overlay_image.width, overlay_image.height),
|
||||
paste_to)
|
||||
|
||||
masks_for_overlay[i] = converted_mask
|
||||
|
||||
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
|
||||
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
|
||||
mask=ImageOps.invert(converted_mask.convert('L')))
|
||||
|
||||
overlay_images[i] = image_masked.convert('RGBA')
|
||||
|
||||
|
||||
# ------------------- Constants -------------------
|
||||
|
||||
|
||||
default = SoftInpaintingSettings(1, 0.5, 4)
|
||||
|
||||
enabled_ui_label = "Soft inpainting"
|
||||
enabled_gen_param_label = "Soft inpainting enabled"
|
||||
enabled_el_id = "soft_inpainting_enabled"
|
||||
|
||||
default = SoftInpaintingSettings(1, 0.5, 4)
|
||||
ui_labels = SoftInpaintingSettings("Schedule bias", "Preservation strength", "Transition contrast boost")
|
||||
ui_labels = SoftInpaintingSettings(
|
||||
"Schedule bias",
|
||||
"Preservation strength",
|
||||
"Transition contrast boost")
|
||||
|
||||
ui_info = SoftInpaintingSettings(
|
||||
mask_blend_power="Shifts when preservation of original content occurs during denoising.",
|
||||
# "Below 1: Stronger preservation near the end (with low sigma)\n"
|
||||
# "1: Balanced (proportional to sigma)\n"
|
||||
# "Above 1: Stronger preservation in the beginning (with high sigma)",
|
||||
mask_blend_scale="How strongly partially masked content should be preserved.",
|
||||
# "Low values: Favors generated content.\n"
|
||||
# "High values: Favors original content.",
|
||||
inpaint_detail_preservation="Amplifies the contrast that may be lost in partially masked regions.")
|
||||
"Shifts when preservation of original content occurs during denoising.",
|
||||
"How strongly partially masked content should be preserved.",
|
||||
"Amplifies the contrast that may be lost in partially masked regions.")
|
||||
|
||||
gen_param_labels = SoftInpaintingSettings("Soft inpainting schedule bias", "Soft inpainting preservation strength", "Soft inpainting transition contrast boost")
|
||||
el_ids = SoftInpaintingSettings("mask_blend_power", "mask_blend_scale", "inpaint_detail_preservation")
|
||||
gen_param_labels = SoftInpaintingSettings(
|
||||
"Soft inpainting schedule bias",
|
||||
"Soft inpainting preservation strength",
|
||||
"Soft inpainting transition contrast boost")
|
||||
|
||||
el_ids = SoftInpaintingSettings(
|
||||
"mask_blend_power",
|
||||
"mask_blend_scale",
|
||||
"inpaint_detail_preservation")
|
||||
|
||||
|
||||
# ------------------- UI -------------------
|
||||
|
||||
|
||||
def gradio_ui():
|
||||
|
@ -683,13 +683,6 @@ def create_ui():
|
||||
with FormRow():
|
||||
soft_inpainting = si.gradio_ui()
|
||||
|
||||
|
||||
"""
|
||||
mask_blend_power = gr.Slider(label='Blending bias', minimum=0, maximum=8, step=0.1, value=1, elem_id="img2img_mask_blend_power")
|
||||
mask_blend_scale = gr.Slider(label='Blending preservation', minimum=0, maximum=8, step=0.05, value=0.5, elem_id="img2img_mask_blend_scale")
|
||||
inpaint_detail_preservation = gr.Slider(label='Blending contrast boost', minimum=1, maximum=32, step=0.5, value=4, elem_id="img2img_mask_blend_offset")
|
||||
"""
|
||||
|
||||
with FormRow():
|
||||
inpainting_mask_invert = gr.Radio(label='Mask mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", elem_id="img2img_mask_mode")
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user