diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index 2572443f9..bb00fb3f1 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -6,23 +6,21 @@ from tqdm import trange import modules.scripts as scripts import gradio as gr -from modules import processing, shared, sd_samplers, prompt_parser, sd_samplers_common -from modules.processing import Processed -from modules.shared import opts, cmd_opts, state +from modules import processing, shared, sd_samplers, sd_samplers_common import torch import k_diffusion as K -from PIL import Image -from torch import autocast -from einops import rearrange, repeat - - def find_noise_for_image(p, cond, uncond, cfg_scale, steps): x = p.init_latent s_in = x.new_ones([x.shape[0]]) - dnw = K.external.CompVisDenoiser(shared.sd_model) + if shared.sd_model.parameterization == "v": + dnw = K.external.CompVisVDenoiser(shared.sd_model) + skip = 1 + else: + dnw = K.external.CompVisDenoiser(shared.sd_model) + skip = 0 sigmas = dnw.get_sigmas(steps).flip(0) shared.state.sampling_steps = steps @@ -37,7 +35,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps): image_conditioning = torch.cat([p.image_conditioning] * 2) cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]} - c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] + c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]] t = dnw.sigma_to_t(sigma_in) eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in) @@ -69,7 +67,12 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps): x = p.init_latent s_in = x.new_ones([x.shape[0]]) - dnw = K.external.CompVisDenoiser(shared.sd_model) + if shared.sd_model.parameterization == "v": + dnw = K.external.CompVisVDenoiser(shared.sd_model) + skip = 1 + else: + dnw = K.external.CompVisDenoiser(shared.sd_model) + skip = 0 sigmas = dnw.get_sigmas(steps).flip(0) shared.state.sampling_steps = steps @@ -84,7 +87,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps): image_conditioning = torch.cat([p.image_conditioning] * 2) cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]} - c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] + c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]] if i == 1: t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2)) @@ -125,7 +128,7 @@ class Script(scripts.Script): def show(self, is_img2img): return is_img2img - def ui(self, is_img2img): + def ui(self, is_img2img): info = gr.Markdown(''' * `CFG Scale` should be 2 or lower. ''') @@ -213,4 +216,3 @@ class Script(scripts.Script): processed = processing.process_images(p) return processed -