Fix DAT models download (#16302)

This commit is contained in:
w-e-w 2024-10-24 22:05:51 +09:00 committed by GitHub
parent 5865da28d1
commit 984b952eb3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 97 additions and 28 deletions

View File

@ -49,7 +49,18 @@ class UpscalerDAT(Upscaler):
scaler.local_data_path = modelloader.load_file_from_url(
scaler.data_path,
model_dir=self.model_download_path,
hash_prefix=scaler.sha256,
)
if os.path.getsize(scaler.local_data_path) < 200:
# Re-download if the file is too small, probably an LFS pointer
scaler.local_data_path = modelloader.load_file_from_url(
scaler.data_path,
model_dir=self.model_download_path,
hash_prefix=scaler.sha256,
re_download=True,
)
if not os.path.exists(scaler.local_data_path):
raise FileNotFoundError(f"DAT data missing: {scaler.local_data_path}")
return scaler
@ -60,20 +71,23 @@ def get_dat_models(scaler):
return [
UpscalerData(
name="DAT x2",
path="https://github.com/n0kovo/dat_upscaler_models/raw/main/DAT/DAT_x2.pth",
path="https://huggingface.co/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x2.pth",
scale=2,
upscaler=scaler,
sha256='7760aa96e4ee77e29d4f89c3a4486200042e019461fdb8aa286f49aa00b89b51',
),
UpscalerData(
name="DAT x3",
path="https://github.com/n0kovo/dat_upscaler_models/raw/main/DAT/DAT_x3.pth",
path="https://huggingface.co/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x3.pth",
scale=3,
upscaler=scaler,
sha256='581973e02c06f90d4eb90acf743ec9604f56f3c2c6f9e1e2c2b38ded1f80d197',
),
UpscalerData(
name="DAT x4",
path="https://github.com/n0kovo/dat_upscaler_models/raw/main/DAT/DAT_x4.pth",
path="https://huggingface.co/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x4.pth",
scale=4,
upscaler=scaler,
sha256='391a6ce69899dff5ea3214557e9d585608254579217169faf3d4c353caff049e',
),
]

View File

@ -10,6 +10,7 @@ import torch
from modules import shared
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
from modules.util import load_file_from_url # noqa, backwards compatibility
if TYPE_CHECKING:
import spandrel
@ -17,30 +18,6 @@ if TYPE_CHECKING:
logger = logging.getLogger(__name__)
def load_file_from_url(
url: str,
*,
model_dir: str,
progress: bool = True,
file_name: str | None = None,
hash_prefix: str | None = None,
) -> str:
"""Download a file from `url` into `model_dir`, using the file present if possible.
Returns the path to the downloaded file.
"""
os.makedirs(model_dir, exist_ok=True)
if not file_name:
parts = urlparse(url)
file_name = os.path.basename(parts.path)
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
if not os.path.exists(cached_file):
print(f'Downloading: "{url}" to {cached_file}\n')
from torch.hub import download_url_to_file
download_url_to_file(url, cached_file, progress=progress, hash_prefix=hash_prefix)
return cached_file
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None, hash_prefix=None) -> list:
"""
A one-and done loader to try finding the desired models in specified directories.

View File

@ -93,13 +93,14 @@ class UpscalerData:
scaler: Upscaler = None
model: None
def __init__(self, name: str, path: str, upscaler: Upscaler = None, scale: int = 4, model=None):
def __init__(self, name: str, path: str, upscaler: Upscaler = None, scale: int = 4, model=None, sha256: str = None):
self.name = name
self.data_path = path
self.local_data_path = path
self.scaler = upscaler
self.scale = scale
self.model = model
self.sha256 = sha256
def __repr__(self):
return f"<UpscalerData name={self.name} path={self.data_path} scale={self.scale}>"

View File

@ -211,3 +211,80 @@ Requested path was: {path}
subprocess.Popen(["explorer.exe", subprocess.check_output(["wslpath", "-w", path])])
else:
subprocess.Popen(["xdg-open", path])
def load_file_from_url(
url: str,
*,
model_dir: str,
progress: bool = True,
file_name: str | None = None,
hash_prefix: str | None = None,
re_download: bool = False,
) -> str:
"""Download a file from `url` into `model_dir`, using the file present if possible.
Returns the path to the downloaded file.
file_name: if specified, it will be used as the filename, otherwise the filename will be extracted from the url.
file is downloaded to {file_name}.tmp then moved to the final location after download is complete.
hash_prefix: sha256 hex string, if provided, the hash of the downloaded file will be checked against this prefix.
if the hash does not match, the temporary file is deleted and a ValueError is raised.
re_download: forcibly re-download the file even if it already exists.
"""
from urllib.parse import urlparse
import requests
try:
from tqdm import tqdm
except ImportError:
class tqdm:
def __init__(self, *args, **kwargs):
pass
def update(self, n=1, *args, **kwargs):
pass
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
pass
if not file_name:
parts = urlparse(url)
file_name = os.path.basename(parts.path)
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
if re_download or not os.path.exists(cached_file):
os.makedirs(model_dir, exist_ok=True)
temp_file = os.path.join(model_dir, f"{file_name}.tmp")
print(f'\nDownloading: "{url}" to {cached_file}')
response = requests.get(url, stream=True)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
with tqdm(total=total_size, unit='B', unit_scale=True, desc=file_name, disable=not progress) as progress_bar:
with open(temp_file, 'wb') as file:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
file.write(chunk)
progress_bar.update(len(chunk))
if hash_prefix and not compare_sha256(temp_file, hash_prefix):
print(f"Hash mismatch for {temp_file}. Deleting the temporary file.")
os.remove(temp_file)
raise ValueError(f"File hash does not match the expected hash prefix {hash_prefix}!")
os.rename(temp_file, cached_file)
return cached_file
def compare_sha256(file_path: str, hash_prefix: str) -> bool:
"""Check if the SHA256 hash of the file matches the given prefix."""
import hashlib
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest().startswith(hash_prefix.strip().lower())