mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 11:50:18 +08:00
Add a check and explanation for tensor with all NaNs.
This commit is contained in:
parent
52f6e94338
commit
9991967f40
@ -106,6 +106,33 @@ def autocast(disable=False):
|
||||
return torch.autocast("cuda")
|
||||
|
||||
|
||||
class NansException(Exception):
|
||||
pass
|
||||
|
||||
|
||||
def test_for_nans(x, where):
|
||||
from modules import shared
|
||||
|
||||
if not torch.all(torch.isnan(x)).item():
|
||||
return
|
||||
|
||||
if where == "unet":
|
||||
message = "A tensor with all NaNs was produced in Unet."
|
||||
|
||||
if not shared.cmd_opts.no_half:
|
||||
message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try using --no-half commandline argument to fix this."
|
||||
|
||||
elif where == "vae":
|
||||
message = "A tensor with all NaNs was produced in VAE."
|
||||
|
||||
if not shared.cmd_opts.no_half and not shared.cmd_opts.no_half_vae:
|
||||
message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this."
|
||||
else:
|
||||
message = "A tensor with all NaNs was produced."
|
||||
|
||||
raise NansException(message)
|
||||
|
||||
|
||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
|
||||
orig_tensor_to = torch.Tensor.to
|
||||
def tensor_to_fix(self, *args, **kwargs):
|
||||
@ -156,3 +183,4 @@ if has_mps():
|
||||
torch.Tensor.cumsum = lambda self, *args, **kwargs: ( cumsum_fix(self, orig_Tensor_cumsum, *args, **kwargs) )
|
||||
orig_narrow = torch.narrow
|
||||
torch.narrow = lambda *args, **kwargs: ( orig_narrow(*args, **kwargs).clone() )
|
||||
|
||||
|
@ -608,6 +608,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
|
||||
|
||||
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
|
||||
for x in x_samples_ddim:
|
||||
devices.test_for_nans(x, "vae")
|
||||
|
||||
x_samples_ddim = torch.stack(x_samples_ddim).float()
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
|
@ -351,6 +351,8 @@ class CFGDenoiser(torch.nn.Module):
|
||||
|
||||
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
|
||||
|
||||
devices.test_for_nans(x_out, "unet")
|
||||
|
||||
if opts.live_preview_content == "Prompt":
|
||||
store_latent(x_out[0:uncond.shape[0]])
|
||||
elif opts.live_preview_content == "Negative prompt":
|
||||
|
Loading…
Reference in New Issue
Block a user