mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 20:35:06 +08:00
Merge branch 'master' into tensorboard
This commit is contained in:
commit
9cd7716753
4
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
4
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
@ -44,7 +44,9 @@ body:
|
|||||||
id: commit
|
id: commit
|
||||||
attributes:
|
attributes:
|
||||||
label: Commit where the problem happens
|
label: Commit where the problem happens
|
||||||
description: Which commit are you running ? (copy the **Commit hash** shown in the cmd/terminal when you launch the UI)
|
description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit hash** shown in the cmd/terminal when you launch the UI)
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
- type: dropdown
|
- type: dropdown
|
||||||
id: platforms
|
id: platforms
|
||||||
attributes:
|
attributes:
|
||||||
|
5
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
5
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
blank_issues_enabled: false
|
||||||
|
contact_links:
|
||||||
|
- name: WebUI Community Support
|
||||||
|
url: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions
|
||||||
|
about: Please ask and answer questions here.
|
2
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
2
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
@ -1,7 +1,7 @@
|
|||||||
name: Feature request
|
name: Feature request
|
||||||
description: Suggest an idea for this project
|
description: Suggest an idea for this project
|
||||||
title: "[Feature Request]: "
|
title: "[Feature Request]: "
|
||||||
labels: ["suggestion"]
|
labels: ["enhancement"]
|
||||||
|
|
||||||
body:
|
body:
|
||||||
- type: checkboxes
|
- type: checkboxes
|
||||||
|
@ -18,8 +18,8 @@ More technical discussion about your changes go here, plus anything that a maint
|
|||||||
|
|
||||||
List the environment you have developed / tested this on. As per the contributing page, changes should be able to work on Windows out of the box.
|
List the environment you have developed / tested this on. As per the contributing page, changes should be able to work on Windows out of the box.
|
||||||
- OS: [e.g. Windows, Linux]
|
- OS: [e.g. Windows, Linux]
|
||||||
- Browser [e.g. chrome, safari]
|
- Browser: [e.g. chrome, safari]
|
||||||
- Graphics card [e.g. NVIDIA RTX 2080 8GB, AMD RX 6600 8GB]
|
- Graphics card: [e.g. NVIDIA RTX 2080 8GB, AMD RX 6600 8GB]
|
||||||
|
|
||||||
**Screenshots or videos of your changes**
|
**Screenshots or videos of your changes**
|
||||||
|
|
13
.github/workflows/on_pull_request.yaml
vendored
13
.github/workflows/on_pull_request.yaml
vendored
@ -19,22 +19,19 @@ jobs:
|
|||||||
- name: Checkout Code
|
- name: Checkout Code
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
- name: Set up Python 3.10
|
- name: Set up Python 3.10
|
||||||
uses: actions/setup-python@v3
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.10.6
|
python-version: 3.10.6
|
||||||
- uses: actions/cache@v2
|
cache: pip
|
||||||
with:
|
cache-dependency-path: |
|
||||||
path: ~/.cache/pip
|
**/requirements*txt
|
||||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
|
||||||
restore-keys: |
|
|
||||||
${{ runner.os }}-pip-
|
|
||||||
- name: Install PyLint
|
- name: Install PyLint
|
||||||
run: |
|
run: |
|
||||||
python -m pip install --upgrade pip
|
python -m pip install --upgrade pip
|
||||||
pip install pylint
|
pip install pylint
|
||||||
# This lets PyLint check to see if it can resolve imports
|
# This lets PyLint check to see if it can resolve imports
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
run : |
|
run: |
|
||||||
export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit"
|
export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit"
|
||||||
python launch.py
|
python launch.py
|
||||||
- name: Analysing the code with pylint
|
- name: Analysing the code with pylint
|
||||||
|
29
.github/workflows/run_tests.yaml
vendored
Normal file
29
.github/workflows/run_tests.yaml
vendored
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
name: Run basic features tests on CPU with empty SD model
|
||||||
|
|
||||||
|
on:
|
||||||
|
- push
|
||||||
|
- pull_request
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
test:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Checkout Code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- name: Set up Python 3.10
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: 3.10.6
|
||||||
|
cache: pip
|
||||||
|
cache-dependency-path: |
|
||||||
|
**/requirements*txt
|
||||||
|
- name: Run tests
|
||||||
|
run: python launch.py --tests --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
|
||||||
|
- name: Upload main app stdout-stderr
|
||||||
|
uses: actions/upload-artifact@v3
|
||||||
|
if: always()
|
||||||
|
with:
|
||||||
|
name: stdout-stderr
|
||||||
|
path: |
|
||||||
|
test/stdout.txt
|
||||||
|
test/stderr.txt
|
6
.gitignore
vendored
6
.gitignore
vendored
@ -1,5 +1,6 @@
|
|||||||
__pycache__
|
__pycache__
|
||||||
*.ckpt
|
*.ckpt
|
||||||
|
*.safetensors
|
||||||
*.pth
|
*.pth
|
||||||
/ESRGAN/*
|
/ESRGAN/*
|
||||||
/SwinIR/*
|
/SwinIR/*
|
||||||
@ -27,4 +28,7 @@ __pycache__
|
|||||||
notification.mp3
|
notification.mp3
|
||||||
/SwinIR
|
/SwinIR
|
||||||
/textual_inversion
|
/textual_inversion
|
||||||
.vscode
|
.vscode
|
||||||
|
/extensions
|
||||||
|
/test/stdout.txt
|
||||||
|
/test/stderr.txt
|
||||||
|
11
CODEOWNERS
11
CODEOWNERS
@ -1 +1,12 @@
|
|||||||
* @AUTOMATIC1111
|
* @AUTOMATIC1111
|
||||||
|
|
||||||
|
# if you were managing a localization and were removed from this file, this is because
|
||||||
|
# the intended way to do localizations now is via extensions. See:
|
||||||
|
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Developing-extensions
|
||||||
|
# Make a repo with your localization and since you are still listed as a collaborator
|
||||||
|
# you can add it to the wiki page yourself. This change is because some people complained
|
||||||
|
# the git commit log is cluttered with things unrelated to almost everyone and
|
||||||
|
# because I believe this is the best overall for the project to handle localizations almost
|
||||||
|
# entirely without my oversight.
|
||||||
|
|
||||||
|
|
||||||
|
52
README.md
52
README.md
@ -1,9 +1,7 @@
|
|||||||
# Stable Diffusion web UI
|
# Stable Diffusion web UI
|
||||||
A browser interface based on Gradio library for Stable Diffusion.
|
A browser interface based on Gradio library for Stable Diffusion.
|
||||||
|
|
||||||
![](txt2img_Screenshot.png)
|
![](screenshot.png)
|
||||||
|
|
||||||
Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) wiki page for extra scripts developed by users.
|
|
||||||
|
|
||||||
## Features
|
## Features
|
||||||
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
|
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
|
||||||
@ -11,6 +9,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
|||||||
- One click install and run script (but you still must install python and git)
|
- One click install and run script (but you still must install python and git)
|
||||||
- Outpainting
|
- Outpainting
|
||||||
- Inpainting
|
- Inpainting
|
||||||
|
- Color Sketch
|
||||||
- Prompt Matrix
|
- Prompt Matrix
|
||||||
- Stable Diffusion Upscale
|
- Stable Diffusion Upscale
|
||||||
- Attention, specify parts of text that the model should pay more attention to
|
- Attention, specify parts of text that the model should pay more attention to
|
||||||
@ -23,6 +22,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
|||||||
- have as many embeddings as you want and use any names you like for them
|
- have as many embeddings as you want and use any names you like for them
|
||||||
- use multiple embeddings with different numbers of vectors per token
|
- use multiple embeddings with different numbers of vectors per token
|
||||||
- works with half precision floating point numbers
|
- works with half precision floating point numbers
|
||||||
|
- train embeddings on 8GB (also reports of 6GB working)
|
||||||
- Extras tab with:
|
- Extras tab with:
|
||||||
- GFPGAN, neural network that fixes faces
|
- GFPGAN, neural network that fixes faces
|
||||||
- CodeFormer, face restoration tool as an alternative to GFPGAN
|
- CodeFormer, face restoration tool as an alternative to GFPGAN
|
||||||
@ -37,14 +37,14 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
|||||||
- Interrupt processing at any time
|
- Interrupt processing at any time
|
||||||
- 4GB video card support (also reports of 2GB working)
|
- 4GB video card support (also reports of 2GB working)
|
||||||
- Correct seeds for batches
|
- Correct seeds for batches
|
||||||
- Prompt length validation
|
- Live prompt token length validation
|
||||||
- get length of prompt in tokens as you type
|
|
||||||
- get a warning after generation if some text was truncated
|
|
||||||
- Generation parameters
|
- Generation parameters
|
||||||
- parameters you used to generate images are saved with that image
|
- parameters you used to generate images are saved with that image
|
||||||
- in PNG chunks for PNG, in EXIF for JPEG
|
- in PNG chunks for PNG, in EXIF for JPEG
|
||||||
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
|
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
|
||||||
- can be disabled in settings
|
- can be disabled in settings
|
||||||
|
- drag and drop an image/text-parameters to promptbox
|
||||||
|
- Read Generation Parameters Button, loads parameters in promptbox to UI
|
||||||
- Settings page
|
- Settings page
|
||||||
- Running arbitrary python code from UI (must run with --allow-code to enable)
|
- Running arbitrary python code from UI (must run with --allow-code to enable)
|
||||||
- Mouseover hints for most UI elements
|
- Mouseover hints for most UI elements
|
||||||
@ -59,33 +59,44 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
|||||||
- CLIP interrogator, a button that tries to guess prompt from an image
|
- CLIP interrogator, a button that tries to guess prompt from an image
|
||||||
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
|
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
|
||||||
- Batch Processing, process a group of files using img2img
|
- Batch Processing, process a group of files using img2img
|
||||||
- Img2img Alternative
|
- Img2img Alternative, reverse Euler method of cross attention control
|
||||||
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
|
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
|
||||||
- Reloading checkpoints on the fly
|
- Reloading checkpoints on the fly
|
||||||
- Checkpoint Merger, a tab that allows you to merge two checkpoints into one
|
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
|
||||||
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
|
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
|
||||||
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
|
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
|
||||||
- separate prompts using uppercase `AND`
|
- separate prompts using uppercase `AND`
|
||||||
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
|
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
|
||||||
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
|
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
|
||||||
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
|
- DeepDanbooru integration, creates danbooru style tags for anime prompts
|
||||||
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
|
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
|
||||||
|
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
|
||||||
|
- Generate forever option
|
||||||
|
- Training tab
|
||||||
|
- hypernetworks and embeddings options
|
||||||
|
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
|
||||||
|
- Clip skip
|
||||||
|
- Use Hypernetworks
|
||||||
|
- Use VAEs
|
||||||
|
- Estimated completion time in progress bar
|
||||||
|
- API
|
||||||
|
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
|
||||||
|
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
|
||||||
|
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
|
||||||
|
|
||||||
## Installation and Running
|
## Installation and Running
|
||||||
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
||||||
|
|
||||||
Alternatively, use Google Colab:
|
Alternatively, use online services (like Google Colab):
|
||||||
|
|
||||||
- [Colab, maintained by Akaibu](https://colab.research.google.com/drive/1kw3egmSn-KgWsikYvOMjJkVDsPLjEMzl)
|
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
|
||||||
- [Colab, original by me, outdated](https://colab.research.google.com/drive/1Iy-xW9t1-OQWhb0hNxueGij8phCyluOh).
|
|
||||||
|
|
||||||
### Automatic Installation on Windows
|
### Automatic Installation on Windows
|
||||||
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
|
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
|
||||||
2. Install [git](https://git-scm.com/download/win).
|
2. Install [git](https://git-scm.com/download/win).
|
||||||
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
|
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
|
||||||
4. Place `model.ckpt` in the `models` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
|
4. Place stable diffusion checkpoint (`model.ckpt`) in the `models/Stable-diffusion` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
|
||||||
5. _*(Optional)*_ Place `GFPGANv1.4.pth` in the base directory, alongside `webui.py` (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
|
5. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
|
||||||
6. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
|
|
||||||
|
|
||||||
### Automatic Installation on Linux
|
### Automatic Installation on Linux
|
||||||
1. Install the dependencies:
|
1. Install the dependencies:
|
||||||
@ -113,6 +124,8 @@ Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC
|
|||||||
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
|
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
|
||||||
|
|
||||||
## Credits
|
## Credits
|
||||||
|
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
|
||||||
|
|
||||||
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
|
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
|
||||||
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
|
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
|
||||||
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
|
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
|
||||||
@ -121,15 +134,18 @@ The documentation was moved from this README over to the project's [wiki](https:
|
|||||||
- SwinIR - https://github.com/JingyunLiang/SwinIR
|
- SwinIR - https://github.com/JingyunLiang/SwinIR
|
||||||
- Swin2SR - https://github.com/mv-lab/swin2sr
|
- Swin2SR - https://github.com/mv-lab/swin2sr
|
||||||
- LDSR - https://github.com/Hafiidz/latent-diffusion
|
- LDSR - https://github.com/Hafiidz/latent-diffusion
|
||||||
|
- MiDaS - https://github.com/isl-org/MiDaS
|
||||||
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
|
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
|
||||||
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
|
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
|
||||||
- InvokeAI, lstein - Cross Attention layer optimization - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
|
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
|
||||||
- Rinon Gal - Textual Inversion - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
|
- Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention)
|
||||||
|
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
|
||||||
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
|
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
|
||||||
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
|
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
|
||||||
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
||||||
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
|
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
|
||||||
- xformers - https://github.com/facebookresearch/xformers
|
- xformers - https://github.com/facebookresearch/xformers
|
||||||
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
|
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
|
||||||
|
- Security advice - RyotaK
|
||||||
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
||||||
- (You)
|
- (You)
|
||||||
|
72
configs/alt-diffusion-inference.yaml
Normal file
72
configs/alt-diffusion-inference.yaml
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
model:
|
||||||
|
base_learning_rate: 1.0e-04
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 64
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: false # Note: different from the one we trained before
|
||||||
|
conditioning_key: crossattn
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.18215
|
||||||
|
use_ema: False
|
||||||
|
|
||||||
|
scheduler_config: # 10000 warmup steps
|
||||||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||||
|
params:
|
||||||
|
warm_up_steps: [ 10000 ]
|
||||||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||||
|
f_start: [ 1.e-6 ]
|
||||||
|
f_max: [ 1. ]
|
||||||
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 32 # unused
|
||||||
|
in_channels: 4
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 768
|
||||||
|
use_checkpoint: True
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: modules.xlmr.BertSeriesModelWithTransformation
|
||||||
|
params:
|
||||||
|
name: "XLMR-Large"
|
70
configs/v1-inference.yaml
Normal file
70
configs/v1-inference.yaml
Normal file
@ -0,0 +1,70 @@
|
|||||||
|
model:
|
||||||
|
base_learning_rate: 1.0e-04
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 64
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: false # Note: different from the one we trained before
|
||||||
|
conditioning_key: crossattn
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.18215
|
||||||
|
use_ema: False
|
||||||
|
|
||||||
|
scheduler_config: # 10000 warmup steps
|
||||||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||||
|
params:
|
||||||
|
warm_up_steps: [ 10000 ]
|
||||||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||||
|
f_start: [ 1.e-6 ]
|
||||||
|
f_max: [ 1. ]
|
||||||
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 32 # unused
|
||||||
|
in_channels: 4
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 768
|
||||||
|
use_checkpoint: True
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
@ -1,3 +1,4 @@
|
|||||||
|
import os
|
||||||
import gc
|
import gc
|
||||||
import time
|
import time
|
||||||
import warnings
|
import warnings
|
||||||
@ -8,27 +9,49 @@ import torchvision
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
from einops import rearrange, repeat
|
from einops import rearrange, repeat
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
|
import safetensors.torch
|
||||||
|
|
||||||
from ldm.models.diffusion.ddim import DDIMSampler
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
from ldm.util import instantiate_from_config, ismap
|
from ldm.util import instantiate_from_config, ismap
|
||||||
|
from modules import shared, sd_hijack
|
||||||
|
|
||||||
warnings.filterwarnings("ignore", category=UserWarning)
|
warnings.filterwarnings("ignore", category=UserWarning)
|
||||||
|
|
||||||
|
cached_ldsr_model: torch.nn.Module = None
|
||||||
|
|
||||||
|
|
||||||
# Create LDSR Class
|
# Create LDSR Class
|
||||||
class LDSR:
|
class LDSR:
|
||||||
def load_model_from_config(self, half_attention):
|
def load_model_from_config(self, half_attention):
|
||||||
print(f"Loading model from {self.modelPath}")
|
global cached_ldsr_model
|
||||||
pl_sd = torch.load(self.modelPath, map_location="cpu")
|
|
||||||
sd = pl_sd["state_dict"]
|
if shared.opts.ldsr_cached and cached_ldsr_model is not None:
|
||||||
config = OmegaConf.load(self.yamlPath)
|
print("Loading model from cache")
|
||||||
model = instantiate_from_config(config.model)
|
model: torch.nn.Module = cached_ldsr_model
|
||||||
model.load_state_dict(sd, strict=False)
|
else:
|
||||||
model.cuda()
|
print(f"Loading model from {self.modelPath}")
|
||||||
if half_attention:
|
_, extension = os.path.splitext(self.modelPath)
|
||||||
model = model.half()
|
if extension.lower() == ".safetensors":
|
||||||
|
pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
|
||||||
|
else:
|
||||||
|
pl_sd = torch.load(self.modelPath, map_location="cpu")
|
||||||
|
sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
|
||||||
|
config = OmegaConf.load(self.yamlPath)
|
||||||
|
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
|
||||||
|
model: torch.nn.Module = instantiate_from_config(config.model)
|
||||||
|
model.load_state_dict(sd, strict=False)
|
||||||
|
model = model.to(shared.device)
|
||||||
|
if half_attention:
|
||||||
|
model = model.half()
|
||||||
|
if shared.cmd_opts.opt_channelslast:
|
||||||
|
model = model.to(memory_format=torch.channels_last)
|
||||||
|
|
||||||
|
sd_hijack.model_hijack.hijack(model) # apply optimization
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if shared.opts.ldsr_cached:
|
||||||
|
cached_ldsr_model = model
|
||||||
|
|
||||||
model.eval()
|
|
||||||
return {"model": model}
|
return {"model": model}
|
||||||
|
|
||||||
def __init__(self, model_path, yaml_path):
|
def __init__(self, model_path, yaml_path):
|
||||||
@ -93,7 +116,8 @@ class LDSR:
|
|||||||
down_sample_method = 'Lanczos'
|
down_sample_method = 'Lanczos'
|
||||||
|
|
||||||
gc.collect()
|
gc.collect()
|
||||||
torch.cuda.empty_cache()
|
if torch.cuda.is_available:
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
im_og = image
|
im_og = image
|
||||||
width_og, height_og = im_og.size
|
width_og, height_og = im_og.size
|
||||||
@ -101,8 +125,8 @@ class LDSR:
|
|||||||
down_sample_rate = target_scale / 4
|
down_sample_rate = target_scale / 4
|
||||||
wd = width_og * down_sample_rate
|
wd = width_og * down_sample_rate
|
||||||
hd = height_og * down_sample_rate
|
hd = height_og * down_sample_rate
|
||||||
width_downsampled_pre = int(wd)
|
width_downsampled_pre = int(np.ceil(wd))
|
||||||
height_downsampled_pre = int(hd)
|
height_downsampled_pre = int(np.ceil(hd))
|
||||||
|
|
||||||
if down_sample_rate != 1:
|
if down_sample_rate != 1:
|
||||||
print(
|
print(
|
||||||
@ -110,7 +134,12 @@ class LDSR:
|
|||||||
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
|
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
|
||||||
else:
|
else:
|
||||||
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
|
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
|
||||||
logs = self.run(model["model"], im_og, diffusion_steps, eta)
|
|
||||||
|
# pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
|
||||||
|
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
|
||||||
|
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
|
||||||
|
|
||||||
|
logs = self.run(model["model"], im_padded, diffusion_steps, eta)
|
||||||
|
|
||||||
sample = logs["sample"]
|
sample = logs["sample"]
|
||||||
sample = sample.detach().cpu()
|
sample = sample.detach().cpu()
|
||||||
@ -120,9 +149,14 @@ class LDSR:
|
|||||||
sample = np.transpose(sample, (0, 2, 3, 1))
|
sample = np.transpose(sample, (0, 2, 3, 1))
|
||||||
a = Image.fromarray(sample[0])
|
a = Image.fromarray(sample[0])
|
||||||
|
|
||||||
|
# remove padding
|
||||||
|
a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4))
|
||||||
|
|
||||||
del model
|
del model
|
||||||
gc.collect()
|
gc.collect()
|
||||||
torch.cuda.empty_cache()
|
if torch.cuda.is_available:
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
return a
|
return a
|
||||||
|
|
||||||
|
|
||||||
@ -137,7 +171,7 @@ def get_cond(selected_path):
|
|||||||
c = rearrange(c, '1 c h w -> 1 h w c')
|
c = rearrange(c, '1 c h w -> 1 h w c')
|
||||||
c = 2. * c - 1.
|
c = 2. * c - 1.
|
||||||
|
|
||||||
c = c.to(torch.device("cuda"))
|
c = c.to(shared.device)
|
||||||
example["LR_image"] = c
|
example["LR_image"] = c
|
||||||
example["image"] = c_up
|
example["image"] = c_up
|
||||||
|
|
6
extensions-builtin/LDSR/preload.py
Normal file
6
extensions-builtin/LDSR/preload.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
import os
|
||||||
|
from modules import paths
|
||||||
|
|
||||||
|
|
||||||
|
def preload(parser):
|
||||||
|
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(paths.models_path, 'LDSR'))
|
@ -5,8 +5,9 @@ import traceback
|
|||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
|
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
from modules.ldsr_model_arch import LDSR
|
from ldsr_model_arch import LDSR
|
||||||
from modules import shared
|
from modules import shared, script_callbacks
|
||||||
|
import sd_hijack_autoencoder, sd_hijack_ddpm_v1
|
||||||
|
|
||||||
|
|
||||||
class UpscalerLDSR(Upscaler):
|
class UpscalerLDSR(Upscaler):
|
||||||
@ -24,6 +25,7 @@ class UpscalerLDSR(Upscaler):
|
|||||||
yaml_path = os.path.join(self.model_path, "project.yaml")
|
yaml_path = os.path.join(self.model_path, "project.yaml")
|
||||||
old_model_path = os.path.join(self.model_path, "model.pth")
|
old_model_path = os.path.join(self.model_path, "model.pth")
|
||||||
new_model_path = os.path.join(self.model_path, "model.ckpt")
|
new_model_path = os.path.join(self.model_path, "model.ckpt")
|
||||||
|
safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
|
||||||
if os.path.exists(yaml_path):
|
if os.path.exists(yaml_path):
|
||||||
statinfo = os.stat(yaml_path)
|
statinfo = os.stat(yaml_path)
|
||||||
if statinfo.st_size >= 10485760:
|
if statinfo.st_size >= 10485760:
|
||||||
@ -32,8 +34,11 @@ class UpscalerLDSR(Upscaler):
|
|||||||
if os.path.exists(old_model_path):
|
if os.path.exists(old_model_path):
|
||||||
print("Renaming model from model.pth to model.ckpt")
|
print("Renaming model from model.pth to model.ckpt")
|
||||||
os.rename(old_model_path, new_model_path)
|
os.rename(old_model_path, new_model_path)
|
||||||
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
|
if os.path.exists(safetensors_model_path):
|
||||||
file_name="model.ckpt", progress=True)
|
model = safetensors_model_path
|
||||||
|
else:
|
||||||
|
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
|
||||||
|
file_name="model.ckpt", progress=True)
|
||||||
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
|
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
|
||||||
file_name="project.yaml", progress=True)
|
file_name="project.yaml", progress=True)
|
||||||
|
|
||||||
@ -52,3 +57,13 @@ class UpscalerLDSR(Upscaler):
|
|||||||
return img
|
return img
|
||||||
ddim_steps = shared.opts.ldsr_steps
|
ddim_steps = shared.opts.ldsr_steps
|
||||||
return ldsr.super_resolution(img, ddim_steps, self.scale)
|
return ldsr.super_resolution(img, ddim_steps, self.scale)
|
||||||
|
|
||||||
|
|
||||||
|
def on_ui_settings():
|
||||||
|
import gradio as gr
|
||||||
|
|
||||||
|
shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling")))
|
||||||
|
shared.opts.add_option("ldsr_cached", shared.OptionInfo(False, "Cache LDSR model in memory", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")))
|
||||||
|
|
||||||
|
|
||||||
|
script_callbacks.on_ui_settings(on_ui_settings)
|
286
extensions-builtin/LDSR/sd_hijack_autoencoder.py
Normal file
286
extensions-builtin/LDSR/sd_hijack_autoencoder.py
Normal file
@ -0,0 +1,286 @@
|
|||||||
|
# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo
|
||||||
|
# The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo
|
||||||
|
# As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from contextlib import contextmanager
|
||||||
|
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
||||||
|
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
||||||
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
|
import ldm.models.autoencoder
|
||||||
|
|
||||||
|
class VQModel(pl.LightningModule):
|
||||||
|
def __init__(self,
|
||||||
|
ddconfig,
|
||||||
|
lossconfig,
|
||||||
|
n_embed,
|
||||||
|
embed_dim,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=[],
|
||||||
|
image_key="image",
|
||||||
|
colorize_nlabels=None,
|
||||||
|
monitor=None,
|
||||||
|
batch_resize_range=None,
|
||||||
|
scheduler_config=None,
|
||||||
|
lr_g_factor=1.0,
|
||||||
|
remap=None,
|
||||||
|
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||||
|
use_ema=False
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.n_embed = n_embed
|
||||||
|
self.image_key = image_key
|
||||||
|
self.encoder = Encoder(**ddconfig)
|
||||||
|
self.decoder = Decoder(**ddconfig)
|
||||||
|
self.loss = instantiate_from_config(lossconfig)
|
||||||
|
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
||||||
|
remap=remap,
|
||||||
|
sane_index_shape=sane_index_shape)
|
||||||
|
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
||||||
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||||
|
if colorize_nlabels is not None:
|
||||||
|
assert type(colorize_nlabels)==int
|
||||||
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||||
|
if monitor is not None:
|
||||||
|
self.monitor = monitor
|
||||||
|
self.batch_resize_range = batch_resize_range
|
||||||
|
if self.batch_resize_range is not None:
|
||||||
|
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
||||||
|
|
||||||
|
self.use_ema = use_ema
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema = LitEma(self)
|
||||||
|
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||||
|
|
||||||
|
if ckpt_path is not None:
|
||||||
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||||
|
self.scheduler_config = scheduler_config
|
||||||
|
self.lr_g_factor = lr_g_factor
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def ema_scope(self, context=None):
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema.store(self.parameters())
|
||||||
|
self.model_ema.copy_to(self)
|
||||||
|
if context is not None:
|
||||||
|
print(f"{context}: Switched to EMA weights")
|
||||||
|
try:
|
||||||
|
yield None
|
||||||
|
finally:
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema.restore(self.parameters())
|
||||||
|
if context is not None:
|
||||||
|
print(f"{context}: Restored training weights")
|
||||||
|
|
||||||
|
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||||
|
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||||
|
keys = list(sd.keys())
|
||||||
|
for k in keys:
|
||||||
|
for ik in ignore_keys:
|
||||||
|
if k.startswith(ik):
|
||||||
|
print("Deleting key {} from state_dict.".format(k))
|
||||||
|
del sd[k]
|
||||||
|
missing, unexpected = self.load_state_dict(sd, strict=False)
|
||||||
|
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||||
|
if len(missing) > 0:
|
||||||
|
print(f"Missing Keys: {missing}")
|
||||||
|
print(f"Unexpected Keys: {unexpected}")
|
||||||
|
|
||||||
|
def on_train_batch_end(self, *args, **kwargs):
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema(self)
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
quant, emb_loss, info = self.quantize(h)
|
||||||
|
return quant, emb_loss, info
|
||||||
|
|
||||||
|
def encode_to_prequant(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
def decode(self, quant):
|
||||||
|
quant = self.post_quant_conv(quant)
|
||||||
|
dec = self.decoder(quant)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
def decode_code(self, code_b):
|
||||||
|
quant_b = self.quantize.embed_code(code_b)
|
||||||
|
dec = self.decode(quant_b)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
def forward(self, input, return_pred_indices=False):
|
||||||
|
quant, diff, (_,_,ind) = self.encode(input)
|
||||||
|
dec = self.decode(quant)
|
||||||
|
if return_pred_indices:
|
||||||
|
return dec, diff, ind
|
||||||
|
return dec, diff
|
||||||
|
|
||||||
|
def get_input(self, batch, k):
|
||||||
|
x = batch[k]
|
||||||
|
if len(x.shape) == 3:
|
||||||
|
x = x[..., None]
|
||||||
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
||||||
|
if self.batch_resize_range is not None:
|
||||||
|
lower_size = self.batch_resize_range[0]
|
||||||
|
upper_size = self.batch_resize_range[1]
|
||||||
|
if self.global_step <= 4:
|
||||||
|
# do the first few batches with max size to avoid later oom
|
||||||
|
new_resize = upper_size
|
||||||
|
else:
|
||||||
|
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
||||||
|
if new_resize != x.shape[2]:
|
||||||
|
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
||||||
|
x = x.detach()
|
||||||
|
return x
|
||||||
|
|
||||||
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||||
|
# https://github.com/pytorch/pytorch/issues/37142
|
||||||
|
# try not to fool the heuristics
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||||
|
|
||||||
|
if optimizer_idx == 0:
|
||||||
|
# autoencode
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train",
|
||||||
|
predicted_indices=ind)
|
||||||
|
|
||||||
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return aeloss
|
||||||
|
|
||||||
|
if optimizer_idx == 1:
|
||||||
|
# discriminator
|
||||||
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train")
|
||||||
|
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return discloss
|
||||||
|
|
||||||
|
def validation_step(self, batch, batch_idx):
|
||||||
|
log_dict = self._validation_step(batch, batch_idx)
|
||||||
|
with self.ema_scope():
|
||||||
|
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
||||||
|
return log_dict
|
||||||
|
|
||||||
|
def _validation_step(self, batch, batch_idx, suffix=""):
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
||||||
|
self.global_step,
|
||||||
|
last_layer=self.get_last_layer(),
|
||||||
|
split="val"+suffix,
|
||||||
|
predicted_indices=ind
|
||||||
|
)
|
||||||
|
|
||||||
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
||||||
|
self.global_step,
|
||||||
|
last_layer=self.get_last_layer(),
|
||||||
|
split="val"+suffix,
|
||||||
|
predicted_indices=ind
|
||||||
|
)
|
||||||
|
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
||||||
|
self.log(f"val{suffix}/rec_loss", rec_loss,
|
||||||
|
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
||||||
|
self.log(f"val{suffix}/aeloss", aeloss,
|
||||||
|
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
||||||
|
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
||||||
|
del log_dict_ae[f"val{suffix}/rec_loss"]
|
||||||
|
self.log_dict(log_dict_ae)
|
||||||
|
self.log_dict(log_dict_disc)
|
||||||
|
return self.log_dict
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
lr_d = self.learning_rate
|
||||||
|
lr_g = self.lr_g_factor*self.learning_rate
|
||||||
|
print("lr_d", lr_d)
|
||||||
|
print("lr_g", lr_g)
|
||||||
|
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
||||||
|
list(self.decoder.parameters())+
|
||||||
|
list(self.quantize.parameters())+
|
||||||
|
list(self.quant_conv.parameters())+
|
||||||
|
list(self.post_quant_conv.parameters()),
|
||||||
|
lr=lr_g, betas=(0.5, 0.9))
|
||||||
|
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
||||||
|
lr=lr_d, betas=(0.5, 0.9))
|
||||||
|
|
||||||
|
if self.scheduler_config is not None:
|
||||||
|
scheduler = instantiate_from_config(self.scheduler_config)
|
||||||
|
|
||||||
|
print("Setting up LambdaLR scheduler...")
|
||||||
|
scheduler = [
|
||||||
|
{
|
||||||
|
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
||||||
|
'interval': 'step',
|
||||||
|
'frequency': 1
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
||||||
|
'interval': 'step',
|
||||||
|
'frequency': 1
|
||||||
|
},
|
||||||
|
]
|
||||||
|
return [opt_ae, opt_disc], scheduler
|
||||||
|
return [opt_ae, opt_disc], []
|
||||||
|
|
||||||
|
def get_last_layer(self):
|
||||||
|
return self.decoder.conv_out.weight
|
||||||
|
|
||||||
|
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
||||||
|
log = dict()
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
x = x.to(self.device)
|
||||||
|
if only_inputs:
|
||||||
|
log["inputs"] = x
|
||||||
|
return log
|
||||||
|
xrec, _ = self(x)
|
||||||
|
if x.shape[1] > 3:
|
||||||
|
# colorize with random projection
|
||||||
|
assert xrec.shape[1] > 3
|
||||||
|
x = self.to_rgb(x)
|
||||||
|
xrec = self.to_rgb(xrec)
|
||||||
|
log["inputs"] = x
|
||||||
|
log["reconstructions"] = xrec
|
||||||
|
if plot_ema:
|
||||||
|
with self.ema_scope():
|
||||||
|
xrec_ema, _ = self(x)
|
||||||
|
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
||||||
|
log["reconstructions_ema"] = xrec_ema
|
||||||
|
return log
|
||||||
|
|
||||||
|
def to_rgb(self, x):
|
||||||
|
assert self.image_key == "segmentation"
|
||||||
|
if not hasattr(self, "colorize"):
|
||||||
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||||
|
x = F.conv2d(x, weight=self.colorize)
|
||||||
|
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class VQModelInterface(VQModel):
|
||||||
|
def __init__(self, embed_dim, *args, **kwargs):
|
||||||
|
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
def decode(self, h, force_not_quantize=False):
|
||||||
|
# also go through quantization layer
|
||||||
|
if not force_not_quantize:
|
||||||
|
quant, emb_loss, info = self.quantize(h)
|
||||||
|
else:
|
||||||
|
quant = h
|
||||||
|
quant = self.post_quant_conv(quant)
|
||||||
|
dec = self.decoder(quant)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
setattr(ldm.models.autoencoder, "VQModel", VQModel)
|
||||||
|
setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface)
|
1449
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
Normal file
1449
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
Normal file
File diff suppressed because it is too large
Load Diff
6
extensions-builtin/ScuNET/preload.py
Normal file
6
extensions-builtin/ScuNET/preload.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
import os
|
||||||
|
from modules import paths
|
||||||
|
|
||||||
|
|
||||||
|
def preload(parser):
|
||||||
|
parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(paths.models_path, 'ScuNET'))
|
@ -9,7 +9,7 @@ from basicsr.utils.download_util import load_file_from_url
|
|||||||
|
|
||||||
import modules.upscaler
|
import modules.upscaler
|
||||||
from modules import devices, modelloader
|
from modules import devices, modelloader
|
||||||
from modules.scunet_model_arch import SCUNet as net
|
from scunet_model_arch import SCUNet as net
|
||||||
|
|
||||||
|
|
||||||
class UpscalerScuNET(modules.upscaler.Upscaler):
|
class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||||
@ -49,14 +49,13 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
|||||||
if model is None:
|
if model is None:
|
||||||
return img
|
return img
|
||||||
|
|
||||||
device = devices.device_scunet
|
device = devices.get_device_for('scunet')
|
||||||
img = np.array(img)
|
img = np.array(img)
|
||||||
img = img[:, :, ::-1]
|
img = img[:, :, ::-1]
|
||||||
img = np.moveaxis(img, 2, 0) / 255
|
img = np.moveaxis(img, 2, 0) / 255
|
||||||
img = torch.from_numpy(img).float()
|
img = torch.from_numpy(img).float()
|
||||||
img = img.unsqueeze(0).to(device)
|
img = img.unsqueeze(0).to(device)
|
||||||
|
|
||||||
img = img.to(device)
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
output = model(img)
|
output = model(img)
|
||||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||||
@ -67,7 +66,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
|||||||
return PIL.Image.fromarray(output, 'RGB')
|
return PIL.Image.fromarray(output, 'RGB')
|
||||||
|
|
||||||
def load_model(self, path: str):
|
def load_model(self, path: str):
|
||||||
device = devices.device_scunet
|
device = devices.get_device_for('scunet')
|
||||||
if "http" in path:
|
if "http" in path:
|
||||||
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
|
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
|
||||||
progress=True)
|
progress=True)
|
6
extensions-builtin/SwinIR/preload.py
Normal file
6
extensions-builtin/SwinIR/preload.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
import os
|
||||||
|
from modules import paths
|
||||||
|
|
||||||
|
|
||||||
|
def preload(parser):
|
||||||
|
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(paths.models_path, 'SwinIR'))
|
@ -7,15 +7,14 @@ from PIL import Image
|
|||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from modules import modelloader
|
from modules import modelloader, devices, script_callbacks, shared
|
||||||
from modules.shared import cmd_opts, opts, device
|
from modules.shared import cmd_opts, opts
|
||||||
from modules.swinir_model_arch import SwinIR as net
|
from swinir_model_arch import SwinIR as net
|
||||||
from modules.swinir_model_arch_v2 import Swin2SR as net2
|
from swinir_model_arch_v2 import Swin2SR as net2
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
|
|
||||||
precision_scope = (
|
|
||||||
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
device_swinir = devices.get_device_for('swinir')
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class UpscalerSwinIR(Upscaler):
|
class UpscalerSwinIR(Upscaler):
|
||||||
@ -42,7 +41,7 @@ class UpscalerSwinIR(Upscaler):
|
|||||||
model = self.load_model(model_file)
|
model = self.load_model(model_file)
|
||||||
if model is None:
|
if model is None:
|
||||||
return img
|
return img
|
||||||
model = model.to(device)
|
model = model.to(device_swinir, dtype=devices.dtype)
|
||||||
img = upscale(img, model)
|
img = upscale(img, model)
|
||||||
try:
|
try:
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
@ -94,25 +93,27 @@ class UpscalerSwinIR(Upscaler):
|
|||||||
model.load_state_dict(pretrained_model[params], strict=True)
|
model.load_state_dict(pretrained_model[params], strict=True)
|
||||||
else:
|
else:
|
||||||
model.load_state_dict(pretrained_model, strict=True)
|
model.load_state_dict(pretrained_model, strict=True)
|
||||||
if not cmd_opts.no_half:
|
|
||||||
model = model.half()
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def upscale(
|
def upscale(
|
||||||
img,
|
img,
|
||||||
model,
|
model,
|
||||||
tile=opts.SWIN_tile,
|
tile=None,
|
||||||
tile_overlap=opts.SWIN_tile_overlap,
|
tile_overlap=None,
|
||||||
window_size=8,
|
window_size=8,
|
||||||
scale=4,
|
scale=4,
|
||||||
):
|
):
|
||||||
|
tile = tile or opts.SWIN_tile
|
||||||
|
tile_overlap = tile_overlap or opts.SWIN_tile_overlap
|
||||||
|
|
||||||
|
|
||||||
img = np.array(img)
|
img = np.array(img)
|
||||||
img = img[:, :, ::-1]
|
img = img[:, :, ::-1]
|
||||||
img = np.moveaxis(img, 2, 0) / 255
|
img = np.moveaxis(img, 2, 0) / 255
|
||||||
img = torch.from_numpy(img).float()
|
img = torch.from_numpy(img).float()
|
||||||
img = img.unsqueeze(0).to(device)
|
img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype)
|
||||||
with torch.no_grad(), precision_scope("cuda"):
|
with torch.no_grad(), devices.autocast():
|
||||||
_, _, h_old, w_old = img.size()
|
_, _, h_old, w_old = img.size()
|
||||||
h_pad = (h_old // window_size + 1) * window_size - h_old
|
h_pad = (h_old // window_size + 1) * window_size - h_old
|
||||||
w_pad = (w_old // window_size + 1) * window_size - w_old
|
w_pad = (w_old // window_size + 1) * window_size - w_old
|
||||||
@ -139,8 +140,8 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
|
|||||||
stride = tile - tile_overlap
|
stride = tile - tile_overlap
|
||||||
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
||||||
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
||||||
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
|
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img)
|
||||||
W = torch.zeros_like(E, dtype=torch.half, device=device)
|
W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir)
|
||||||
|
|
||||||
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
||||||
for h_idx in h_idx_list:
|
for h_idx in h_idx_list:
|
||||||
@ -159,3 +160,13 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
|
|||||||
output = E.div_(W)
|
output = E.div_(W)
|
||||||
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def on_ui_settings():
|
||||||
|
import gradio as gr
|
||||||
|
|
||||||
|
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
|
||||||
|
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
|
||||||
|
|
||||||
|
|
||||||
|
script_callbacks.on_ui_settings(on_ui_settings)
|
@ -0,0 +1,107 @@
|
|||||||
|
// Stable Diffusion WebUI - Bracket checker
|
||||||
|
// Version 1.0
|
||||||
|
// By Hingashi no Florin/Bwin4L
|
||||||
|
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
|
||||||
|
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
|
||||||
|
|
||||||
|
function checkBrackets(evt) {
|
||||||
|
textArea = evt.target;
|
||||||
|
tabName = evt.target.parentElement.parentElement.id.split("_")[0];
|
||||||
|
counterElt = document.querySelector('gradio-app').shadowRoot.querySelector('#' + tabName + '_token_counter');
|
||||||
|
|
||||||
|
promptName = evt.target.parentElement.parentElement.id.includes('neg') ? ' negative' : '';
|
||||||
|
|
||||||
|
errorStringParen = '(' + tabName + promptName + ' prompt) - Different number of opening and closing parentheses detected.\n';
|
||||||
|
errorStringSquare = '[' + tabName + promptName + ' prompt] - Different number of opening and closing square brackets detected.\n';
|
||||||
|
errorStringCurly = '{' + tabName + promptName + ' prompt} - Different number of opening and closing curly brackets detected.\n';
|
||||||
|
|
||||||
|
openBracketRegExp = /\(/g;
|
||||||
|
closeBracketRegExp = /\)/g;
|
||||||
|
|
||||||
|
openSquareBracketRegExp = /\[/g;
|
||||||
|
closeSquareBracketRegExp = /\]/g;
|
||||||
|
|
||||||
|
openCurlyBracketRegExp = /\{/g;
|
||||||
|
closeCurlyBracketRegExp = /\}/g;
|
||||||
|
|
||||||
|
totalOpenBracketMatches = 0;
|
||||||
|
totalCloseBracketMatches = 0;
|
||||||
|
totalOpenSquareBracketMatches = 0;
|
||||||
|
totalCloseSquareBracketMatches = 0;
|
||||||
|
totalOpenCurlyBracketMatches = 0;
|
||||||
|
totalCloseCurlyBracketMatches = 0;
|
||||||
|
|
||||||
|
openBracketMatches = textArea.value.match(openBracketRegExp);
|
||||||
|
if(openBracketMatches) {
|
||||||
|
totalOpenBracketMatches = openBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
closeBracketMatches = textArea.value.match(closeBracketRegExp);
|
||||||
|
if(closeBracketMatches) {
|
||||||
|
totalCloseBracketMatches = closeBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
|
||||||
|
if(openSquareBracketMatches) {
|
||||||
|
totalOpenSquareBracketMatches = openSquareBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
|
||||||
|
if(closeSquareBracketMatches) {
|
||||||
|
totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
|
||||||
|
if(openCurlyBracketMatches) {
|
||||||
|
totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
|
||||||
|
if(closeCurlyBracketMatches) {
|
||||||
|
totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(totalOpenBracketMatches != totalCloseBracketMatches) {
|
||||||
|
if(!counterElt.title.includes(errorStringParen)) {
|
||||||
|
counterElt.title += errorStringParen;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
counterElt.title = counterElt.title.replace(errorStringParen, '');
|
||||||
|
}
|
||||||
|
|
||||||
|
if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
|
||||||
|
if(!counterElt.title.includes(errorStringSquare)) {
|
||||||
|
counterElt.title += errorStringSquare;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
counterElt.title = counterElt.title.replace(errorStringSquare, '');
|
||||||
|
}
|
||||||
|
|
||||||
|
if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
|
||||||
|
if(!counterElt.title.includes(errorStringCurly)) {
|
||||||
|
counterElt.title += errorStringCurly;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
counterElt.title = counterElt.title.replace(errorStringCurly, '');
|
||||||
|
}
|
||||||
|
|
||||||
|
if(counterElt.title != '') {
|
||||||
|
counterElt.style = 'color: #FF5555;';
|
||||||
|
} else {
|
||||||
|
counterElt.style = '';
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
var shadowRootLoaded = setInterval(function() {
|
||||||
|
var shadowTextArea = document.querySelector('gradio-app').shadowRoot.querySelectorAll('#txt2img_prompt > label > textarea');
|
||||||
|
if(shadowTextArea.length < 1) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
clearInterval(shadowRootLoaded);
|
||||||
|
|
||||||
|
document.querySelector('gradio-app').shadowRoot.querySelector('#txt2img_prompt').onkeyup = checkBrackets;
|
||||||
|
document.querySelector('gradio-app').shadowRoot.querySelector('#txt2img_neg_prompt').onkeyup = checkBrackets;
|
||||||
|
document.querySelector('gradio-app').shadowRoot.querySelector('#img2img_prompt').onkeyup = checkBrackets;
|
||||||
|
document.querySelector('gradio-app').shadowRoot.querySelector('#img2img_neg_prompt').onkeyup = checkBrackets;
|
||||||
|
}, 1000);
|
50
extensions-builtin/roll-artist/scripts/roll-artist.py
Normal file
50
extensions-builtin/roll-artist/scripts/roll-artist.py
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
import random
|
||||||
|
|
||||||
|
from modules import script_callbacks, shared
|
||||||
|
import gradio as gr
|
||||||
|
|
||||||
|
art_symbol = '\U0001f3a8' # 🎨
|
||||||
|
global_prompt = None
|
||||||
|
related_ids = {"txt2img_prompt", "txt2img_clear_prompt", "img2img_prompt", "img2img_clear_prompt" }
|
||||||
|
|
||||||
|
|
||||||
|
def roll_artist(prompt):
|
||||||
|
allowed_cats = set([x for x in shared.artist_db.categories() if len(shared.opts.random_artist_categories)==0 or x in shared.opts.random_artist_categories])
|
||||||
|
artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats])
|
||||||
|
|
||||||
|
return prompt + ", " + artist.name if prompt != '' else artist.name
|
||||||
|
|
||||||
|
|
||||||
|
def add_roll_button(prompt):
|
||||||
|
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
|
||||||
|
|
||||||
|
roll.click(
|
||||||
|
fn=roll_artist,
|
||||||
|
_js="update_txt2img_tokens",
|
||||||
|
inputs=[
|
||||||
|
prompt,
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
prompt,
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def after_component(component, **kwargs):
|
||||||
|
global global_prompt
|
||||||
|
|
||||||
|
elem_id = kwargs.get('elem_id', None)
|
||||||
|
if elem_id not in related_ids:
|
||||||
|
return
|
||||||
|
|
||||||
|
if elem_id == "txt2img_prompt":
|
||||||
|
global_prompt = component
|
||||||
|
elif elem_id == "txt2img_clear_prompt":
|
||||||
|
add_roll_button(global_prompt)
|
||||||
|
elif elem_id == "img2img_prompt":
|
||||||
|
global_prompt = component
|
||||||
|
elif elem_id == "img2img_clear_prompt":
|
||||||
|
add_roll_button(global_prompt)
|
||||||
|
|
||||||
|
|
||||||
|
script_callbacks.on_after_component(after_component)
|
0
extensions/put extensions here.txt
Normal file
0
extensions/put extensions here.txt
Normal file
13
html/footer.html
Normal file
13
html/footer.html
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
<div>
|
||||||
|
<a href="/docs">API</a>
|
||||||
|
•
|
||||||
|
<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">Github</a>
|
||||||
|
•
|
||||||
|
<a href="https://gradio.app">Gradio</a>
|
||||||
|
•
|
||||||
|
<a href="/" onclick="javascript:gradioApp().getElementById('settings_restart_gradio').click(); return false">Reload UI</a>
|
||||||
|
</div>
|
||||||
|
<br />
|
||||||
|
<div class="versions">
|
||||||
|
{versions}
|
||||||
|
</div>
|
419
html/licenses.html
Normal file
419
html/licenses.html
Normal file
@ -0,0 +1,419 @@
|
|||||||
|
<style>
|
||||||
|
#licenses h2 {font-size: 1.2em; font-weight: bold; margin-bottom: 0.2em;}
|
||||||
|
#licenses small {font-size: 0.95em; opacity: 0.85;}
|
||||||
|
#licenses pre { margin: 1em 0 2em 0;}
|
||||||
|
</style>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">CodeFormer</a></h2>
|
||||||
|
<small>Parts of CodeFormer code had to be copied to be compatible with GFPGAN.</small>
|
||||||
|
<pre>
|
||||||
|
S-Lab License 1.0
|
||||||
|
|
||||||
|
Copyright 2022 S-Lab
|
||||||
|
|
||||||
|
Redistribution and use for non-commercial purpose in source and
|
||||||
|
binary forms, with or without modification, are permitted provided
|
||||||
|
that the following conditions are met:
|
||||||
|
|
||||||
|
1. Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
2. Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer in
|
||||||
|
the documentation and/or other materials provided with the
|
||||||
|
distribution.
|
||||||
|
|
||||||
|
3. Neither the name of the copyright holder nor the names of its
|
||||||
|
contributors may be used to endorse or promote products derived
|
||||||
|
from this software without specific prior written permission.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||||
|
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
|
||||||
|
In the event that redistribution and/or use for commercial purpose in
|
||||||
|
source or binary forms, with or without modification is required,
|
||||||
|
please contact the contributor(s) of the work.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/victorca25/iNNfer/blob/main/LICENSE">ESRGAN</a></h2>
|
||||||
|
<small>Code for architecture and reading models copied.</small>
|
||||||
|
<pre>
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2021 victorca25
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/xinntao/Real-ESRGAN/blob/master/LICENSE">Real-ESRGAN</a></h2>
|
||||||
|
<small>Some code is copied to support ESRGAN models.</small>
|
||||||
|
<pre>
|
||||||
|
BSD 3-Clause License
|
||||||
|
|
||||||
|
Copyright (c) 2021, Xintao Wang
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are met:
|
||||||
|
|
||||||
|
1. Redistributions of source code must retain the above copyright notice, this
|
||||||
|
list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
2. Redistributions in binary form must reproduce the above copyright notice,
|
||||||
|
this list of conditions and the following disclaimer in the documentation
|
||||||
|
and/or other materials provided with the distribution.
|
||||||
|
|
||||||
|
3. Neither the name of the copyright holder nor the names of its
|
||||||
|
contributors may be used to endorse or promote products derived from
|
||||||
|
this software without specific prior written permission.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||||
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||||
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||||
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||||
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||||
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||||
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||||
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE">InvokeAI</a></h2>
|
||||||
|
<small>Some code for compatibility with OSX is taken from lstein's repository.</small>
|
||||||
|
<pre>
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2022 InvokeAI Team
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/Hafiidz/latent-diffusion/blob/main/LICENSE">LDSR</a></h2>
|
||||||
|
<small>Code added by contirubtors, most likely copied from this repository.</small>
|
||||||
|
<pre>
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/pharmapsychotic/clip-interrogator/blob/main/LICENSE">CLIP Interrogator</a></h2>
|
||||||
|
<small>Some small amounts of code borrowed and reworked.</small>
|
||||||
|
<pre>
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2022 pharmapsychotic
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/JingyunLiang/SwinIR/blob/main/LICENSE">SwinIR</a></h2>
|
||||||
|
<small>Code added by contributors, most likely copied from this repository.</small>
|
||||||
|
|
||||||
|
<pre>
|
||||||
|
Apache License
|
||||||
|
Version 2.0, January 2004
|
||||||
|
http://www.apache.org/licenses/
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||||
|
|
||||||
|
1. Definitions.
|
||||||
|
|
||||||
|
"License" shall mean the terms and conditions for use, reproduction,
|
||||||
|
and distribution as defined by Sections 1 through 9 of this document.
|
||||||
|
|
||||||
|
"Licensor" shall mean the copyright owner or entity authorized by
|
||||||
|
the copyright owner that is granting the License.
|
||||||
|
|
||||||
|
"Legal Entity" shall mean the union of the acting entity and all
|
||||||
|
other entities that control, are controlled by, or are under common
|
||||||
|
control with that entity. For the purposes of this definition,
|
||||||
|
"control" means (i) the power, direct or indirect, to cause the
|
||||||
|
direction or management of such entity, whether by contract or
|
||||||
|
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||||
|
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||||
|
|
||||||
|
"You" (or "Your") shall mean an individual or Legal Entity
|
||||||
|
exercising permissions granted by this License.
|
||||||
|
|
||||||
|
"Source" form shall mean the preferred form for making modifications,
|
||||||
|
including but not limited to software source code, documentation
|
||||||
|
source, and configuration files.
|
||||||
|
|
||||||
|
"Object" form shall mean any form resulting from mechanical
|
||||||
|
transformation or translation of a Source form, including but
|
||||||
|
not limited to compiled object code, generated documentation,
|
||||||
|
and conversions to other media types.
|
||||||
|
|
||||||
|
"Work" shall mean the work of authorship, whether in Source or
|
||||||
|
Object form, made available under the License, as indicated by a
|
||||||
|
copyright notice that is included in or attached to the work
|
||||||
|
(an example is provided in the Appendix below).
|
||||||
|
|
||||||
|
"Derivative Works" shall mean any work, whether in Source or Object
|
||||||
|
form, that is based on (or derived from) the Work and for which the
|
||||||
|
editorial revisions, annotations, elaborations, or other modifications
|
||||||
|
represent, as a whole, an original work of authorship. For the purposes
|
||||||
|
of this License, Derivative Works shall not include works that remain
|
||||||
|
separable from, or merely link (or bind by name) to the interfaces of,
|
||||||
|
the Work and Derivative Works thereof.
|
||||||
|
|
||||||
|
"Contribution" shall mean any work of authorship, including
|
||||||
|
the original version of the Work and any modifications or additions
|
||||||
|
to that Work or Derivative Works thereof, that is intentionally
|
||||||
|
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||||
|
or by an individual or Legal Entity authorized to submit on behalf of
|
||||||
|
the copyright owner. For the purposes of this definition, "submitted"
|
||||||
|
means any form of electronic, verbal, or written communication sent
|
||||||
|
to the Licensor or its representatives, including but not limited to
|
||||||
|
communication on electronic mailing lists, source code control systems,
|
||||||
|
and issue tracking systems that are managed by, or on behalf of, the
|
||||||
|
Licensor for the purpose of discussing and improving the Work, but
|
||||||
|
excluding communication that is conspicuously marked or otherwise
|
||||||
|
designated in writing by the copyright owner as "Not a Contribution."
|
||||||
|
|
||||||
|
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||||
|
on behalf of whom a Contribution has been received by Licensor and
|
||||||
|
subsequently incorporated within the Work.
|
||||||
|
|
||||||
|
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||||
|
this License, each Contributor hereby grants to You a perpetual,
|
||||||
|
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||||
|
copyright license to reproduce, prepare Derivative Works of,
|
||||||
|
publicly display, publicly perform, sublicense, and distribute the
|
||||||
|
Work and such Derivative Works in Source or Object form.
|
||||||
|
|
||||||
|
3. Grant of Patent License. Subject to the terms and conditions of
|
||||||
|
this License, each Contributor hereby grants to You a perpetual,
|
||||||
|
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||||
|
(except as stated in this section) patent license to make, have made,
|
||||||
|
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||||
|
where such license applies only to those patent claims licensable
|
||||||
|
by such Contributor that are necessarily infringed by their
|
||||||
|
Contribution(s) alone or by combination of their Contribution(s)
|
||||||
|
with the Work to which such Contribution(s) was submitted. If You
|
||||||
|
institute patent litigation against any entity (including a
|
||||||
|
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||||
|
or a Contribution incorporated within the Work constitutes direct
|
||||||
|
or contributory patent infringement, then any patent licenses
|
||||||
|
granted to You under this License for that Work shall terminate
|
||||||
|
as of the date such litigation is filed.
|
||||||
|
|
||||||
|
4. Redistribution. You may reproduce and distribute copies of the
|
||||||
|
Work or Derivative Works thereof in any medium, with or without
|
||||||
|
modifications, and in Source or Object form, provided that You
|
||||||
|
meet the following conditions:
|
||||||
|
|
||||||
|
(a) You must give any other recipients of the Work or
|
||||||
|
Derivative Works a copy of this License; and
|
||||||
|
|
||||||
|
(b) You must cause any modified files to carry prominent notices
|
||||||
|
stating that You changed the files; and
|
||||||
|
|
||||||
|
(c) You must retain, in the Source form of any Derivative Works
|
||||||
|
that You distribute, all copyright, patent, trademark, and
|
||||||
|
attribution notices from the Source form of the Work,
|
||||||
|
excluding those notices that do not pertain to any part of
|
||||||
|
the Derivative Works; and
|
||||||
|
|
||||||
|
(d) If the Work includes a "NOTICE" text file as part of its
|
||||||
|
distribution, then any Derivative Works that You distribute must
|
||||||
|
include a readable copy of the attribution notices contained
|
||||||
|
within such NOTICE file, excluding those notices that do not
|
||||||
|
pertain to any part of the Derivative Works, in at least one
|
||||||
|
of the following places: within a NOTICE text file distributed
|
||||||
|
as part of the Derivative Works; within the Source form or
|
||||||
|
documentation, if provided along with the Derivative Works; or,
|
||||||
|
within a display generated by the Derivative Works, if and
|
||||||
|
wherever such third-party notices normally appear. The contents
|
||||||
|
of the NOTICE file are for informational purposes only and
|
||||||
|
do not modify the License. You may add Your own attribution
|
||||||
|
notices within Derivative Works that You distribute, alongside
|
||||||
|
or as an addendum to the NOTICE text from the Work, provided
|
||||||
|
that such additional attribution notices cannot be construed
|
||||||
|
as modifying the License.
|
||||||
|
|
||||||
|
You may add Your own copyright statement to Your modifications and
|
||||||
|
may provide additional or different license terms and conditions
|
||||||
|
for use, reproduction, or distribution of Your modifications, or
|
||||||
|
for any such Derivative Works as a whole, provided Your use,
|
||||||
|
reproduction, and distribution of the Work otherwise complies with
|
||||||
|
the conditions stated in this License.
|
||||||
|
|
||||||
|
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||||
|
any Contribution intentionally submitted for inclusion in the Work
|
||||||
|
by You to the Licensor shall be under the terms and conditions of
|
||||||
|
this License, without any additional terms or conditions.
|
||||||
|
Notwithstanding the above, nothing herein shall supersede or modify
|
||||||
|
the terms of any separate license agreement you may have executed
|
||||||
|
with Licensor regarding such Contributions.
|
||||||
|
|
||||||
|
6. Trademarks. This License does not grant permission to use the trade
|
||||||
|
names, trademarks, service marks, or product names of the Licensor,
|
||||||
|
except as required for reasonable and customary use in describing the
|
||||||
|
origin of the Work and reproducing the content of the NOTICE file.
|
||||||
|
|
||||||
|
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||||
|
agreed to in writing, Licensor provides the Work (and each
|
||||||
|
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||||
|
implied, including, without limitation, any warranties or conditions
|
||||||
|
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||||
|
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||||
|
appropriateness of using or redistributing the Work and assume any
|
||||||
|
risks associated with Your exercise of permissions under this License.
|
||||||
|
|
||||||
|
8. Limitation of Liability. In no event and under no legal theory,
|
||||||
|
whether in tort (including negligence), contract, or otherwise,
|
||||||
|
unless required by applicable law (such as deliberate and grossly
|
||||||
|
negligent acts) or agreed to in writing, shall any Contributor be
|
||||||
|
liable to You for damages, including any direct, indirect, special,
|
||||||
|
incidental, or consequential damages of any character arising as a
|
||||||
|
result of this License or out of the use or inability to use the
|
||||||
|
Work (including but not limited to damages for loss of goodwill,
|
||||||
|
work stoppage, computer failure or malfunction, or any and all
|
||||||
|
other commercial damages or losses), even if such Contributor
|
||||||
|
has been advised of the possibility of such damages.
|
||||||
|
|
||||||
|
9. Accepting Warranty or Additional Liability. While redistributing
|
||||||
|
the Work or Derivative Works thereof, You may choose to offer,
|
||||||
|
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||||
|
or other liability obligations and/or rights consistent with this
|
||||||
|
License. However, in accepting such obligations, You may act only
|
||||||
|
on Your own behalf and on Your sole responsibility, not on behalf
|
||||||
|
of any other Contributor, and only if You agree to indemnify,
|
||||||
|
defend, and hold each Contributor harmless for any liability
|
||||||
|
incurred by, or claims asserted against, such Contributor by reason
|
||||||
|
of your accepting any such warranty or additional liability.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
APPENDIX: How to apply the Apache License to your work.
|
||||||
|
|
||||||
|
To apply the Apache License to your work, attach the following
|
||||||
|
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||||
|
replaced with your own identifying information. (Don't include
|
||||||
|
the brackets!) The text should be enclosed in the appropriate
|
||||||
|
comment syntax for the file format. We also recommend that a
|
||||||
|
file or class name and description of purpose be included on the
|
||||||
|
same "printed page" as the copyright notice for easier
|
||||||
|
identification within third-party archives.
|
||||||
|
|
||||||
|
Copyright [2021] [SwinIR Authors]
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/AminRezaei0x443/memory-efficient-attention/blob/main/LICENSE">Memory Efficient Attention</a></h2>
|
||||||
|
<small>The sub-quadratic cross attention optimization uses modified code from the Memory Efficient Attention package that Alex Birch optimized for 3D tensors. This license is updated to reflect that.</small>
|
||||||
|
<pre>
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2023 Alex Birch
|
||||||
|
Copyright (c) 2023 Amin Rezaei
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
</pre>
|
||||||
|
|
@ -3,12 +3,12 @@ let currentWidth = null;
|
|||||||
let currentHeight = null;
|
let currentHeight = null;
|
||||||
let arFrameTimeout = setTimeout(function(){},0);
|
let arFrameTimeout = setTimeout(function(){},0);
|
||||||
|
|
||||||
function dimensionChange(e,dimname){
|
function dimensionChange(e, is_width, is_height){
|
||||||
|
|
||||||
if(dimname == 'Width'){
|
if(is_width){
|
||||||
currentWidth = e.target.value*1.0
|
currentWidth = e.target.value*1.0
|
||||||
}
|
}
|
||||||
if(dimname == 'Height'){
|
if(is_height){
|
||||||
currentHeight = e.target.value*1.0
|
currentHeight = e.target.value*1.0
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -18,22 +18,13 @@ function dimensionChange(e,dimname){
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
var img2imgMode = gradioApp().querySelector('#mode_img2img.tabs > div > button.rounded-t-lg.border-gray-200')
|
|
||||||
if(img2imgMode){
|
|
||||||
img2imgMode=img2imgMode.innerText
|
|
||||||
}else{
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
var redrawImage = gradioApp().querySelector('div[data-testid=image] img');
|
|
||||||
var inpaintImage = gradioApp().querySelector('#img2maskimg div[data-testid=image] img')
|
|
||||||
|
|
||||||
var targetElement = null;
|
var targetElement = null;
|
||||||
|
|
||||||
if(img2imgMode=='img2img' && redrawImage){
|
var tabIndex = get_tab_index('mode_img2img')
|
||||||
targetElement = redrawImage;
|
if(tabIndex == 0){
|
||||||
}else if(img2imgMode=='Inpaint' && inpaintImage){
|
targetElement = gradioApp().querySelector('div[data-testid=image] img');
|
||||||
targetElement = inpaintImage;
|
} else if(tabIndex == 1){
|
||||||
|
targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img');
|
||||||
}
|
}
|
||||||
|
|
||||||
if(targetElement){
|
if(targetElement){
|
||||||
@ -98,22 +89,20 @@ onUiUpdate(function(){
|
|||||||
var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
|
var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
|
||||||
if(inImg2img){
|
if(inImg2img){
|
||||||
let inputs = gradioApp().querySelectorAll('input');
|
let inputs = gradioApp().querySelectorAll('input');
|
||||||
inputs.forEach(function(e){
|
inputs.forEach(function(e){
|
||||||
let parentLabel = e.parentElement.querySelector('label')
|
var is_width = e.parentElement.id == "img2img_width"
|
||||||
if(parentLabel && parentLabel.innerText){
|
var is_height = e.parentElement.id == "img2img_height"
|
||||||
if(!e.classList.contains('scrollwatch')){
|
|
||||||
if(parentLabel.innerText == 'Width' || parentLabel.innerText == 'Height'){
|
if((is_width || is_height) && !e.classList.contains('scrollwatch')){
|
||||||
e.addEventListener('input', function(e){dimensionChange(e,parentLabel.innerText)} )
|
e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} )
|
||||||
e.classList.add('scrollwatch')
|
e.classList.add('scrollwatch')
|
||||||
}
|
}
|
||||||
if(parentLabel.innerText == 'Width'){
|
if(is_width){
|
||||||
currentWidth = e.value*1.0
|
currentWidth = e.value*1.0
|
||||||
}
|
}
|
||||||
if(parentLabel.innerText == 'Height'){
|
if(is_height){
|
||||||
currentHeight = e.value*1.0
|
currentHeight = e.value*1.0
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
@ -9,7 +9,7 @@ contextMenuInit = function(){
|
|||||||
|
|
||||||
function showContextMenu(event,element,menuEntries){
|
function showContextMenu(event,element,menuEntries){
|
||||||
let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
|
let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
|
||||||
let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
|
let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
|
||||||
|
|
||||||
let oldMenu = gradioApp().querySelector('#context-menu')
|
let oldMenu = gradioApp().querySelector('#context-menu')
|
||||||
if(oldMenu){
|
if(oldMenu){
|
||||||
@ -61,15 +61,15 @@ contextMenuInit = function(){
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
function appendContextMenuOption(targetEmementSelector,entryName,entryFunction){
|
function appendContextMenuOption(targetElementSelector,entryName,entryFunction){
|
||||||
|
|
||||||
currentItems = menuSpecs.get(targetEmementSelector)
|
currentItems = menuSpecs.get(targetElementSelector)
|
||||||
|
|
||||||
if(!currentItems){
|
if(!currentItems){
|
||||||
currentItems = []
|
currentItems = []
|
||||||
menuSpecs.set(targetEmementSelector,currentItems);
|
menuSpecs.set(targetElementSelector,currentItems);
|
||||||
}
|
}
|
||||||
let newItem = {'id':targetEmementSelector+'_'+uid(),
|
let newItem = {'id':targetElementSelector+'_'+uid(),
|
||||||
'name':entryName,
|
'name':entryName,
|
||||||
'func':entryFunction,
|
'func':entryFunction,
|
||||||
'isNew':true}
|
'isNew':true}
|
||||||
@ -97,7 +97,7 @@ contextMenuInit = function(){
|
|||||||
if(source.id && source.id.indexOf('check_progress')>-1){
|
if(source.id && source.id.indexOf('check_progress')>-1){
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
|
||||||
let oldMenu = gradioApp().querySelector('#context-menu')
|
let oldMenu = gradioApp().querySelector('#context-menu')
|
||||||
if(oldMenu){
|
if(oldMenu){
|
||||||
oldMenu.remove()
|
oldMenu.remove()
|
||||||
@ -117,7 +117,7 @@ contextMenuInit = function(){
|
|||||||
})
|
})
|
||||||
});
|
});
|
||||||
eventListenerApplied=true
|
eventListenerApplied=true
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
|
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
|
||||||
@ -152,8 +152,8 @@ addContextMenuEventListener = initResponse[2];
|
|||||||
generateOnRepeat('#img2img_generate','#img2img_interrupt');
|
generateOnRepeat('#img2img_generate','#img2img_interrupt');
|
||||||
})
|
})
|
||||||
|
|
||||||
let cancelGenerateForever = function(){
|
let cancelGenerateForever = function(){
|
||||||
clearInterval(window.generateOnRepeatInterval)
|
clearInterval(window.generateOnRepeatInterval)
|
||||||
}
|
}
|
||||||
|
|
||||||
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
|
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
|
||||||
@ -162,7 +162,7 @@ addContextMenuEventListener = initResponse[2];
|
|||||||
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
|
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
|
||||||
|
|
||||||
appendContextMenuOption('#roll','Roll three',
|
appendContextMenuOption('#roll','Roll three',
|
||||||
function(){
|
function(){
|
||||||
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
|
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
|
||||||
setTimeout(function(){rollbutton.click()},100)
|
setTimeout(function(){rollbutton.click()},100)
|
||||||
setTimeout(function(){rollbutton.click()},200)
|
setTimeout(function(){rollbutton.click()},200)
|
||||||
|
12
javascript/dragdrop.js
vendored
12
javascript/dragdrop.js
vendored
@ -9,11 +9,19 @@ function dropReplaceImage( imgWrap, files ) {
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const tmpFile = files[0];
|
||||||
|
|
||||||
imgWrap.querySelector('.modify-upload button + button, .touch-none + div button + button')?.click();
|
imgWrap.querySelector('.modify-upload button + button, .touch-none + div button + button')?.click();
|
||||||
const callback = () => {
|
const callback = () => {
|
||||||
const fileInput = imgWrap.querySelector('input[type="file"]');
|
const fileInput = imgWrap.querySelector('input[type="file"]');
|
||||||
if ( fileInput ) {
|
if ( fileInput ) {
|
||||||
fileInput.files = files;
|
if ( files.length === 0 ) {
|
||||||
|
files = new DataTransfer();
|
||||||
|
files.items.add(tmpFile);
|
||||||
|
fileInput.files = files.files;
|
||||||
|
} else {
|
||||||
|
fileInput.files = files;
|
||||||
|
}
|
||||||
fileInput.dispatchEvent(new Event('change'));
|
fileInput.dispatchEvent(new Event('change'));
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@ -43,7 +51,7 @@ function dropReplaceImage( imgWrap, files ) {
|
|||||||
window.document.addEventListener('dragover', e => {
|
window.document.addEventListener('dragover', e => {
|
||||||
const target = e.composedPath()[0];
|
const target = e.composedPath()[0];
|
||||||
const imgWrap = target.closest('[data-testid="image"]');
|
const imgWrap = target.closest('[data-testid="image"]');
|
||||||
if ( !imgWrap && target.placeholder.indexOf("Prompt") == -1) {
|
if ( !imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
e.stopPropagation();
|
e.stopPropagation();
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
addEventListener('keydown', (event) => {
|
addEventListener('keydown', (event) => {
|
||||||
let target = event.originalTarget || event.composedPath()[0];
|
let target = event.originalTarget || event.composedPath()[0];
|
||||||
if (!target.hasAttribute("placeholder")) return;
|
if (!target.matches("#toprow textarea.gr-text-input[placeholder]")) return;
|
||||||
if (!target.placeholder.toLowerCase().includes("prompt")) return;
|
|
||||||
if (! (event.metaKey || event.ctrlKey)) return;
|
if (! (event.metaKey || event.ctrlKey)) return;
|
||||||
|
|
||||||
|
|
||||||
|
35
javascript/extensions.js
Normal file
35
javascript/extensions.js
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
|
||||||
|
function extensions_apply(_, _){
|
||||||
|
disable = []
|
||||||
|
update = []
|
||||||
|
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
|
||||||
|
if(x.name.startsWith("enable_") && ! x.checked)
|
||||||
|
disable.push(x.name.substr(7))
|
||||||
|
|
||||||
|
if(x.name.startsWith("update_") && x.checked)
|
||||||
|
update.push(x.name.substr(7))
|
||||||
|
})
|
||||||
|
|
||||||
|
restart_reload()
|
||||||
|
|
||||||
|
return [JSON.stringify(disable), JSON.stringify(update)]
|
||||||
|
}
|
||||||
|
|
||||||
|
function extensions_check(){
|
||||||
|
gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){
|
||||||
|
x.innerHTML = "Loading..."
|
||||||
|
})
|
||||||
|
|
||||||
|
return []
|
||||||
|
}
|
||||||
|
|
||||||
|
function install_extension_from_index(button, url){
|
||||||
|
button.disabled = "disabled"
|
||||||
|
button.value = "Installing..."
|
||||||
|
|
||||||
|
textarea = gradioApp().querySelector('#extension_to_install textarea')
|
||||||
|
textarea.value = url
|
||||||
|
textarea.dispatchEvent(new Event("input", { bubbles: true }))
|
||||||
|
|
||||||
|
gradioApp().querySelector('#install_extension_button').click()
|
||||||
|
}
|
33
javascript/generationParams.js
Normal file
33
javascript/generationParams.js
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
// attaches listeners to the txt2img and img2img galleries to update displayed generation param text when the image changes
|
||||||
|
|
||||||
|
let txt2img_gallery, img2img_gallery, modal = undefined;
|
||||||
|
onUiUpdate(function(){
|
||||||
|
if (!txt2img_gallery) {
|
||||||
|
txt2img_gallery = attachGalleryListeners("txt2img")
|
||||||
|
}
|
||||||
|
if (!img2img_gallery) {
|
||||||
|
img2img_gallery = attachGalleryListeners("img2img")
|
||||||
|
}
|
||||||
|
if (!modal) {
|
||||||
|
modal = gradioApp().getElementById('lightboxModal')
|
||||||
|
modalObserver.observe(modal, { attributes : true, attributeFilter : ['style'] });
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
let modalObserver = new MutationObserver(function(mutations) {
|
||||||
|
mutations.forEach(function(mutationRecord) {
|
||||||
|
let selectedTab = gradioApp().querySelector('#tabs div button.bg-white')?.innerText
|
||||||
|
if (mutationRecord.target.style.display === 'none' && selectedTab === 'txt2img' || selectedTab === 'img2img')
|
||||||
|
gradioApp().getElementById(selectedTab+"_generation_info_button").click()
|
||||||
|
});
|
||||||
|
});
|
||||||
|
|
||||||
|
function attachGalleryListeners(tab_name) {
|
||||||
|
gallery = gradioApp().querySelector('#'+tab_name+'_gallery')
|
||||||
|
gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name+"_generation_info_button").click());
|
||||||
|
gallery?.addEventListener('keydown', (e) => {
|
||||||
|
if (e.keyCode == 37 || e.keyCode == 39) // left or right arrow
|
||||||
|
gradioApp().getElementById(tab_name+"_generation_info_button").click()
|
||||||
|
});
|
||||||
|
return gallery;
|
||||||
|
}
|
@ -4,8 +4,9 @@ titles = {
|
|||||||
"Sampling steps": "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results",
|
"Sampling steps": "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results",
|
||||||
"Sampling method": "Which algorithm to use to produce the image",
|
"Sampling method": "Which algorithm to use to produce the image",
|
||||||
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
|
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
|
||||||
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help",
|
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help",
|
||||||
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
||||||
|
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
|
||||||
|
|
||||||
"Batch count": "How many batches of images to create",
|
"Batch count": "How many batches of images to create",
|
||||||
"Batch size": "How many image to create in a single batch",
|
"Batch size": "How many image to create in a single batch",
|
||||||
@ -17,6 +18,7 @@ titles = {
|
|||||||
"\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
|
"\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
|
||||||
"\u{1f4c2}": "Open images output directory",
|
"\u{1f4c2}": "Open images output directory",
|
||||||
"\u{1f4be}": "Save style",
|
"\u{1f4be}": "Save style",
|
||||||
|
"\U0001F5D1": "Clear prompt",
|
||||||
"\u{1f4cb}": "Apply selected styles to current prompt",
|
"\u{1f4cb}": "Apply selected styles to current prompt",
|
||||||
|
|
||||||
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
|
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
|
||||||
@ -62,8 +64,8 @@ titles = {
|
|||||||
|
|
||||||
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
|
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
|
||||||
|
|
||||||
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.",
|
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
|
||||||
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.",
|
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
|
||||||
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
|
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
|
||||||
|
|
||||||
"Loopback": "Process an image, use it as an input, repeat.",
|
"Loopback": "Process an image, use it as an input, repeat.",
|
||||||
@ -72,15 +74,13 @@ titles = {
|
|||||||
"Style 1": "Style to apply; styles have components for both positive and negative prompts and apply to both",
|
"Style 1": "Style to apply; styles have components for both positive and negative prompts and apply to both",
|
||||||
"Style 2": "Style to apply; styles have components for both positive and negative prompts and apply to both",
|
"Style 2": "Style to apply; styles have components for both positive and negative prompts and apply to both",
|
||||||
"Apply style": "Insert selected styles into prompt fields",
|
"Apply style": "Insert selected styles into prompt fields",
|
||||||
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style use that as placeholder for your prompt when you use the style in the future.",
|
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style uses that as a placeholder for your prompt when you use the style in the future.",
|
||||||
|
|
||||||
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
|
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
|
||||||
|
"Inpainting conditioning mask strength": "Only applies to inpainting models. Determines how strongly to mask off the original image for inpainting and img2img. 1.0 means fully masked, which is the default behaviour. 0.0 means a fully unmasked conditioning. Lower values will help preserve the overall composition of the image, but will struggle with large changes.",
|
||||||
|
|
||||||
"vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).",
|
"vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).",
|
||||||
|
|
||||||
"Highres. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
|
|
||||||
"Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.",
|
|
||||||
|
|
||||||
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
|
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
|
||||||
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.",
|
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.",
|
||||||
|
|
||||||
@ -92,7 +92,19 @@ titles = {
|
|||||||
"Weighted sum": "Result = A * (1 - M) + B * M",
|
"Weighted sum": "Result = A * (1 - M) + B * M",
|
||||||
"Add difference": "Result = A + (B - C) * M",
|
"Add difference": "Result = A + (B - C) * M",
|
||||||
|
|
||||||
"Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
|
"Initialization text": "If the number of tokens is more than the number of vectors, some may be skipped.\nLeave the textbox empty to start with zeroed out vectors",
|
||||||
|
"Learning rate": "How fast should training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
|
||||||
|
|
||||||
|
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.",
|
||||||
|
|
||||||
|
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resolution and lower quality.",
|
||||||
|
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resolution and extremely low quality.",
|
||||||
|
|
||||||
|
"Hires. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
|
||||||
|
"Hires steps": "Number of sampling steps for upscaled picture. If 0, uses same as for original.",
|
||||||
|
"Upscale by": "Adjusts the size of the image by multiplying the original width and height by the selected value. Ignored if either Resize width to or Resize height to are non-zero.",
|
||||||
|
"Resize width to": "Resizes image to this width. If 0, width is inferred from either of two nearby sliders.",
|
||||||
|
"Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders."
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
25
javascript/hires_fix.js
Normal file
25
javascript/hires_fix.js
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
|
||||||
|
function setInactive(elem, inactive){
|
||||||
|
console.log(elem)
|
||||||
|
if(inactive){
|
||||||
|
elem.classList.add('inactive')
|
||||||
|
} else{
|
||||||
|
elem.classList.remove('inactive')
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function onCalcResolutionHires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y){
|
||||||
|
console.log(enable, width, height, hr_scale, hr_resize_x, hr_resize_y)
|
||||||
|
|
||||||
|
hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale')
|
||||||
|
hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x')
|
||||||
|
hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y')
|
||||||
|
|
||||||
|
gradioApp().getElementById('txt2img_hires_fix_row2').style.display = opts.use_old_hires_fix_width_height ? "none" : ""
|
||||||
|
|
||||||
|
setInactive(hrUpscaleBy, opts.use_old_hires_fix_width_height || hr_resize_x > 0 || hr_resize_y > 0)
|
||||||
|
setInactive(hrResizeX, opts.use_old_hires_fix_width_height || hr_resize_x == 0)
|
||||||
|
setInactive(hrResizeY, opts.use_old_hires_fix_width_height || hr_resize_y == 0)
|
||||||
|
|
||||||
|
return [enable, width, height, hr_scale, hr_resize_x, hr_resize_y]
|
||||||
|
}
|
@ -1,206 +0,0 @@
|
|||||||
var images_history_click_image = function(){
|
|
||||||
if (!this.classList.contains("transform")){
|
|
||||||
var gallery = images_history_get_parent_by_class(this, "images_history_cantainor");
|
|
||||||
var buttons = gallery.querySelectorAll(".gallery-item");
|
|
||||||
var i = 0;
|
|
||||||
var hidden_list = [];
|
|
||||||
buttons.forEach(function(e){
|
|
||||||
if (e.style.display == "none"){
|
|
||||||
hidden_list.push(i);
|
|
||||||
}
|
|
||||||
i += 1;
|
|
||||||
})
|
|
||||||
if (hidden_list.length > 0){
|
|
||||||
setTimeout(images_history_hide_buttons, 10, hidden_list, gallery);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
images_history_set_image_info(this);
|
|
||||||
}
|
|
||||||
|
|
||||||
var images_history_click_tab = function(){
|
|
||||||
var tabs_box = gradioApp().getElementById("images_history_tab");
|
|
||||||
if (!tabs_box.classList.contains(this.getAttribute("tabname"))) {
|
|
||||||
gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_renew_page").click();
|
|
||||||
tabs_box.classList.add(this.getAttribute("tabname"))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function images_history_disabled_del(){
|
|
||||||
gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){
|
|
||||||
btn.setAttribute('disabled','disabled');
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
function images_history_get_parent_by_class(item, class_name){
|
|
||||||
var parent = item.parentElement;
|
|
||||||
while(!parent.classList.contains(class_name)){
|
|
||||||
parent = parent.parentElement;
|
|
||||||
}
|
|
||||||
return parent;
|
|
||||||
}
|
|
||||||
|
|
||||||
function images_history_get_parent_by_tagname(item, tagname){
|
|
||||||
var parent = item.parentElement;
|
|
||||||
tagname = tagname.toUpperCase()
|
|
||||||
while(parent.tagName != tagname){
|
|
||||||
console.log(parent.tagName, tagname)
|
|
||||||
parent = parent.parentElement;
|
|
||||||
}
|
|
||||||
return parent;
|
|
||||||
}
|
|
||||||
|
|
||||||
function images_history_hide_buttons(hidden_list, gallery){
|
|
||||||
var buttons = gallery.querySelectorAll(".gallery-item");
|
|
||||||
var num = 0;
|
|
||||||
buttons.forEach(function(e){
|
|
||||||
if (e.style.display == "none"){
|
|
||||||
num += 1;
|
|
||||||
}
|
|
||||||
});
|
|
||||||
if (num == hidden_list.length){
|
|
||||||
setTimeout(images_history_hide_buttons, 10, hidden_list, gallery);
|
|
||||||
}
|
|
||||||
for( i in hidden_list){
|
|
||||||
buttons[hidden_list[i]].style.display = "none";
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function images_history_set_image_info(button){
|
|
||||||
var buttons = images_history_get_parent_by_tagname(button, "DIV").querySelectorAll(".gallery-item");
|
|
||||||
var index = -1;
|
|
||||||
var i = 0;
|
|
||||||
buttons.forEach(function(e){
|
|
||||||
if(e == button){
|
|
||||||
index = i;
|
|
||||||
}
|
|
||||||
if(e.style.display != "none"){
|
|
||||||
i += 1;
|
|
||||||
}
|
|
||||||
});
|
|
||||||
var gallery = images_history_get_parent_by_class(button, "images_history_cantainor");
|
|
||||||
var set_btn = gallery.querySelector(".images_history_set_index");
|
|
||||||
var curr_idx = set_btn.getAttribute("img_index", index);
|
|
||||||
if (curr_idx != index) {
|
|
||||||
set_btn.setAttribute("img_index", index);
|
|
||||||
images_history_disabled_del();
|
|
||||||
}
|
|
||||||
set_btn.click();
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
function images_history_get_current_img(tabname, image_path, files){
|
|
||||||
return [
|
|
||||||
gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"),
|
|
||||||
image_path,
|
|
||||||
files
|
|
||||||
];
|
|
||||||
}
|
|
||||||
|
|
||||||
function images_history_delete(del_num, tabname, img_path, img_file_name, page_index, filenames, image_index){
|
|
||||||
image_index = parseInt(image_index);
|
|
||||||
var tab = gradioApp().getElementById(tabname + '_images_history');
|
|
||||||
var set_btn = tab.querySelector(".images_history_set_index");
|
|
||||||
var buttons = [];
|
|
||||||
tab.querySelectorAll(".gallery-item").forEach(function(e){
|
|
||||||
if (e.style.display != 'none'){
|
|
||||||
buttons.push(e);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
var img_num = buttons.length / 2;
|
|
||||||
if (img_num <= del_num){
|
|
||||||
setTimeout(function(tabname){
|
|
||||||
gradioApp().getElementById(tabname + '_images_history_renew_page').click();
|
|
||||||
}, 30, tabname);
|
|
||||||
} else {
|
|
||||||
var next_img
|
|
||||||
for (var i = 0; i < del_num; i++){
|
|
||||||
if (image_index + i < image_index + img_num){
|
|
||||||
buttons[image_index + i].style.display = 'none';
|
|
||||||
buttons[image_index + img_num + 1].style.display = 'none';
|
|
||||||
next_img = image_index + i + 1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
var bnt;
|
|
||||||
if (next_img >= img_num){
|
|
||||||
btn = buttons[image_index - del_num];
|
|
||||||
} else {
|
|
||||||
btn = buttons[next_img];
|
|
||||||
}
|
|
||||||
setTimeout(function(btn){btn.click()}, 30, btn);
|
|
||||||
}
|
|
||||||
images_history_disabled_del();
|
|
||||||
return [del_num, tabname, img_path, img_file_name, page_index, filenames, image_index];
|
|
||||||
}
|
|
||||||
|
|
||||||
function images_history_turnpage(img_path, page_index, image_index, tabname){
|
|
||||||
var buttons = gradioApp().getElementById(tabname + '_images_history').querySelectorAll(".gallery-item");
|
|
||||||
buttons.forEach(function(elem) {
|
|
||||||
elem.style.display = 'block';
|
|
||||||
})
|
|
||||||
return [img_path, page_index, image_index, tabname];
|
|
||||||
}
|
|
||||||
|
|
||||||
function images_history_enable_del_buttons(){
|
|
||||||
gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){
|
|
||||||
btn.removeAttribute('disabled');
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
function images_history_init(){
|
|
||||||
var load_txt2img_button = gradioApp().getElementById('txt2img_images_history_renew_page')
|
|
||||||
if (load_txt2img_button){
|
|
||||||
for (var i in images_history_tab_list ){
|
|
||||||
tab = images_history_tab_list[i];
|
|
||||||
gradioApp().getElementById(tab + '_images_history').classList.add("images_history_cantainor");
|
|
||||||
gradioApp().getElementById(tab + '_images_history_set_index').classList.add("images_history_set_index");
|
|
||||||
gradioApp().getElementById(tab + '_images_history_del_button').classList.add("images_history_del_button");
|
|
||||||
gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery");
|
|
||||||
|
|
||||||
}
|
|
||||||
var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div");
|
|
||||||
tabs_box.setAttribute("id", "images_history_tab");
|
|
||||||
var tab_btns = tabs_box.querySelectorAll("button");
|
|
||||||
for (var i in images_history_tab_list){
|
|
||||||
var tabname = images_history_tab_list[i]
|
|
||||||
tab_btns[i].setAttribute("tabname", tabname);
|
|
||||||
|
|
||||||
// this refreshes history upon tab switch
|
|
||||||
// until the history is known to work well, which is not the case now, we do not do this at startup
|
|
||||||
//tab_btns[i].addEventListener('click', images_history_click_tab);
|
|
||||||
}
|
|
||||||
tabs_box.classList.add(images_history_tab_list[0]);
|
|
||||||
|
|
||||||
// same as above, at page load
|
|
||||||
//load_txt2img_button.click();
|
|
||||||
} else {
|
|
||||||
setTimeout(images_history_init, 500);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
var images_history_tab_list = ["txt2img", "img2img", "extras"];
|
|
||||||
setTimeout(images_history_init, 500);
|
|
||||||
document.addEventListener("DOMContentLoaded", function() {
|
|
||||||
var mutationObserver = new MutationObserver(function(m){
|
|
||||||
for (var i in images_history_tab_list ){
|
|
||||||
let tabname = images_history_tab_list[i]
|
|
||||||
var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item');
|
|
||||||
buttons.forEach(function(bnt){
|
|
||||||
bnt.addEventListener('click', images_history_click_image, true);
|
|
||||||
});
|
|
||||||
|
|
||||||
// same as load_txt2img_button.click() above
|
|
||||||
/*
|
|
||||||
var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg");
|
|
||||||
if (cls_btn){
|
|
||||||
cls_btn.addEventListener('click', function(){
|
|
||||||
gradioApp().getElementById(tabname + '_images_history_renew_page').click();
|
|
||||||
}, false);
|
|
||||||
}*/
|
|
||||||
|
|
||||||
}
|
|
||||||
});
|
|
||||||
mutationObserver.observe( gradioApp(), { childList:true, subtree:true });
|
|
||||||
|
|
||||||
});
|
|
||||||
|
|
||||||
|
|
@ -13,6 +13,15 @@ function showModal(event) {
|
|||||||
}
|
}
|
||||||
lb.style.display = "block";
|
lb.style.display = "block";
|
||||||
lb.focus()
|
lb.focus()
|
||||||
|
|
||||||
|
const tabTxt2Img = gradioApp().getElementById("tab_txt2img")
|
||||||
|
const tabImg2Img = gradioApp().getElementById("tab_img2img")
|
||||||
|
// show the save button in modal only on txt2img or img2img tabs
|
||||||
|
if (tabTxt2Img.style.display != "none" || tabImg2Img.style.display != "none") {
|
||||||
|
gradioApp().getElementById("modal_save").style.display = "inline"
|
||||||
|
} else {
|
||||||
|
gradioApp().getElementById("modal_save").style.display = "none"
|
||||||
|
}
|
||||||
event.stopPropagation()
|
event.stopPropagation()
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -81,6 +90,25 @@ function modalImageSwitch(offset) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function saveImage(){
|
||||||
|
const tabTxt2Img = gradioApp().getElementById("tab_txt2img")
|
||||||
|
const tabImg2Img = gradioApp().getElementById("tab_img2img")
|
||||||
|
const saveTxt2Img = "save_txt2img"
|
||||||
|
const saveImg2Img = "save_img2img"
|
||||||
|
if (tabTxt2Img.style.display != "none") {
|
||||||
|
gradioApp().getElementById(saveTxt2Img).click()
|
||||||
|
} else if (tabImg2Img.style.display != "none") {
|
||||||
|
gradioApp().getElementById(saveImg2Img).click()
|
||||||
|
} else {
|
||||||
|
console.error("missing implementation for saving modal of this type")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function modalSaveImage(event) {
|
||||||
|
saveImage()
|
||||||
|
event.stopPropagation()
|
||||||
|
}
|
||||||
|
|
||||||
function modalNextImage(event) {
|
function modalNextImage(event) {
|
||||||
modalImageSwitch(1)
|
modalImageSwitch(1)
|
||||||
event.stopPropagation()
|
event.stopPropagation()
|
||||||
@ -93,6 +121,9 @@ function modalPrevImage(event) {
|
|||||||
|
|
||||||
function modalKeyHandler(event) {
|
function modalKeyHandler(event) {
|
||||||
switch (event.key) {
|
switch (event.key) {
|
||||||
|
case "s":
|
||||||
|
saveImage()
|
||||||
|
break;
|
||||||
case "ArrowLeft":
|
case "ArrowLeft":
|
||||||
modalPrevImage(event)
|
modalPrevImage(event)
|
||||||
break;
|
break;
|
||||||
@ -117,9 +148,10 @@ function showGalleryImage() {
|
|||||||
if(e && e.parentElement.tagName == 'DIV'){
|
if(e && e.parentElement.tagName == 'DIV'){
|
||||||
e.style.cursor='pointer'
|
e.style.cursor='pointer'
|
||||||
e.style.userSelect='none'
|
e.style.userSelect='none'
|
||||||
e.addEventListener('click', function (evt) {
|
e.addEventListener('mousedown', function (evt) {
|
||||||
if(!opts.js_modal_lightbox) return;
|
if(!opts.js_modal_lightbox || evt.button != 0) return;
|
||||||
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed)
|
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed)
|
||||||
|
evt.preventDefault()
|
||||||
showModal(evt)
|
showModal(evt)
|
||||||
}, true);
|
}, true);
|
||||||
}
|
}
|
||||||
@ -198,6 +230,14 @@ document.addEventListener("DOMContentLoaded", function() {
|
|||||||
modalTileImage.title = "Preview tiling";
|
modalTileImage.title = "Preview tiling";
|
||||||
modalControls.appendChild(modalTileImage)
|
modalControls.appendChild(modalTileImage)
|
||||||
|
|
||||||
|
const modalSave = document.createElement("span")
|
||||||
|
modalSave.className = "modalSave cursor"
|
||||||
|
modalSave.id = "modal_save"
|
||||||
|
modalSave.innerHTML = "🖫"
|
||||||
|
modalSave.addEventListener("click", modalSaveImage, true)
|
||||||
|
modalSave.title = "Save Image(s)"
|
||||||
|
modalControls.appendChild(modalSave)
|
||||||
|
|
||||||
const modalClose = document.createElement('span')
|
const modalClose = document.createElement('span')
|
||||||
modalClose.className = 'modalClose cursor';
|
modalClose.className = 'modalClose cursor';
|
||||||
modalClose.innerHTML = '×'
|
modalClose.innerHTML = '×'
|
||||||
|
@ -108,6 +108,9 @@ function processNode(node){
|
|||||||
|
|
||||||
function dumpTranslations(){
|
function dumpTranslations(){
|
||||||
dumped = {}
|
dumped = {}
|
||||||
|
if (localization.rtl) {
|
||||||
|
dumped.rtl = true
|
||||||
|
}
|
||||||
|
|
||||||
Object.keys(original_lines).forEach(function(text){
|
Object.keys(original_lines).forEach(function(text){
|
||||||
if(dumped[text] !== undefined) return
|
if(dumped[text] !== undefined) return
|
||||||
@ -129,6 +132,24 @@ onUiUpdate(function(m){
|
|||||||
|
|
||||||
document.addEventListener("DOMContentLoaded", function() {
|
document.addEventListener("DOMContentLoaded", function() {
|
||||||
processNode(gradioApp())
|
processNode(gradioApp())
|
||||||
|
|
||||||
|
if (localization.rtl) { // if the language is from right to left,
|
||||||
|
(new MutationObserver((mutations, observer) => { // wait for the style to load
|
||||||
|
mutations.forEach(mutation => {
|
||||||
|
mutation.addedNodes.forEach(node => {
|
||||||
|
if (node.tagName === 'STYLE') {
|
||||||
|
observer.disconnect();
|
||||||
|
|
||||||
|
for (const x of node.sheet.rules) { // find all rtl media rules
|
||||||
|
if (Array.from(x.media || []).includes('rtl')) {
|
||||||
|
x.media.appendMedium('all'); // enable them
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
});
|
||||||
|
})).observe(gradioApp(), { childList: true });
|
||||||
|
}
|
||||||
})
|
})
|
||||||
|
|
||||||
function download_localization() {
|
function download_localization() {
|
||||||
|
@ -15,7 +15,7 @@ onUiUpdate(function(){
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const galleryPreviews = gradioApp().querySelectorAll('img.h-full.w-full.overflow-hidden');
|
const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] img.h-full.w-full.overflow-hidden');
|
||||||
|
|
||||||
if (galleryPreviews == null) return;
|
if (galleryPreviews == null) return;
|
||||||
|
|
||||||
|
@ -3,57 +3,75 @@ global_progressbars = {}
|
|||||||
galleries = {}
|
galleries = {}
|
||||||
galleryObservers = {}
|
galleryObservers = {}
|
||||||
|
|
||||||
|
// this tracks launches of window.setTimeout for progressbar to prevent starting a new timeout when the previous is still running
|
||||||
|
timeoutIds = {}
|
||||||
|
|
||||||
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip, id_interrupt, id_preview, id_gallery){
|
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip, id_interrupt, id_preview, id_gallery){
|
||||||
var progressbar = gradioApp().getElementById(id_progressbar)
|
// gradio 3.8's enlightened approach allows them to create two nested div elements inside each other with same id
|
||||||
|
// every time you use gr.HTML(elem_id='xxx'), so we handle this here
|
||||||
|
var progressbar = gradioApp().querySelector("#"+id_progressbar+" #"+id_progressbar)
|
||||||
|
var progressbarParent
|
||||||
|
if(progressbar){
|
||||||
|
progressbarParent = gradioApp().querySelector("#"+id_progressbar)
|
||||||
|
} else{
|
||||||
|
progressbar = gradioApp().getElementById(id_progressbar)
|
||||||
|
progressbarParent = null
|
||||||
|
}
|
||||||
|
|
||||||
var skip = id_skip ? gradioApp().getElementById(id_skip) : null
|
var skip = id_skip ? gradioApp().getElementById(id_skip) : null
|
||||||
var interrupt = gradioApp().getElementById(id_interrupt)
|
var interrupt = gradioApp().getElementById(id_interrupt)
|
||||||
|
|
||||||
if(opts.show_progress_in_title && progressbar && progressbar.offsetParent){
|
if(opts.show_progress_in_title && progressbar && progressbar.offsetParent){
|
||||||
if(progressbar.innerText){
|
if(progressbar.innerText){
|
||||||
let newtitle = 'Stable Diffusion - ' + progressbar.innerText
|
let newtitle = '[' + progressbar.innerText.trim() + '] Stable Diffusion';
|
||||||
if(document.title != newtitle){
|
if(document.title != newtitle){
|
||||||
document.title = newtitle;
|
document.title = newtitle;
|
||||||
}
|
}
|
||||||
}else{
|
}else{
|
||||||
let newtitle = 'Stable Diffusion'
|
let newtitle = 'Stable Diffusion'
|
||||||
if(document.title != newtitle){
|
if(document.title != newtitle){
|
||||||
document.title = newtitle;
|
document.title = newtitle;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){
|
if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){
|
||||||
global_progressbars[id_progressbar] = progressbar
|
global_progressbars[id_progressbar] = progressbar
|
||||||
|
|
||||||
var mutationObserver = new MutationObserver(function(m){
|
var mutationObserver = new MutationObserver(function(m){
|
||||||
|
if(timeoutIds[id_part]) return;
|
||||||
|
|
||||||
preview = gradioApp().getElementById(id_preview)
|
preview = gradioApp().getElementById(id_preview)
|
||||||
gallery = gradioApp().getElementById(id_gallery)
|
gallery = gradioApp().getElementById(id_gallery)
|
||||||
|
|
||||||
if(preview != null && gallery != null){
|
if(preview != null && gallery != null){
|
||||||
preview.style.width = gallery.clientWidth + "px"
|
preview.style.width = gallery.clientWidth + "px"
|
||||||
preview.style.height = gallery.clientHeight + "px"
|
preview.style.height = gallery.clientHeight + "px"
|
||||||
|
if(progressbarParent) progressbar.style.width = progressbarParent.clientWidth + "px"
|
||||||
|
|
||||||
//only watch gallery if there is a generation process going on
|
//only watch gallery if there is a generation process going on
|
||||||
check_gallery(id_gallery);
|
check_gallery(id_gallery);
|
||||||
|
|
||||||
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
|
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
|
||||||
if(!progressDiv){
|
if(progressDiv){
|
||||||
|
timeoutIds[id_part] = window.setTimeout(function() {
|
||||||
|
timeoutIds[id_part] = null
|
||||||
|
requestMoreProgress(id_part, id_progressbar_span, id_skip, id_interrupt)
|
||||||
|
}, 500)
|
||||||
|
} else{
|
||||||
if (skip) {
|
if (skip) {
|
||||||
skip.style.display = "none"
|
skip.style.display = "none"
|
||||||
}
|
}
|
||||||
interrupt.style.display = "none"
|
interrupt.style.display = "none"
|
||||||
|
|
||||||
//disconnect observer once generation finished, so user can close selected image if they want
|
//disconnect observer once generation finished, so user can close selected image if they want
|
||||||
if (galleryObservers[id_gallery]) {
|
if (galleryObservers[id_gallery]) {
|
||||||
galleryObservers[id_gallery].disconnect();
|
galleryObservers[id_gallery].disconnect();
|
||||||
galleries[id_gallery] = null;
|
galleries[id_gallery] = null;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
window.setTimeout(function() { requestMoreProgress(id_part, id_progressbar_span, id_skip, id_interrupt) }, 500)
|
|
||||||
});
|
});
|
||||||
mutationObserver.observe( progressbar, { childList:true, subtree:true })
|
mutationObserver.observe( progressbar, { childList:true, subtree:true })
|
||||||
}
|
}
|
||||||
@ -74,14 +92,26 @@ function check_gallery(id_gallery){
|
|||||||
if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
|
if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
|
||||||
// automatically re-open previously selected index (if exists)
|
// automatically re-open previously selected index (if exists)
|
||||||
activeElement = gradioApp().activeElement;
|
activeElement = gradioApp().activeElement;
|
||||||
|
let scrollX = window.scrollX;
|
||||||
|
let scrollY = window.scrollY;
|
||||||
|
|
||||||
galleryButtons[prevSelectedIndex].click();
|
galleryButtons[prevSelectedIndex].click();
|
||||||
showGalleryImage();
|
showGalleryImage();
|
||||||
|
|
||||||
|
// When the gallery button is clicked, it gains focus and scrolls itself into view
|
||||||
|
// We need to scroll back to the previous position
|
||||||
|
setTimeout(function (){
|
||||||
|
window.scrollTo(scrollX, scrollY);
|
||||||
|
}, 50);
|
||||||
|
|
||||||
if(activeElement){
|
if(activeElement){
|
||||||
// i fought this for about an hour; i don't know why the focus is lost or why this helps recover it
|
// i fought this for about an hour; i don't know why the focus is lost or why this helps recover it
|
||||||
// if somenoe has a better solution please by all means
|
// if someone has a better solution please by all means
|
||||||
setTimeout(function() { activeElement.focus() }, 1);
|
setTimeout(function (){
|
||||||
|
activeElement.focus({
|
||||||
|
preventScroll: true // Refocus the element that was focused before the gallery was opened without scrolling to it
|
||||||
|
})
|
||||||
|
}, 1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
// various functions for interation with ui.py not large enough to warrant putting them in separate files
|
// various functions for interaction with ui.py not large enough to warrant putting them in separate files
|
||||||
|
|
||||||
function set_theme(theme){
|
function set_theme(theme){
|
||||||
gradioURL = window.location.href
|
gradioURL = window.location.href
|
||||||
@ -8,8 +8,8 @@ function set_theme(theme){
|
|||||||
}
|
}
|
||||||
|
|
||||||
function selected_gallery_index(){
|
function selected_gallery_index(){
|
||||||
var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem .gallery-item')
|
var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item')
|
||||||
var button = gradioApp().querySelector('[style="display: block;"].tabitem .gallery-item.\\!ring-2')
|
var button = gradioApp().querySelector('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item.\\!ring-2')
|
||||||
|
|
||||||
var result = -1
|
var result = -1
|
||||||
buttons.forEach(function(v, i){ if(v==button) { result = i } })
|
buttons.forEach(function(v, i){ if(v==button) { result = i } })
|
||||||
@ -19,7 +19,7 @@ function selected_gallery_index(){
|
|||||||
|
|
||||||
function extract_image_from_gallery(gallery){
|
function extract_image_from_gallery(gallery){
|
||||||
if(gallery.length == 1){
|
if(gallery.length == 1){
|
||||||
return gallery[0]
|
return [gallery[0]]
|
||||||
}
|
}
|
||||||
|
|
||||||
index = selected_gallery_index()
|
index = selected_gallery_index()
|
||||||
@ -28,7 +28,7 @@ function extract_image_from_gallery(gallery){
|
|||||||
return [null]
|
return [null]
|
||||||
}
|
}
|
||||||
|
|
||||||
return gallery[index];
|
return [gallery[index]];
|
||||||
}
|
}
|
||||||
|
|
||||||
function args_to_array(args){
|
function args_to_array(args){
|
||||||
@ -45,16 +45,16 @@ function switch_to_txt2img(){
|
|||||||
return args_to_array(arguments);
|
return args_to_array(arguments);
|
||||||
}
|
}
|
||||||
|
|
||||||
function switch_to_img2img_img2img(){
|
function switch_to_img2img(){
|
||||||
gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click();
|
gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click();
|
||||||
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[0].click();
|
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[0].click();
|
||||||
|
|
||||||
return args_to_array(arguments);
|
return args_to_array(arguments);
|
||||||
}
|
}
|
||||||
|
|
||||||
function switch_to_img2img_inpaint(){
|
function switch_to_inpaint(){
|
||||||
gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click();
|
gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click();
|
||||||
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[1].click();
|
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[2].click();
|
||||||
|
|
||||||
return args_to_array(arguments);
|
return args_to_array(arguments);
|
||||||
}
|
}
|
||||||
@ -65,26 +65,6 @@ function switch_to_extras(){
|
|||||||
return args_to_array(arguments);
|
return args_to_array(arguments);
|
||||||
}
|
}
|
||||||
|
|
||||||
function extract_image_from_gallery_txt2img(gallery){
|
|
||||||
switch_to_txt2img()
|
|
||||||
return extract_image_from_gallery(gallery);
|
|
||||||
}
|
|
||||||
|
|
||||||
function extract_image_from_gallery_img2img(gallery){
|
|
||||||
switch_to_img2img_img2img()
|
|
||||||
return extract_image_from_gallery(gallery);
|
|
||||||
}
|
|
||||||
|
|
||||||
function extract_image_from_gallery_inpaint(gallery){
|
|
||||||
switch_to_img2img_inpaint()
|
|
||||||
return extract_image_from_gallery(gallery);
|
|
||||||
}
|
|
||||||
|
|
||||||
function extract_image_from_gallery_extras(gallery){
|
|
||||||
switch_to_extras()
|
|
||||||
return extract_image_from_gallery(gallery);
|
|
||||||
}
|
|
||||||
|
|
||||||
function get_tab_index(tabId){
|
function get_tab_index(tabId){
|
||||||
var res = 0
|
var res = 0
|
||||||
|
|
||||||
@ -120,7 +100,7 @@ function create_submit_args(args){
|
|||||||
|
|
||||||
// As it is currently, txt2img and img2img send back the previous output args (txt2img_gallery, generation_info, html_info) whenever you generate a new image.
|
// As it is currently, txt2img and img2img send back the previous output args (txt2img_gallery, generation_info, html_info) whenever you generate a new image.
|
||||||
// This can lead to uploading a huge gallery of previously generated images, which leads to an unnecessary delay between submitting and beginning to generate.
|
// This can lead to uploading a huge gallery of previously generated images, which leads to an unnecessary delay between submitting and beginning to generate.
|
||||||
// I don't know why gradio is seding outputs along with inputs, but we can prevent sending the image gallery here, which seems to be an issue for some.
|
// I don't know why gradio is sending outputs along with inputs, but we can prevent sending the image gallery here, which seems to be an issue for some.
|
||||||
// If gradio at some point stops sending outputs, this may break something
|
// If gradio at some point stops sending outputs, this may break something
|
||||||
if(Array.isArray(res[res.length - 3])){
|
if(Array.isArray(res[res.length - 3])){
|
||||||
res[res.length - 3] = null
|
res[res.length - 3] = null
|
||||||
@ -151,6 +131,15 @@ function ask_for_style_name(_, prompt_text, negative_prompt_text) {
|
|||||||
return [name_, prompt_text, negative_prompt_text]
|
return [name_, prompt_text, negative_prompt_text]
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function confirm_clear_prompt(prompt, negative_prompt) {
|
||||||
|
if(confirm("Delete prompt?")) {
|
||||||
|
prompt = ""
|
||||||
|
negative_prompt = ""
|
||||||
|
}
|
||||||
|
|
||||||
|
return [prompt, negative_prompt]
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
opts = {}
|
opts = {}
|
||||||
@ -199,6 +188,17 @@ onUiUpdate(function(){
|
|||||||
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea");
|
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea");
|
||||||
img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button"));
|
img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button"));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
show_all_pages = gradioApp().getElementById('settings_show_all_pages')
|
||||||
|
settings_tabs = gradioApp().querySelector('#settings div')
|
||||||
|
if(show_all_pages && settings_tabs){
|
||||||
|
settings_tabs.appendChild(show_all_pages)
|
||||||
|
show_all_pages.onclick = function(){
|
||||||
|
gradioApp().querySelectorAll('#settings > div').forEach(function(elem){
|
||||||
|
elem.style.display = "block";
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
})
|
})
|
||||||
|
|
||||||
let txt2img_textarea, img2img_textarea = undefined;
|
let txt2img_textarea, img2img_textarea = undefined;
|
||||||
@ -228,4 +228,6 @@ function update_token_counter(button_id) {
|
|||||||
function restart_reload(){
|
function restart_reload(){
|
||||||
document.body.innerHTML='<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>';
|
document.body.innerHTML='<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>';
|
||||||
setTimeout(function(){location.reload()},2000)
|
setTimeout(function(){location.reload()},2000)
|
||||||
|
|
||||||
|
return []
|
||||||
}
|
}
|
||||||
|
152
launch.py
152
launch.py
@ -5,22 +5,53 @@ import sys
|
|||||||
import importlib.util
|
import importlib.util
|
||||||
import shlex
|
import shlex
|
||||||
import platform
|
import platform
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
|
||||||
dir_repos = "repositories"
|
dir_repos = "repositories"
|
||||||
|
dir_extensions = "extensions"
|
||||||
python = sys.executable
|
python = sys.executable
|
||||||
git = os.environ.get('GIT', "git")
|
git = os.environ.get('GIT', "git")
|
||||||
index_url = os.environ.get('INDEX_URL', "")
|
index_url = os.environ.get('INDEX_URL', "")
|
||||||
|
stored_commit_hash = None
|
||||||
|
|
||||||
|
|
||||||
|
def commit_hash():
|
||||||
|
global stored_commit_hash
|
||||||
|
|
||||||
|
if stored_commit_hash is not None:
|
||||||
|
return stored_commit_hash
|
||||||
|
|
||||||
|
try:
|
||||||
|
stored_commit_hash = run(f"{git} rev-parse HEAD").strip()
|
||||||
|
except Exception:
|
||||||
|
stored_commit_hash = "<none>"
|
||||||
|
|
||||||
|
return stored_commit_hash
|
||||||
|
|
||||||
|
|
||||||
def extract_arg(args, name):
|
def extract_arg(args, name):
|
||||||
return [x for x in args if x != name], name in args
|
return [x for x in args if x != name], name in args
|
||||||
|
|
||||||
|
|
||||||
def run(command, desc=None, errdesc=None):
|
def extract_opt(args, name):
|
||||||
|
opt = None
|
||||||
|
is_present = False
|
||||||
|
if name in args:
|
||||||
|
is_present = True
|
||||||
|
idx = args.index(name)
|
||||||
|
del args[idx]
|
||||||
|
if idx < len(args) and args[idx][0] != "-":
|
||||||
|
opt = args[idx]
|
||||||
|
del args[idx]
|
||||||
|
return args, is_present, opt
|
||||||
|
|
||||||
|
|
||||||
|
def run(command, desc=None, errdesc=None, custom_env=None):
|
||||||
if desc is not None:
|
if desc is not None:
|
||||||
print(desc)
|
print(desc)
|
||||||
|
|
||||||
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, env=os.environ if custom_env is None else custom_env)
|
||||||
|
|
||||||
if result.returncode != 0:
|
if result.returncode != 0:
|
||||||
|
|
||||||
@ -101,45 +132,84 @@ def version_check(commit):
|
|||||||
else:
|
else:
|
||||||
print("Not a git clone, can't perform version check.")
|
print("Not a git clone, can't perform version check.")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print("versipm check failed",e)
|
print("version check failed", e)
|
||||||
|
|
||||||
|
|
||||||
def prepare_enviroment():
|
def run_extension_installer(extension_dir):
|
||||||
|
path_installer = os.path.join(extension_dir, "install.py")
|
||||||
|
if not os.path.isfile(path_installer):
|
||||||
|
return
|
||||||
|
|
||||||
|
try:
|
||||||
|
env = os.environ.copy()
|
||||||
|
env['PYTHONPATH'] = os.path.abspath(".")
|
||||||
|
|
||||||
|
print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env))
|
||||||
|
except Exception as e:
|
||||||
|
print(e, file=sys.stderr)
|
||||||
|
|
||||||
|
|
||||||
|
def list_extensions(settings_file):
|
||||||
|
settings = {}
|
||||||
|
|
||||||
|
try:
|
||||||
|
if os.path.isfile(settings_file):
|
||||||
|
with open(settings_file, "r", encoding="utf8") as file:
|
||||||
|
settings = json.load(file)
|
||||||
|
except Exception as e:
|
||||||
|
print(e, file=sys.stderr)
|
||||||
|
|
||||||
|
disabled_extensions = set(settings.get('disabled_extensions', []))
|
||||||
|
|
||||||
|
return [x for x in os.listdir(dir_extensions) if x not in disabled_extensions]
|
||||||
|
|
||||||
|
|
||||||
|
def run_extensions_installers(settings_file):
|
||||||
|
if not os.path.isdir(dir_extensions):
|
||||||
|
return
|
||||||
|
|
||||||
|
for dirname_extension in list_extensions(settings_file):
|
||||||
|
run_extension_installer(os.path.join(dir_extensions, dirname_extension))
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_environment():
|
||||||
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
|
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
|
||||||
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
||||||
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
|
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
|
||||||
|
|
||||||
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
||||||
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
|
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
|
||||||
deepdanbooru_package = os.environ.get('DEEPDANBOORU_PACKAGE', "git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26")
|
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
|
||||||
|
|
||||||
xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')
|
xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')
|
||||||
|
|
||||||
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/CompVis/stable-diffusion.git")
|
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
|
||||||
taming_transformers_repo = os.environ.get('TAMING_REANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
|
taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
|
||||||
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
|
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
|
||||||
codeformer_repo = os.environ.get('CODEFORMET_REPO', 'https://github.com/sczhou/CodeFormer.git')
|
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
|
||||||
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
|
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
|
||||||
|
|
||||||
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
|
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "47b6b607fdd31875c9279cd2f4f16b92e4ea958e")
|
||||||
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
||||||
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "f4e99857772fc3a126ba886aadf795a332774878")
|
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "5b3af030dd83e0297272d861c19477735d0317ec")
|
||||||
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
||||||
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
||||||
|
|
||||||
sys.argv += shlex.split(commandline_args)
|
sys.argv += shlex.split(commandline_args)
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json')
|
||||||
|
args, _ = parser.parse_known_args(sys.argv)
|
||||||
|
|
||||||
|
sys.argv, _ = extract_arg(sys.argv, '-f')
|
||||||
sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
|
sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
|
||||||
sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
|
sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
|
||||||
sys.argv, update_check = extract_arg(sys.argv, '--update-check')
|
sys.argv, update_check = extract_arg(sys.argv, '--update-check')
|
||||||
|
sys.argv, run_tests, test_dir = extract_opt(sys.argv, '--tests')
|
||||||
xformers = '--xformers' in sys.argv
|
xformers = '--xformers' in sys.argv
|
||||||
deepdanbooru = '--deepdanbooru' in sys.argv
|
|
||||||
ngrok = '--ngrok' in sys.argv
|
ngrok = '--ngrok' in sys.argv
|
||||||
|
|
||||||
try:
|
commit = commit_hash()
|
||||||
commit = run(f"{git} rev-parse HEAD").strip()
|
|
||||||
except Exception:
|
|
||||||
commit = "<none>"
|
|
||||||
|
|
||||||
print(f"Python {sys.version}")
|
print(f"Python {sys.version}")
|
||||||
print(f"Commit hash: {commit}")
|
print(f"Commit hash: {commit}")
|
||||||
@ -156,6 +226,9 @@ def prepare_enviroment():
|
|||||||
if not is_installed("clip"):
|
if not is_installed("clip"):
|
||||||
run_pip(f"install {clip_package}", "clip")
|
run_pip(f"install {clip_package}", "clip")
|
||||||
|
|
||||||
|
if not is_installed("open_clip"):
|
||||||
|
run_pip(f"install {openclip_package}", "open_clip")
|
||||||
|
|
||||||
if (not is_installed("xformers") or reinstall_xformers) and xformers:
|
if (not is_installed("xformers") or reinstall_xformers) and xformers:
|
||||||
if platform.system() == "Windows":
|
if platform.system() == "Windows":
|
||||||
if platform.python_version().startswith("3.10"):
|
if platform.python_version().startswith("3.10"):
|
||||||
@ -168,15 +241,12 @@ def prepare_enviroment():
|
|||||||
elif platform.system() == "Linux":
|
elif platform.system() == "Linux":
|
||||||
run_pip("install xformers", "xformers")
|
run_pip("install xformers", "xformers")
|
||||||
|
|
||||||
if not is_installed("deepdanbooru") and deepdanbooru:
|
|
||||||
run_pip(f"install {deepdanbooru_package}#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
|
|
||||||
|
|
||||||
if not is_installed("pyngrok") and ngrok:
|
if not is_installed("pyngrok") and ngrok:
|
||||||
run_pip("install pyngrok", "ngrok")
|
run_pip("install pyngrok", "ngrok")
|
||||||
|
|
||||||
os.makedirs(dir_repos, exist_ok=True)
|
os.makedirs(dir_repos, exist_ok=True)
|
||||||
|
|
||||||
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
|
||||||
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
||||||
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
||||||
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
||||||
@ -187,6 +257,8 @@ def prepare_enviroment():
|
|||||||
|
|
||||||
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
||||||
|
|
||||||
|
run_extensions_installers(settings_file=args.ui_settings_file)
|
||||||
|
|
||||||
if update_check:
|
if update_check:
|
||||||
version_check(commit)
|
version_check(commit)
|
||||||
|
|
||||||
@ -194,13 +266,43 @@ def prepare_enviroment():
|
|||||||
print("Exiting because of --exit argument")
|
print("Exiting because of --exit argument")
|
||||||
exit(0)
|
exit(0)
|
||||||
|
|
||||||
|
if run_tests:
|
||||||
|
exitcode = tests(test_dir)
|
||||||
|
exit(exitcode)
|
||||||
|
|
||||||
def start_webui():
|
|
||||||
print(f"Launching Web UI with arguments: {' '.join(sys.argv[1:])}")
|
def tests(test_dir):
|
||||||
|
if "--api" not in sys.argv:
|
||||||
|
sys.argv.append("--api")
|
||||||
|
if "--ckpt" not in sys.argv:
|
||||||
|
sys.argv.append("--ckpt")
|
||||||
|
sys.argv.append("./test/test_files/empty.pt")
|
||||||
|
if "--skip-torch-cuda-test" not in sys.argv:
|
||||||
|
sys.argv.append("--skip-torch-cuda-test")
|
||||||
|
|
||||||
|
print(f"Launching Web UI in another process for testing with arguments: {' '.join(sys.argv[1:])}")
|
||||||
|
|
||||||
|
os.environ['COMMANDLINE_ARGS'] = ""
|
||||||
|
with open('test/stdout.txt', "w", encoding="utf8") as stdout, open('test/stderr.txt', "w", encoding="utf8") as stderr:
|
||||||
|
proc = subprocess.Popen([sys.executable, *sys.argv], stdout=stdout, stderr=stderr)
|
||||||
|
|
||||||
|
import test.server_poll
|
||||||
|
exitcode = test.server_poll.run_tests(proc, test_dir)
|
||||||
|
|
||||||
|
print(f"Stopping Web UI process with id {proc.pid}")
|
||||||
|
proc.kill()
|
||||||
|
return exitcode
|
||||||
|
|
||||||
|
|
||||||
|
def start():
|
||||||
|
print(f"Launching {'API server' if '--nowebui' in sys.argv else 'Web UI'} with arguments: {' '.join(sys.argv[1:])}")
|
||||||
import webui
|
import webui
|
||||||
webui.webui()
|
if '--nowebui' in sys.argv:
|
||||||
|
webui.api_only()
|
||||||
|
else:
|
||||||
|
webui.webui()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
prepare_enviroment()
|
prepare_environment()
|
||||||
start_webui()
|
start()
|
||||||
|
BIN
models/VAE-approx/model.pt
Normal file
BIN
models/VAE-approx/model.pt
Normal file
Binary file not shown.
0
models/VAE/Put VAE here.txt
Normal file
0
models/VAE/Put VAE here.txt
Normal file
@ -1,67 +1,540 @@
|
|||||||
from modules.api.processing import StableDiffusionProcessingAPI
|
|
||||||
from modules.processing import StableDiffusionProcessingTxt2Img, process_images
|
|
||||||
from modules.sd_samplers import all_samplers
|
|
||||||
from modules.extras import run_pnginfo
|
|
||||||
import modules.shared as shared
|
|
||||||
import uvicorn
|
|
||||||
from fastapi import Body, APIRouter, HTTPException
|
|
||||||
from fastapi.responses import JSONResponse
|
|
||||||
from pydantic import BaseModel, Field, Json
|
|
||||||
import json
|
|
||||||
import io
|
|
||||||
import base64
|
import base64
|
||||||
|
import io
|
||||||
|
import time
|
||||||
|
import datetime
|
||||||
|
import uvicorn
|
||||||
|
from threading import Lock
|
||||||
|
from io import BytesIO
|
||||||
|
from gradio.processing_utils import decode_base64_to_file
|
||||||
|
from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
|
||||||
|
from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
||||||
|
from secrets import compare_digest
|
||||||
|
|
||||||
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
import modules.shared as shared
|
||||||
|
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui
|
||||||
|
from modules.api.models import *
|
||||||
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||||
|
from modules.extras import run_extras
|
||||||
|
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
|
||||||
|
from modules.textual_inversion.preprocess import preprocess
|
||||||
|
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
|
||||||
|
from PIL import PngImagePlugin,Image
|
||||||
|
from modules.sd_models import checkpoints_list, find_checkpoint_config
|
||||||
|
from modules.realesrgan_model import get_realesrgan_models
|
||||||
|
from modules import devices
|
||||||
|
from typing import List
|
||||||
|
|
||||||
class TextToImageResponse(BaseModel):
|
def upscaler_to_index(name: str):
|
||||||
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
try:
|
||||||
parameters: Json
|
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
||||||
info: Json
|
except:
|
||||||
|
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
|
|
||||||
|
def script_name_to_index(name, scripts):
|
||||||
|
try:
|
||||||
|
return [script.title().lower() for script in scripts].index(name.lower())
|
||||||
|
except:
|
||||||
|
raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
|
||||||
|
|
||||||
|
def validate_sampler_name(name):
|
||||||
|
config = sd_samplers.all_samplers_map.get(name, None)
|
||||||
|
if config is None:
|
||||||
|
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||||
|
|
||||||
|
return name
|
||||||
|
|
||||||
|
def setUpscalers(req: dict):
|
||||||
|
reqDict = vars(req)
|
||||||
|
reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
|
||||||
|
reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
|
||||||
|
reqDict.pop('upscaler_1')
|
||||||
|
reqDict.pop('upscaler_2')
|
||||||
|
return reqDict
|
||||||
|
|
||||||
|
def decode_base64_to_image(encoding):
|
||||||
|
if encoding.startswith("data:image/"):
|
||||||
|
encoding = encoding.split(";")[1].split(",")[1]
|
||||||
|
return Image.open(BytesIO(base64.b64decode(encoding)))
|
||||||
|
|
||||||
|
def encode_pil_to_base64(image):
|
||||||
|
with io.BytesIO() as output_bytes:
|
||||||
|
|
||||||
|
# Copy any text-only metadata
|
||||||
|
use_metadata = False
|
||||||
|
metadata = PngImagePlugin.PngInfo()
|
||||||
|
for key, value in image.info.items():
|
||||||
|
if isinstance(key, str) and isinstance(value, str):
|
||||||
|
metadata.add_text(key, value)
|
||||||
|
use_metadata = True
|
||||||
|
|
||||||
|
image.save(
|
||||||
|
output_bytes, "PNG", pnginfo=(metadata if use_metadata else None)
|
||||||
|
)
|
||||||
|
bytes_data = output_bytes.getvalue()
|
||||||
|
return base64.b64encode(bytes_data)
|
||||||
|
|
||||||
|
def api_middleware(app: FastAPI):
|
||||||
|
@app.middleware("http")
|
||||||
|
async def log_and_time(req: Request, call_next):
|
||||||
|
ts = time.time()
|
||||||
|
res: Response = await call_next(req)
|
||||||
|
duration = str(round(time.time() - ts, 4))
|
||||||
|
res.headers["X-Process-Time"] = duration
|
||||||
|
endpoint = req.scope.get('path', 'err')
|
||||||
|
if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
|
||||||
|
print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
|
||||||
|
t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
|
||||||
|
code = res.status_code,
|
||||||
|
ver = req.scope.get('http_version', '0.0'),
|
||||||
|
cli = req.scope.get('client', ('0:0.0.0', 0))[0],
|
||||||
|
prot = req.scope.get('scheme', 'err'),
|
||||||
|
method = req.scope.get('method', 'err'),
|
||||||
|
endpoint = endpoint,
|
||||||
|
duration = duration,
|
||||||
|
))
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
class Api:
|
class Api:
|
||||||
def __init__(self, app, queue_lock):
|
def __init__(self, app: FastAPI, queue_lock: Lock):
|
||||||
|
if shared.cmd_opts.api_auth:
|
||||||
|
self.credentials = dict()
|
||||||
|
for auth in shared.cmd_opts.api_auth.split(","):
|
||||||
|
user, password = auth.split(":")
|
||||||
|
self.credentials[user] = password
|
||||||
|
|
||||||
self.router = APIRouter()
|
self.router = APIRouter()
|
||||||
self.app = app
|
self.app = app
|
||||||
self.queue_lock = queue_lock
|
self.queue_lock = queue_lock
|
||||||
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
|
api_middleware(self.app)
|
||||||
|
self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
|
||||||
|
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
|
||||||
|
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
|
||||||
|
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
|
||||||
|
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
|
||||||
|
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
|
||||||
|
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
|
||||||
|
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
|
||||||
|
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
|
||||||
|
self.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
|
||||||
|
self.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
|
||||||
|
self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)
|
||||||
|
|
||||||
|
def add_api_route(self, path: str, endpoint, **kwargs):
|
||||||
|
if shared.cmd_opts.api_auth:
|
||||||
|
return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
|
||||||
|
return self.app.add_api_route(path, endpoint, **kwargs)
|
||||||
|
|
||||||
|
def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
|
||||||
|
if credentials.username in self.credentials:
|
||||||
|
if compare_digest(credentials.password, self.credentials[credentials.username]):
|
||||||
|
return True
|
||||||
|
|
||||||
|
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
|
||||||
|
|
||||||
|
def get_script(self, script_name, script_runner):
|
||||||
|
if script_name is None:
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
if not script_runner.scripts:
|
||||||
|
script_runner.initialize_scripts(False)
|
||||||
|
ui.create_ui()
|
||||||
|
|
||||||
|
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
|
||||||
|
script = script_runner.selectable_scripts[script_idx]
|
||||||
|
return script, script_idx
|
||||||
|
|
||||||
|
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||||
|
script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
|
||||||
|
|
||||||
def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ):
|
|
||||||
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
|
||||||
|
|
||||||
if sampler_index is None:
|
|
||||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
|
||||||
|
|
||||||
populate = txt2imgreq.copy(update={ # Override __init__ params
|
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||||
"sd_model": shared.sd_model,
|
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
|
||||||
"sampler_index": sampler_index[0],
|
|
||||||
"do_not_save_samples": True,
|
"do_not_save_samples": True,
|
||||||
"do_not_save_grid": True
|
"do_not_save_grid": True
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
p = StableDiffusionProcessingTxt2Img(**vars(populate))
|
if populate.sampler_name:
|
||||||
|
populate.sampler_index = None # prevent a warning later on
|
||||||
|
|
||||||
|
args = vars(populate)
|
||||||
|
args.pop('script_name', None)
|
||||||
|
|
||||||
|
with self.queue_lock:
|
||||||
|
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
|
||||||
|
|
||||||
|
shared.state.begin()
|
||||||
|
if script is not None:
|
||||||
|
p.outpath_grids = opts.outdir_txt2img_grids
|
||||||
|
p.outpath_samples = opts.outdir_txt2img_samples
|
||||||
|
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
|
||||||
|
processed = scripts.scripts_txt2img.run(p, *p.script_args)
|
||||||
|
else:
|
||||||
|
processed = process_images(p)
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
|
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||||
|
|
||||||
|
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
||||||
|
|
||||||
|
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
||||||
|
init_images = img2imgreq.init_images
|
||||||
|
if init_images is None:
|
||||||
|
raise HTTPException(status_code=404, detail="Init image not found")
|
||||||
|
|
||||||
|
script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
|
||||||
|
|
||||||
|
mask = img2imgreq.mask
|
||||||
|
if mask:
|
||||||
|
mask = decode_base64_to_image(mask)
|
||||||
|
|
||||||
|
populate = img2imgreq.copy(update={ # Override __init__ params
|
||||||
|
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
|
||||||
|
"do_not_save_samples": True,
|
||||||
|
"do_not_save_grid": True,
|
||||||
|
"mask": mask
|
||||||
|
}
|
||||||
|
)
|
||||||
|
if populate.sampler_name:
|
||||||
|
populate.sampler_index = None # prevent a warning later on
|
||||||
|
|
||||||
|
args = vars(populate)
|
||||||
|
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
|
||||||
|
args.pop('script_name', None)
|
||||||
|
|
||||||
|
with self.queue_lock:
|
||||||
|
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
|
||||||
|
p.init_images = [decode_base64_to_image(x) for x in init_images]
|
||||||
|
|
||||||
|
shared.state.begin()
|
||||||
|
if script is not None:
|
||||||
|
p.outpath_grids = opts.outdir_img2img_grids
|
||||||
|
p.outpath_samples = opts.outdir_img2img_samples
|
||||||
|
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
|
||||||
|
processed = scripts.scripts_img2img.run(p, *p.script_args)
|
||||||
|
else:
|
||||||
|
processed = process_images(p)
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
|
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||||
|
|
||||||
|
if not img2imgreq.include_init_images:
|
||||||
|
img2imgreq.init_images = None
|
||||||
|
img2imgreq.mask = None
|
||||||
|
|
||||||
|
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
|
||||||
|
|
||||||
|
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
|
||||||
|
reqDict = setUpscalers(req)
|
||||||
|
|
||||||
|
reqDict['image'] = decode_base64_to_image(reqDict['image'])
|
||||||
|
|
||||||
|
with self.queue_lock:
|
||||||
|
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
|
||||||
|
|
||||||
|
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
|
||||||
|
|
||||||
|
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
|
||||||
|
reqDict = setUpscalers(req)
|
||||||
|
|
||||||
|
def prepareFiles(file):
|
||||||
|
file = decode_base64_to_file(file.data, file_path=file.name)
|
||||||
|
file.orig_name = file.name
|
||||||
|
return file
|
||||||
|
|
||||||
|
reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
|
||||||
|
reqDict.pop('imageList')
|
||||||
|
|
||||||
|
with self.queue_lock:
|
||||||
|
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
|
||||||
|
|
||||||
|
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
|
||||||
|
|
||||||
|
def pnginfoapi(self, req: PNGInfoRequest):
|
||||||
|
if(not req.image.strip()):
|
||||||
|
return PNGInfoResponse(info="")
|
||||||
|
|
||||||
|
image = decode_base64_to_image(req.image.strip())
|
||||||
|
if image is None:
|
||||||
|
return PNGInfoResponse(info="")
|
||||||
|
|
||||||
|
geninfo, items = images.read_info_from_image(image)
|
||||||
|
if geninfo is None:
|
||||||
|
geninfo = ""
|
||||||
|
|
||||||
|
items = {**{'parameters': geninfo}, **items}
|
||||||
|
|
||||||
|
return PNGInfoResponse(info=geninfo, items=items)
|
||||||
|
|
||||||
|
def progressapi(self, req: ProgressRequest = Depends()):
|
||||||
|
# copy from check_progress_call of ui.py
|
||||||
|
|
||||||
|
if shared.state.job_count == 0:
|
||||||
|
return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)
|
||||||
|
|
||||||
|
# avoid dividing zero
|
||||||
|
progress = 0.01
|
||||||
|
|
||||||
|
if shared.state.job_count > 0:
|
||||||
|
progress += shared.state.job_no / shared.state.job_count
|
||||||
|
if shared.state.sampling_steps > 0:
|
||||||
|
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
|
||||||
|
|
||||||
|
time_since_start = time.time() - shared.state.time_start
|
||||||
|
eta = (time_since_start/progress)
|
||||||
|
eta_relative = eta-time_since_start
|
||||||
|
|
||||||
|
progress = min(progress, 1)
|
||||||
|
|
||||||
|
shared.state.set_current_image()
|
||||||
|
|
||||||
|
current_image = None
|
||||||
|
if shared.state.current_image and not req.skip_current_image:
|
||||||
|
current_image = encode_pil_to_base64(shared.state.current_image)
|
||||||
|
|
||||||
|
return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)
|
||||||
|
|
||||||
|
def interrogateapi(self, interrogatereq: InterrogateRequest):
|
||||||
|
image_b64 = interrogatereq.image
|
||||||
|
if image_b64 is None:
|
||||||
|
raise HTTPException(status_code=404, detail="Image not found")
|
||||||
|
|
||||||
|
img = decode_base64_to_image(image_b64)
|
||||||
|
img = img.convert('RGB')
|
||||||
|
|
||||||
# Override object param
|
# Override object param
|
||||||
with self.queue_lock:
|
with self.queue_lock:
|
||||||
processed = process_images(p)
|
if interrogatereq.model == "clip":
|
||||||
|
processed = shared.interrogator.interrogate(img)
|
||||||
b64images = []
|
elif interrogatereq.model == "deepdanbooru":
|
||||||
for i in processed.images:
|
processed = deepbooru.model.tag(img)
|
||||||
buffer = io.BytesIO()
|
else:
|
||||||
i.save(buffer, format="png")
|
raise HTTPException(status_code=404, detail="Model not found")
|
||||||
b64images.append(base64.b64encode(buffer.getvalue()))
|
|
||||||
|
|
||||||
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info))
|
return InterrogateResponse(caption=processed)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def img2imgapi(self):
|
def interruptapi(self):
|
||||||
raise NotImplementedError
|
shared.state.interrupt()
|
||||||
|
|
||||||
def extrasapi(self):
|
return {}
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
def pnginfoapi(self):
|
def skip(self):
|
||||||
raise NotImplementedError
|
shared.state.skip()
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
options = {}
|
||||||
|
for key in shared.opts.data.keys():
|
||||||
|
metadata = shared.opts.data_labels.get(key)
|
||||||
|
if(metadata is not None):
|
||||||
|
options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
|
||||||
|
else:
|
||||||
|
options.update({key: shared.opts.data.get(key, None)})
|
||||||
|
|
||||||
|
return options
|
||||||
|
|
||||||
|
def set_config(self, req: Dict[str, Any]):
|
||||||
|
for k, v in req.items():
|
||||||
|
shared.opts.set(k, v)
|
||||||
|
|
||||||
|
shared.opts.save(shared.config_filename)
|
||||||
|
return
|
||||||
|
|
||||||
|
def get_cmd_flags(self):
|
||||||
|
return vars(shared.cmd_opts)
|
||||||
|
|
||||||
|
def get_samplers(self):
|
||||||
|
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
|
||||||
|
|
||||||
|
def get_upscalers(self):
|
||||||
|
upscalers = []
|
||||||
|
|
||||||
|
for upscaler in shared.sd_upscalers:
|
||||||
|
u = upscaler.scaler
|
||||||
|
upscalers.append({"name":u.name, "model_name":u.model_name, "model_path":u.model_path, "model_url":u.model_url})
|
||||||
|
|
||||||
|
return upscalers
|
||||||
|
|
||||||
|
def get_sd_models(self):
|
||||||
|
return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()]
|
||||||
|
|
||||||
|
def get_hypernetworks(self):
|
||||||
|
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
|
||||||
|
|
||||||
|
def get_face_restorers(self):
|
||||||
|
return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
|
||||||
|
|
||||||
|
def get_realesrgan_models(self):
|
||||||
|
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
|
||||||
|
|
||||||
|
def get_prompt_styles(self):
|
||||||
|
styleList = []
|
||||||
|
for k in shared.prompt_styles.styles:
|
||||||
|
style = shared.prompt_styles.styles[k]
|
||||||
|
styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
|
||||||
|
|
||||||
|
return styleList
|
||||||
|
|
||||||
|
def get_artists_categories(self):
|
||||||
|
return shared.artist_db.cats
|
||||||
|
|
||||||
|
def get_artists(self):
|
||||||
|
return [{"name":x[0], "score":x[1], "category":x[2]} for x in shared.artist_db.artists]
|
||||||
|
|
||||||
|
def get_embeddings(self):
|
||||||
|
db = sd_hijack.model_hijack.embedding_db
|
||||||
|
|
||||||
|
def convert_embedding(embedding):
|
||||||
|
return {
|
||||||
|
"step": embedding.step,
|
||||||
|
"sd_checkpoint": embedding.sd_checkpoint,
|
||||||
|
"sd_checkpoint_name": embedding.sd_checkpoint_name,
|
||||||
|
"shape": embedding.shape,
|
||||||
|
"vectors": embedding.vectors,
|
||||||
|
}
|
||||||
|
|
||||||
|
def convert_embeddings(embeddings):
|
||||||
|
return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
|
||||||
|
|
||||||
|
return {
|
||||||
|
"loaded": convert_embeddings(db.word_embeddings),
|
||||||
|
"skipped": convert_embeddings(db.skipped_embeddings),
|
||||||
|
}
|
||||||
|
|
||||||
|
def refresh_checkpoints(self):
|
||||||
|
shared.refresh_checkpoints()
|
||||||
|
|
||||||
|
def create_embedding(self, args: dict):
|
||||||
|
try:
|
||||||
|
shared.state.begin()
|
||||||
|
filename = create_embedding(**args) # create empty embedding
|
||||||
|
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
|
||||||
|
shared.state.end()
|
||||||
|
return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
|
||||||
|
except AssertionError as e:
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "create embedding error: {error}".format(error = e))
|
||||||
|
|
||||||
|
def create_hypernetwork(self, args: dict):
|
||||||
|
try:
|
||||||
|
shared.state.begin()
|
||||||
|
filename = create_hypernetwork(**args) # create empty embedding
|
||||||
|
shared.state.end()
|
||||||
|
return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
|
||||||
|
except AssertionError as e:
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
|
||||||
|
|
||||||
|
def preprocess(self, args: dict):
|
||||||
|
try:
|
||||||
|
shared.state.begin()
|
||||||
|
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
|
||||||
|
shared.state.end()
|
||||||
|
return PreprocessResponse(info = 'preprocess complete')
|
||||||
|
except KeyError as e:
|
||||||
|
shared.state.end()
|
||||||
|
return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
|
||||||
|
except AssertionError as e:
|
||||||
|
shared.state.end()
|
||||||
|
return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
|
||||||
|
except FileNotFoundError as e:
|
||||||
|
shared.state.end()
|
||||||
|
return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
|
||||||
|
|
||||||
|
def train_embedding(self, args: dict):
|
||||||
|
try:
|
||||||
|
shared.state.begin()
|
||||||
|
apply_optimizations = shared.opts.training_xattention_optimizations
|
||||||
|
error = None
|
||||||
|
filename = ''
|
||||||
|
if not apply_optimizations:
|
||||||
|
sd_hijack.undo_optimizations()
|
||||||
|
try:
|
||||||
|
embedding, filename = train_embedding(**args) # can take a long time to complete
|
||||||
|
except Exception as e:
|
||||||
|
error = e
|
||||||
|
finally:
|
||||||
|
if not apply_optimizations:
|
||||||
|
sd_hijack.apply_optimizations()
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
|
||||||
|
except AssertionError as msg:
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
|
||||||
|
|
||||||
|
def train_hypernetwork(self, args: dict):
|
||||||
|
try:
|
||||||
|
shared.state.begin()
|
||||||
|
initial_hypernetwork = shared.loaded_hypernetwork
|
||||||
|
apply_optimizations = shared.opts.training_xattention_optimizations
|
||||||
|
error = None
|
||||||
|
filename = ''
|
||||||
|
if not apply_optimizations:
|
||||||
|
sd_hijack.undo_optimizations()
|
||||||
|
try:
|
||||||
|
hypernetwork, filename = train_hypernetwork(*args)
|
||||||
|
except Exception as e:
|
||||||
|
error = e
|
||||||
|
finally:
|
||||||
|
shared.loaded_hypernetwork = initial_hypernetwork
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.device)
|
||||||
|
if not apply_optimizations:
|
||||||
|
sd_hijack.apply_optimizations()
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
|
||||||
|
except AssertionError as msg:
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "train embedding error: {error}".format(error = error))
|
||||||
|
|
||||||
|
def get_memory(self):
|
||||||
|
try:
|
||||||
|
import os, psutil
|
||||||
|
process = psutil.Process(os.getpid())
|
||||||
|
res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values
|
||||||
|
ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe
|
||||||
|
ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total }
|
||||||
|
except Exception as err:
|
||||||
|
ram = { 'error': f'{err}' }
|
||||||
|
try:
|
||||||
|
import torch
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
s = torch.cuda.mem_get_info()
|
||||||
|
system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] }
|
||||||
|
s = dict(torch.cuda.memory_stats(shared.device))
|
||||||
|
allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] }
|
||||||
|
reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] }
|
||||||
|
active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] }
|
||||||
|
inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] }
|
||||||
|
warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] }
|
||||||
|
cuda = {
|
||||||
|
'system': system,
|
||||||
|
'active': active,
|
||||||
|
'allocated': allocated,
|
||||||
|
'reserved': reserved,
|
||||||
|
'inactive': inactive,
|
||||||
|
'events': warnings,
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
cuda = { 'error': 'unavailable' }
|
||||||
|
except Exception as err:
|
||||||
|
cuda = { 'error': f'{err}' }
|
||||||
|
return MemoryResponse(ram = ram, cuda = cuda)
|
||||||
|
|
||||||
def launch(self, server_name, port):
|
def launch(self, server_name, port):
|
||||||
self.app.include_router(self.router)
|
self.app.include_router(self.router)
|
||||||
|
267
modules/api/models.py
Normal file
267
modules/api/models.py
Normal file
@ -0,0 +1,267 @@
|
|||||||
|
import inspect
|
||||||
|
from pydantic import BaseModel, Field, create_model
|
||||||
|
from typing import Any, Optional
|
||||||
|
from typing_extensions import Literal
|
||||||
|
from inflection import underscore
|
||||||
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
||||||
|
from modules.shared import sd_upscalers, opts, parser
|
||||||
|
from typing import Dict, List
|
||||||
|
|
||||||
|
API_NOT_ALLOWED = [
|
||||||
|
"self",
|
||||||
|
"kwargs",
|
||||||
|
"sd_model",
|
||||||
|
"outpath_samples",
|
||||||
|
"outpath_grids",
|
||||||
|
"sampler_index",
|
||||||
|
"do_not_save_samples",
|
||||||
|
"do_not_save_grid",
|
||||||
|
"extra_generation_params",
|
||||||
|
"overlay_images",
|
||||||
|
"do_not_reload_embeddings",
|
||||||
|
"seed_enable_extras",
|
||||||
|
"prompt_for_display",
|
||||||
|
"sampler_noise_scheduler_override",
|
||||||
|
"ddim_discretize"
|
||||||
|
]
|
||||||
|
|
||||||
|
class ModelDef(BaseModel):
|
||||||
|
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
||||||
|
|
||||||
|
field: str
|
||||||
|
field_alias: str
|
||||||
|
field_type: Any
|
||||||
|
field_value: Any
|
||||||
|
field_exclude: bool = False
|
||||||
|
|
||||||
|
|
||||||
|
class PydanticModelGenerator:
|
||||||
|
"""
|
||||||
|
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
|
||||||
|
source_data is a snapshot of the default values produced by the class
|
||||||
|
params are the names of the actual keys required by __init__
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: str = None,
|
||||||
|
class_instance = None,
|
||||||
|
additional_fields = None,
|
||||||
|
):
|
||||||
|
def field_type_generator(k, v):
|
||||||
|
# field_type = str if not overrides.get(k) else overrides[k]["type"]
|
||||||
|
# print(k, v.annotation, v.default)
|
||||||
|
field_type = v.annotation
|
||||||
|
|
||||||
|
return Optional[field_type]
|
||||||
|
|
||||||
|
def merge_class_params(class_):
|
||||||
|
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
|
||||||
|
parameters = {}
|
||||||
|
for classes in all_classes:
|
||||||
|
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
|
||||||
|
return parameters
|
||||||
|
|
||||||
|
|
||||||
|
self._model_name = model_name
|
||||||
|
self._class_data = merge_class_params(class_instance)
|
||||||
|
|
||||||
|
self._model_def = [
|
||||||
|
ModelDef(
|
||||||
|
field=underscore(k),
|
||||||
|
field_alias=k,
|
||||||
|
field_type=field_type_generator(k, v),
|
||||||
|
field_value=v.default
|
||||||
|
)
|
||||||
|
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
|
||||||
|
]
|
||||||
|
|
||||||
|
for fields in additional_fields:
|
||||||
|
self._model_def.append(ModelDef(
|
||||||
|
field=underscore(fields["key"]),
|
||||||
|
field_alias=fields["key"],
|
||||||
|
field_type=fields["type"],
|
||||||
|
field_value=fields["default"],
|
||||||
|
field_exclude=fields["exclude"] if "exclude" in fields else False))
|
||||||
|
|
||||||
|
def generate_model(self):
|
||||||
|
"""
|
||||||
|
Creates a pydantic BaseModel
|
||||||
|
from the json and overrides provided at initialization
|
||||||
|
"""
|
||||||
|
fields = {
|
||||||
|
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def
|
||||||
|
}
|
||||||
|
DynamicModel = create_model(self._model_name, **fields)
|
||||||
|
DynamicModel.__config__.allow_population_by_field_name = True
|
||||||
|
DynamicModel.__config__.allow_mutation = True
|
||||||
|
return DynamicModel
|
||||||
|
|
||||||
|
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
||||||
|
"StableDiffusionProcessingTxt2Img",
|
||||||
|
StableDiffusionProcessingTxt2Img,
|
||||||
|
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
|
||||||
|
).generate_model()
|
||||||
|
|
||||||
|
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
||||||
|
"StableDiffusionProcessingImg2Img",
|
||||||
|
StableDiffusionProcessingImg2Img,
|
||||||
|
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
|
||||||
|
).generate_model()
|
||||||
|
|
||||||
|
class TextToImageResponse(BaseModel):
|
||||||
|
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
parameters: dict
|
||||||
|
info: str
|
||||||
|
|
||||||
|
class ImageToImageResponse(BaseModel):
|
||||||
|
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
parameters: dict
|
||||||
|
info: str
|
||||||
|
|
||||||
|
class ExtrasBaseRequest(BaseModel):
|
||||||
|
resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.")
|
||||||
|
show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?")
|
||||||
|
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
|
||||||
|
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
|
||||||
|
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
|
||||||
|
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.")
|
||||||
|
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
|
||||||
|
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
|
||||||
|
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
|
||||||
|
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
|
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
|
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
|
||||||
|
upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?")
|
||||||
|
|
||||||
|
class ExtraBaseResponse(BaseModel):
|
||||||
|
html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")
|
||||||
|
|
||||||
|
class ExtrasSingleImageRequest(ExtrasBaseRequest):
|
||||||
|
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
|
||||||
|
|
||||||
|
class ExtrasSingleImageResponse(ExtraBaseResponse):
|
||||||
|
image: str = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
|
||||||
|
class FileData(BaseModel):
|
||||||
|
data: str = Field(title="File data", description="Base64 representation of the file")
|
||||||
|
name: str = Field(title="File name")
|
||||||
|
|
||||||
|
class ExtrasBatchImagesRequest(ExtrasBaseRequest):
|
||||||
|
imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")
|
||||||
|
|
||||||
|
class ExtrasBatchImagesResponse(ExtraBaseResponse):
|
||||||
|
images: List[str] = Field(title="Images", description="The generated images in base64 format.")
|
||||||
|
|
||||||
|
class PNGInfoRequest(BaseModel):
|
||||||
|
image: str = Field(title="Image", description="The base64 encoded PNG image")
|
||||||
|
|
||||||
|
class PNGInfoResponse(BaseModel):
|
||||||
|
info: str = Field(title="Image info", description="A string with the parameters used to generate the image")
|
||||||
|
items: dict = Field(title="Items", description="An object containing all the info the image had")
|
||||||
|
|
||||||
|
class ProgressRequest(BaseModel):
|
||||||
|
skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")
|
||||||
|
|
||||||
|
class ProgressResponse(BaseModel):
|
||||||
|
progress: float = Field(title="Progress", description="The progress with a range of 0 to 1")
|
||||||
|
eta_relative: float = Field(title="ETA in secs")
|
||||||
|
state: dict = Field(title="State", description="The current state snapshot")
|
||||||
|
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
|
||||||
|
textinfo: str = Field(default=None, title="Info text", description="Info text used by WebUI.")
|
||||||
|
|
||||||
|
class InterrogateRequest(BaseModel):
|
||||||
|
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
|
||||||
|
model: str = Field(default="clip", title="Model", description="The interrogate model used.")
|
||||||
|
|
||||||
|
class InterrogateResponse(BaseModel):
|
||||||
|
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
|
||||||
|
|
||||||
|
class TrainResponse(BaseModel):
|
||||||
|
info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")
|
||||||
|
|
||||||
|
class CreateResponse(BaseModel):
|
||||||
|
info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
|
||||||
|
|
||||||
|
class PreprocessResponse(BaseModel):
|
||||||
|
info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
|
||||||
|
|
||||||
|
fields = {}
|
||||||
|
for key, metadata in opts.data_labels.items():
|
||||||
|
value = opts.data.get(key)
|
||||||
|
optType = opts.typemap.get(type(metadata.default), type(value))
|
||||||
|
|
||||||
|
if (metadata is not None):
|
||||||
|
fields.update({key: (Optional[optType], Field(
|
||||||
|
default=metadata.default ,description=metadata.label))})
|
||||||
|
else:
|
||||||
|
fields.update({key: (Optional[optType], Field())})
|
||||||
|
|
||||||
|
OptionsModel = create_model("Options", **fields)
|
||||||
|
|
||||||
|
flags = {}
|
||||||
|
_options = vars(parser)['_option_string_actions']
|
||||||
|
for key in _options:
|
||||||
|
if(_options[key].dest != 'help'):
|
||||||
|
flag = _options[key]
|
||||||
|
_type = str
|
||||||
|
if _options[key].default is not None: _type = type(_options[key].default)
|
||||||
|
flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})
|
||||||
|
|
||||||
|
FlagsModel = create_model("Flags", **flags)
|
||||||
|
|
||||||
|
class SamplerItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
aliases: List[str] = Field(title="Aliases")
|
||||||
|
options: Dict[str, str] = Field(title="Options")
|
||||||
|
|
||||||
|
class UpscalerItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
model_name: Optional[str] = Field(title="Model Name")
|
||||||
|
model_path: Optional[str] = Field(title="Path")
|
||||||
|
model_url: Optional[str] = Field(title="URL")
|
||||||
|
|
||||||
|
class SDModelItem(BaseModel):
|
||||||
|
title: str = Field(title="Title")
|
||||||
|
model_name: str = Field(title="Model Name")
|
||||||
|
hash: str = Field(title="Hash")
|
||||||
|
filename: str = Field(title="Filename")
|
||||||
|
config: str = Field(title="Config file")
|
||||||
|
|
||||||
|
class HypernetworkItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
path: Optional[str] = Field(title="Path")
|
||||||
|
|
||||||
|
class FaceRestorerItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
cmd_dir: Optional[str] = Field(title="Path")
|
||||||
|
|
||||||
|
class RealesrganItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
path: Optional[str] = Field(title="Path")
|
||||||
|
scale: Optional[int] = Field(title="Scale")
|
||||||
|
|
||||||
|
class PromptStyleItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
prompt: Optional[str] = Field(title="Prompt")
|
||||||
|
negative_prompt: Optional[str] = Field(title="Negative Prompt")
|
||||||
|
|
||||||
|
class ArtistItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
score: float = Field(title="Score")
|
||||||
|
category: str = Field(title="Category")
|
||||||
|
|
||||||
|
class EmbeddingItem(BaseModel):
|
||||||
|
step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
|
||||||
|
sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
|
||||||
|
sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
|
||||||
|
shape: int = Field(title="Shape", description="The length of each individual vector in the embedding")
|
||||||
|
vectors: int = Field(title="Vectors", description="The number of vectors in the embedding")
|
||||||
|
|
||||||
|
class EmbeddingsResponse(BaseModel):
|
||||||
|
loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model")
|
||||||
|
skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")
|
||||||
|
|
||||||
|
class MemoryResponse(BaseModel):
|
||||||
|
ram: dict = Field(title="RAM", description="System memory stats")
|
||||||
|
cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")
|
@ -1,99 +0,0 @@
|
|||||||
from inflection import underscore
|
|
||||||
from typing import Any, Dict, Optional
|
|
||||||
from pydantic import BaseModel, Field, create_model
|
|
||||||
from modules.processing import StableDiffusionProcessingTxt2Img
|
|
||||||
import inspect
|
|
||||||
|
|
||||||
|
|
||||||
API_NOT_ALLOWED = [
|
|
||||||
"self",
|
|
||||||
"kwargs",
|
|
||||||
"sd_model",
|
|
||||||
"outpath_samples",
|
|
||||||
"outpath_grids",
|
|
||||||
"sampler_index",
|
|
||||||
"do_not_save_samples",
|
|
||||||
"do_not_save_grid",
|
|
||||||
"extra_generation_params",
|
|
||||||
"overlay_images",
|
|
||||||
"do_not_reload_embeddings",
|
|
||||||
"seed_enable_extras",
|
|
||||||
"prompt_for_display",
|
|
||||||
"sampler_noise_scheduler_override",
|
|
||||||
"ddim_discretize"
|
|
||||||
]
|
|
||||||
|
|
||||||
class ModelDef(BaseModel):
|
|
||||||
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
|
||||||
|
|
||||||
field: str
|
|
||||||
field_alias: str
|
|
||||||
field_type: Any
|
|
||||||
field_value: Any
|
|
||||||
|
|
||||||
|
|
||||||
class PydanticModelGenerator:
|
|
||||||
"""
|
|
||||||
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
|
|
||||||
source_data is a snapshot of the default values produced by the class
|
|
||||||
params are the names of the actual keys required by __init__
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
model_name: str = None,
|
|
||||||
class_instance = None,
|
|
||||||
additional_fields = None,
|
|
||||||
):
|
|
||||||
def field_type_generator(k, v):
|
|
||||||
# field_type = str if not overrides.get(k) else overrides[k]["type"]
|
|
||||||
# print(k, v.annotation, v.default)
|
|
||||||
field_type = v.annotation
|
|
||||||
|
|
||||||
return Optional[field_type]
|
|
||||||
|
|
||||||
def merge_class_params(class_):
|
|
||||||
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
|
|
||||||
parameters = {}
|
|
||||||
for classes in all_classes:
|
|
||||||
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
|
|
||||||
return parameters
|
|
||||||
|
|
||||||
|
|
||||||
self._model_name = model_name
|
|
||||||
self._class_data = merge_class_params(class_instance)
|
|
||||||
self._model_def = [
|
|
||||||
ModelDef(
|
|
||||||
field=underscore(k),
|
|
||||||
field_alias=k,
|
|
||||||
field_type=field_type_generator(k, v),
|
|
||||||
field_value=v.default
|
|
||||||
)
|
|
||||||
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
|
|
||||||
]
|
|
||||||
|
|
||||||
for fields in additional_fields:
|
|
||||||
self._model_def.append(ModelDef(
|
|
||||||
field=underscore(fields["key"]),
|
|
||||||
field_alias=fields["key"],
|
|
||||||
field_type=fields["type"],
|
|
||||||
field_value=fields["default"]))
|
|
||||||
|
|
||||||
def generate_model(self):
|
|
||||||
"""
|
|
||||||
Creates a pydantic BaseModel
|
|
||||||
from the json and overrides provided at initialization
|
|
||||||
"""
|
|
||||||
fields = {
|
|
||||||
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def
|
|
||||||
}
|
|
||||||
DynamicModel = create_model(self._model_name, **fields)
|
|
||||||
DynamicModel.__config__.allow_population_by_field_name = True
|
|
||||||
DynamicModel.__config__.allow_mutation = True
|
|
||||||
return DynamicModel
|
|
||||||
|
|
||||||
StableDiffusionProcessingAPI = PydanticModelGenerator(
|
|
||||||
"StableDiffusionProcessingTxt2Img",
|
|
||||||
StableDiffusionProcessingTxt2Img,
|
|
||||||
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
|
||||||
).generate_model()
|
|
@ -1,76 +0,0 @@
|
|||||||
import os.path
|
|
||||||
import sys
|
|
||||||
import traceback
|
|
||||||
|
|
||||||
import PIL.Image
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from basicsr.utils.download_util import load_file_from_url
|
|
||||||
|
|
||||||
import modules.upscaler
|
|
||||||
from modules import devices, modelloader
|
|
||||||
from modules.bsrgan_model_arch import RRDBNet
|
|
||||||
|
|
||||||
|
|
||||||
class UpscalerBSRGAN(modules.upscaler.Upscaler):
|
|
||||||
def __init__(self, dirname):
|
|
||||||
self.name = "BSRGAN"
|
|
||||||
self.model_name = "BSRGAN 4x"
|
|
||||||
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/BSRGAN.pth"
|
|
||||||
self.user_path = dirname
|
|
||||||
super().__init__()
|
|
||||||
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
|
|
||||||
scalers = []
|
|
||||||
if len(model_paths) == 0:
|
|
||||||
scaler_data = modules.upscaler.UpscalerData(self.model_name, self.model_url, self, 4)
|
|
||||||
scalers.append(scaler_data)
|
|
||||||
for file in model_paths:
|
|
||||||
if "http" in file:
|
|
||||||
name = self.model_name
|
|
||||||
else:
|
|
||||||
name = modelloader.friendly_name(file)
|
|
||||||
try:
|
|
||||||
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
|
|
||||||
scalers.append(scaler_data)
|
|
||||||
except Exception:
|
|
||||||
print(f"Error loading BSRGAN model: {file}", file=sys.stderr)
|
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
|
||||||
self.scalers = scalers
|
|
||||||
|
|
||||||
def do_upscale(self, img: PIL.Image, selected_file):
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
model = self.load_model(selected_file)
|
|
||||||
if model is None:
|
|
||||||
return img
|
|
||||||
model.to(devices.device_bsrgan)
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
img = np.array(img)
|
|
||||||
img = img[:, :, ::-1]
|
|
||||||
img = np.moveaxis(img, 2, 0) / 255
|
|
||||||
img = torch.from_numpy(img).float()
|
|
||||||
img = img.unsqueeze(0).to(devices.device_bsrgan)
|
|
||||||
with torch.no_grad():
|
|
||||||
output = model(img)
|
|
||||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
||||||
output = 255. * np.moveaxis(output, 0, 2)
|
|
||||||
output = output.astype(np.uint8)
|
|
||||||
output = output[:, :, ::-1]
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
return PIL.Image.fromarray(output, 'RGB')
|
|
||||||
|
|
||||||
def load_model(self, path: str):
|
|
||||||
if "http" in path:
|
|
||||||
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
|
|
||||||
progress=True)
|
|
||||||
else:
|
|
||||||
filename = path
|
|
||||||
if not os.path.exists(filename) or filename is None:
|
|
||||||
print(f"BSRGAN: Unable to load model from {filename}", file=sys.stderr)
|
|
||||||
return None
|
|
||||||
model = RRDBNet(in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4) # define network
|
|
||||||
model.load_state_dict(torch.load(filename), strict=True)
|
|
||||||
model.eval()
|
|
||||||
for k, v in model.named_parameters():
|
|
||||||
v.requires_grad = False
|
|
||||||
return model
|
|
||||||
|
|
@ -1,102 +0,0 @@
|
|||||||
import functools
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import torch.nn.init as init
|
|
||||||
|
|
||||||
|
|
||||||
def initialize_weights(net_l, scale=1):
|
|
||||||
if not isinstance(net_l, list):
|
|
||||||
net_l = [net_l]
|
|
||||||
for net in net_l:
|
|
||||||
for m in net.modules():
|
|
||||||
if isinstance(m, nn.Conv2d):
|
|
||||||
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
|
||||||
m.weight.data *= scale # for residual block
|
|
||||||
if m.bias is not None:
|
|
||||||
m.bias.data.zero_()
|
|
||||||
elif isinstance(m, nn.Linear):
|
|
||||||
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
|
||||||
m.weight.data *= scale
|
|
||||||
if m.bias is not None:
|
|
||||||
m.bias.data.zero_()
|
|
||||||
elif isinstance(m, nn.BatchNorm2d):
|
|
||||||
init.constant_(m.weight, 1)
|
|
||||||
init.constant_(m.bias.data, 0.0)
|
|
||||||
|
|
||||||
|
|
||||||
def make_layer(block, n_layers):
|
|
||||||
layers = []
|
|
||||||
for _ in range(n_layers):
|
|
||||||
layers.append(block())
|
|
||||||
return nn.Sequential(*layers)
|
|
||||||
|
|
||||||
|
|
||||||
class ResidualDenseBlock_5C(nn.Module):
|
|
||||||
def __init__(self, nf=64, gc=32, bias=True):
|
|
||||||
super(ResidualDenseBlock_5C, self).__init__()
|
|
||||||
# gc: growth channel, i.e. intermediate channels
|
|
||||||
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
|
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
||||||
|
|
||||||
# initialization
|
|
||||||
initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x1 = self.lrelu(self.conv1(x))
|
|
||||||
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
|
||||||
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
|
||||||
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
|
||||||
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
|
||||||
return x5 * 0.2 + x
|
|
||||||
|
|
||||||
|
|
||||||
class RRDB(nn.Module):
|
|
||||||
'''Residual in Residual Dense Block'''
|
|
||||||
|
|
||||||
def __init__(self, nf, gc=32):
|
|
||||||
super(RRDB, self).__init__()
|
|
||||||
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
|
|
||||||
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
|
|
||||||
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
out = self.RDB1(x)
|
|
||||||
out = self.RDB2(out)
|
|
||||||
out = self.RDB3(out)
|
|
||||||
return out * 0.2 + x
|
|
||||||
|
|
||||||
|
|
||||||
class RRDBNet(nn.Module):
|
|
||||||
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4):
|
|
||||||
super(RRDBNet, self).__init__()
|
|
||||||
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
|
||||||
self.sf = sf
|
|
||||||
|
|
||||||
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
||||||
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
|
|
||||||
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
#### upsampling
|
|
||||||
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
if self.sf==4:
|
|
||||||
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
|
|
||||||
|
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
fea = self.conv_first(x)
|
|
||||||
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
|
||||||
fea = fea + trunk
|
|
||||||
|
|
||||||
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
|
||||||
if self.sf==4:
|
|
||||||
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
|
||||||
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
|
||||||
|
|
||||||
return out
|
|
98
modules/call_queue.py
Normal file
98
modules/call_queue.py
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
import html
|
||||||
|
import sys
|
||||||
|
import threading
|
||||||
|
import traceback
|
||||||
|
import time
|
||||||
|
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
queue_lock = threading.Lock()
|
||||||
|
|
||||||
|
|
||||||
|
def wrap_queued_call(func):
|
||||||
|
def f(*args, **kwargs):
|
||||||
|
with queue_lock:
|
||||||
|
res = func(*args, **kwargs)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
return f
|
||||||
|
|
||||||
|
|
||||||
|
def wrap_gradio_gpu_call(func, extra_outputs=None):
|
||||||
|
def f(*args, **kwargs):
|
||||||
|
|
||||||
|
shared.state.begin()
|
||||||
|
|
||||||
|
with queue_lock:
|
||||||
|
res = func(*args, **kwargs)
|
||||||
|
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
|
||||||
|
|
||||||
|
|
||||||
|
def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
|
||||||
|
def f(*args, extra_outputs_array=extra_outputs, **kwargs):
|
||||||
|
run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
|
||||||
|
if run_memmon:
|
||||||
|
shared.mem_mon.monitor()
|
||||||
|
t = time.perf_counter()
|
||||||
|
|
||||||
|
try:
|
||||||
|
res = list(func(*args, **kwargs))
|
||||||
|
except Exception as e:
|
||||||
|
# When printing out our debug argument list, do not print out more than a MB of text
|
||||||
|
max_debug_str_len = 131072 # (1024*1024)/8
|
||||||
|
|
||||||
|
print("Error completing request", file=sys.stderr)
|
||||||
|
argStr = f"Arguments: {str(args)} {str(kwargs)}"
|
||||||
|
print(argStr[:max_debug_str_len], file=sys.stderr)
|
||||||
|
if len(argStr) > max_debug_str_len:
|
||||||
|
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
|
||||||
|
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
shared.state.job = ""
|
||||||
|
shared.state.job_count = 0
|
||||||
|
|
||||||
|
if extra_outputs_array is None:
|
||||||
|
extra_outputs_array = [None, '']
|
||||||
|
|
||||||
|
res = extra_outputs_array + [f"<div class='error'>{html.escape(type(e).__name__+': '+str(e))}</div>"]
|
||||||
|
|
||||||
|
shared.state.skipped = False
|
||||||
|
shared.state.interrupted = False
|
||||||
|
shared.state.job_count = 0
|
||||||
|
|
||||||
|
if not add_stats:
|
||||||
|
return tuple(res)
|
||||||
|
|
||||||
|
elapsed = time.perf_counter() - t
|
||||||
|
elapsed_m = int(elapsed // 60)
|
||||||
|
elapsed_s = elapsed % 60
|
||||||
|
elapsed_text = f"{elapsed_s:.2f}s"
|
||||||
|
if elapsed_m > 0:
|
||||||
|
elapsed_text = f"{elapsed_m}m "+elapsed_text
|
||||||
|
|
||||||
|
if run_memmon:
|
||||||
|
mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
|
||||||
|
active_peak = mem_stats['active_peak']
|
||||||
|
reserved_peak = mem_stats['reserved_peak']
|
||||||
|
sys_peak = mem_stats['system_peak']
|
||||||
|
sys_total = mem_stats['total']
|
||||||
|
sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2)
|
||||||
|
|
||||||
|
vram_html = f"<p class='vram'>Torch active/reserved: {active_peak}/{reserved_peak} MiB, <wbr>Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)</p>"
|
||||||
|
else:
|
||||||
|
vram_html = ''
|
||||||
|
|
||||||
|
# last item is always HTML
|
||||||
|
res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr>{elapsed_text}</p>{vram_html}</div>"
|
||||||
|
|
||||||
|
return tuple(res)
|
||||||
|
|
||||||
|
return f
|
||||||
|
|
@ -382,7 +382,7 @@ class VQAutoEncoder(nn.Module):
|
|||||||
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
||||||
logger.info(f'vqgan is loaded from: {model_path} [params]')
|
logger.info(f'vqgan is loaded from: {model_path} [params]')
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'Wrong params!')
|
raise ValueError('Wrong params!')
|
||||||
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
@ -431,7 +431,7 @@ class VQGANDiscriminator(nn.Module):
|
|||||||
elif 'params' in chkpt:
|
elif 'params' in chkpt:
|
||||||
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'Wrong params!')
|
raise ValueError('Wrong params!')
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.main(x)
|
return self.main(x)
|
@ -36,6 +36,7 @@ def setup_model(dirname):
|
|||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
from basicsr.utils import imwrite, img2tensor, tensor2img
|
from basicsr.utils import imwrite, img2tensor, tensor2img
|
||||||
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
||||||
|
from facelib.detection.retinaface import retinaface
|
||||||
from modules.shared import cmd_opts
|
from modules.shared import cmd_opts
|
||||||
|
|
||||||
net_class = CodeFormer
|
net_class = CodeFormer
|
||||||
@ -65,6 +66,8 @@ def setup_model(dirname):
|
|||||||
net.load_state_dict(checkpoint)
|
net.load_state_dict(checkpoint)
|
||||||
net.eval()
|
net.eval()
|
||||||
|
|
||||||
|
if hasattr(retinaface, 'device'):
|
||||||
|
retinaface.device = devices.device_codeformer
|
||||||
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
|
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
|
||||||
|
|
||||||
self.net = net
|
self.net = net
|
||||||
|
@ -1,172 +1,99 @@
|
|||||||
import os.path
|
import os
|
||||||
from concurrent.futures import ProcessPoolExecutor
|
|
||||||
import multiprocessing
|
|
||||||
import time
|
|
||||||
import re
|
import re
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from modules import modelloader, paths, deepbooru_model, devices, images, shared
|
||||||
|
|
||||||
re_special = re.compile(r'([\\()])')
|
re_special = re.compile(r'([\\()])')
|
||||||
|
|
||||||
def get_deepbooru_tags(pil_image):
|
|
||||||
"""
|
|
||||||
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
|
|
||||||
"""
|
|
||||||
from modules import shared # prevents circular reference
|
|
||||||
|
|
||||||
try:
|
class DeepDanbooru:
|
||||||
create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, create_deepbooru_opts())
|
def __init__(self):
|
||||||
return get_tags_from_process(pil_image)
|
self.model = None
|
||||||
finally:
|
|
||||||
release_process()
|
|
||||||
|
|
||||||
|
def load(self):
|
||||||
|
if self.model is not None:
|
||||||
|
return
|
||||||
|
|
||||||
OPT_INCLUDE_RANKS = "include_ranks"
|
files = modelloader.load_models(
|
||||||
def create_deepbooru_opts():
|
model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
|
||||||
from modules import shared
|
model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
|
||||||
|
ext_filter=[".pt"],
|
||||||
|
download_name='model-resnet_custom_v3.pt',
|
||||||
|
)
|
||||||
|
|
||||||
return {
|
self.model = deepbooru_model.DeepDanbooruModel()
|
||||||
"use_spaces": shared.opts.deepbooru_use_spaces,
|
self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
|
||||||
"use_escape": shared.opts.deepbooru_escape,
|
|
||||||
"alpha_sort": shared.opts.deepbooru_sort_alpha,
|
|
||||||
OPT_INCLUDE_RANKS: shared.opts.interrogate_return_ranks,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
self.model.eval()
|
||||||
|
self.model.to(devices.cpu, devices.dtype)
|
||||||
|
|
||||||
def deepbooru_process(queue, deepbooru_process_return, threshold, deepbooru_opts):
|
def start(self):
|
||||||
model, tags = get_deepbooru_tags_model()
|
self.load()
|
||||||
while True: # while process is running, keep monitoring queue for new image
|
self.model.to(devices.device)
|
||||||
pil_image = queue.get()
|
|
||||||
if pil_image == "QUIT":
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts)
|
|
||||||
|
|
||||||
|
def stop(self):
|
||||||
|
if not shared.opts.interrogate_keep_models_in_memory:
|
||||||
|
self.model.to(devices.cpu)
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
def create_deepbooru_process(threshold, deepbooru_opts):
|
def tag(self, pil_image):
|
||||||
"""
|
self.start()
|
||||||
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
|
res = self.tag_multi(pil_image)
|
||||||
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
|
self.stop()
|
||||||
dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned
|
|
||||||
to the dictionary and the method adding the image to the queue should wait for this value to be updated with
|
|
||||||
the tags.
|
|
||||||
"""
|
|
||||||
from modules import shared # prevents circular reference
|
|
||||||
shared.deepbooru_process_manager = multiprocessing.Manager()
|
|
||||||
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
|
|
||||||
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
|
|
||||||
shared.deepbooru_process_return["value"] = -1
|
|
||||||
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
|
|
||||||
shared.deepbooru_process.start()
|
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
def get_tags_from_process(image):
|
def tag_multi(self, pil_image, force_disable_ranks=False):
|
||||||
from modules import shared
|
threshold = shared.opts.interrogate_deepbooru_score_threshold
|
||||||
|
use_spaces = shared.opts.deepbooru_use_spaces
|
||||||
|
use_escape = shared.opts.deepbooru_escape
|
||||||
|
alpha_sort = shared.opts.deepbooru_sort_alpha
|
||||||
|
include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks
|
||||||
|
|
||||||
shared.deepbooru_process_return["value"] = -1
|
pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
|
||||||
shared.deepbooru_process_queue.put(image)
|
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
|
||||||
while shared.deepbooru_process_return["value"] == -1:
|
|
||||||
time.sleep(0.2)
|
|
||||||
caption = shared.deepbooru_process_return["value"]
|
|
||||||
shared.deepbooru_process_return["value"] = -1
|
|
||||||
|
|
||||||
return caption
|
with torch.no_grad(), devices.autocast():
|
||||||
|
x = torch.from_numpy(a).to(devices.device)
|
||||||
|
y = self.model(x)[0].detach().cpu().numpy()
|
||||||
|
|
||||||
|
probability_dict = {}
|
||||||
|
|
||||||
def release_process():
|
for tag, probability in zip(self.model.tags, y):
|
||||||
"""
|
if probability < threshold:
|
||||||
Stops the deepbooru process to return used memory
|
continue
|
||||||
"""
|
|
||||||
from modules import shared # prevents circular reference
|
|
||||||
shared.deepbooru_process_queue.put("QUIT")
|
|
||||||
shared.deepbooru_process.join()
|
|
||||||
shared.deepbooru_process_queue = None
|
|
||||||
shared.deepbooru_process = None
|
|
||||||
shared.deepbooru_process_return = None
|
|
||||||
shared.deepbooru_process_manager = None
|
|
||||||
|
|
||||||
def get_deepbooru_tags_model():
|
|
||||||
import deepdanbooru as dd
|
|
||||||
import tensorflow as tf
|
|
||||||
import numpy as np
|
|
||||||
this_folder = os.path.dirname(__file__)
|
|
||||||
model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
|
|
||||||
if not os.path.exists(os.path.join(model_path, 'project.json')):
|
|
||||||
# there is no point importing these every time
|
|
||||||
import zipfile
|
|
||||||
from basicsr.utils.download_util import load_file_from_url
|
|
||||||
load_file_from_url(
|
|
||||||
r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
|
|
||||||
model_path)
|
|
||||||
with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
|
|
||||||
zip_ref.extractall(model_path)
|
|
||||||
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
|
|
||||||
|
|
||||||
tags = dd.project.load_tags_from_project(model_path)
|
|
||||||
model = dd.project.load_model_from_project(
|
|
||||||
model_path, compile_model=False
|
|
||||||
)
|
|
||||||
return model, tags
|
|
||||||
|
|
||||||
|
|
||||||
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts):
|
|
||||||
import deepdanbooru as dd
|
|
||||||
import tensorflow as tf
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
alpha_sort = deepbooru_opts['alpha_sort']
|
|
||||||
use_spaces = deepbooru_opts['use_spaces']
|
|
||||||
use_escape = deepbooru_opts['use_escape']
|
|
||||||
include_ranks = deepbooru_opts['include_ranks']
|
|
||||||
|
|
||||||
width = model.input_shape[2]
|
|
||||||
height = model.input_shape[1]
|
|
||||||
image = np.array(pil_image)
|
|
||||||
image = tf.image.resize(
|
|
||||||
image,
|
|
||||||
size=(height, width),
|
|
||||||
method=tf.image.ResizeMethod.AREA,
|
|
||||||
preserve_aspect_ratio=True,
|
|
||||||
)
|
|
||||||
image = image.numpy() # EagerTensor to np.array
|
|
||||||
image = dd.image.transform_and_pad_image(image, width, height)
|
|
||||||
image = image / 255.0
|
|
||||||
image_shape = image.shape
|
|
||||||
image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
|
|
||||||
|
|
||||||
y = model.predict(image)[0]
|
|
||||||
|
|
||||||
result_dict = {}
|
|
||||||
|
|
||||||
for i, tag in enumerate(tags):
|
|
||||||
result_dict[tag] = y[i]
|
|
||||||
|
|
||||||
unsorted_tags_in_theshold = []
|
|
||||||
result_tags_print = []
|
|
||||||
for tag in tags:
|
|
||||||
if result_dict[tag] >= threshold:
|
|
||||||
if tag.startswith("rating:"):
|
if tag.startswith("rating:"):
|
||||||
continue
|
continue
|
||||||
unsorted_tags_in_theshold.append((result_dict[tag], tag))
|
|
||||||
result_tags_print.append(f'{result_dict[tag]} {tag}')
|
|
||||||
|
|
||||||
# sort tags
|
probability_dict[tag] = probability
|
||||||
result_tags_out = []
|
|
||||||
sort_ndx = 0
|
|
||||||
if alpha_sort:
|
|
||||||
sort_ndx = 1
|
|
||||||
|
|
||||||
# sort by reverse by likelihood and normal for alpha, and format tag text as requested
|
if alpha_sort:
|
||||||
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
|
tags = sorted(probability_dict)
|
||||||
for weight, tag in unsorted_tags_in_theshold:
|
else:
|
||||||
tag_outformat = tag
|
tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
|
||||||
if use_spaces:
|
|
||||||
tag_outformat = tag_outformat.replace('_', ' ')
|
|
||||||
if use_escape:
|
|
||||||
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
|
|
||||||
if include_ranks:
|
|
||||||
tag_outformat = f"({tag_outformat}:{weight:.3f})"
|
|
||||||
|
|
||||||
result_tags_out.append(tag_outformat)
|
res = []
|
||||||
|
|
||||||
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")])
|
||||||
|
|
||||||
return ', '.join(result_tags_out)
|
for tag in [x for x in tags if x not in filtertags]:
|
||||||
|
probability = probability_dict[tag]
|
||||||
|
tag_outformat = tag
|
||||||
|
if use_spaces:
|
||||||
|
tag_outformat = tag_outformat.replace('_', ' ')
|
||||||
|
if use_escape:
|
||||||
|
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
|
||||||
|
if include_ranks:
|
||||||
|
tag_outformat = f"({tag_outformat}:{probability:.3f})"
|
||||||
|
|
||||||
|
res.append(tag_outformat)
|
||||||
|
|
||||||
|
return ", ".join(res)
|
||||||
|
|
||||||
|
|
||||||
|
model = DeepDanbooru()
|
||||||
|
676
modules/deepbooru_model.py
Normal file
676
modules/deepbooru_model.py
Normal file
@ -0,0 +1,676 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
|
||||||
|
|
||||||
|
|
||||||
|
class DeepDanbooruModel(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(DeepDanbooruModel, self).__init__()
|
||||||
|
|
||||||
|
self.tags = []
|
||||||
|
|
||||||
|
self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
|
||||||
|
self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
|
||||||
|
self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
||||||
|
self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
|
||||||
|
self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
|
||||||
|
self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
||||||
|
self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
|
||||||
|
self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
|
||||||
|
self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
||||||
|
self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
|
||||||
|
self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
|
||||||
|
self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
||||||
|
self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
|
||||||
|
self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
|
||||||
|
self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
|
||||||
|
self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
|
||||||
|
self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
|
||||||
|
self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
|
||||||
|
self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
|
||||||
|
self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
|
||||||
|
self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
|
||||||
|
self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
|
||||||
|
self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
|
||||||
|
self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
|
||||||
|
self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
|
||||||
|
self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
|
||||||
|
self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
|
||||||
|
self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
|
||||||
|
self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
|
||||||
|
self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
|
||||||
|
self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
|
||||||
|
self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
|
||||||
|
self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
|
||||||
|
self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
|
||||||
|
self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
|
||||||
|
self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
|
||||||
|
self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
|
||||||
|
self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
|
||||||
|
self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
|
||||||
|
self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
|
||||||
|
self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)
|
||||||
|
|
||||||
|
def forward(self, *inputs):
|
||||||
|
t_358, = inputs
|
||||||
|
t_359 = t_358.permute(*[0, 3, 1, 2])
|
||||||
|
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
|
||||||
|
t_360 = self.n_Conv_0(t_359_padded)
|
||||||
|
t_361 = F.relu(t_360)
|
||||||
|
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
|
||||||
|
t_362 = self.n_MaxPool_0(t_361)
|
||||||
|
t_363 = self.n_Conv_1(t_362)
|
||||||
|
t_364 = self.n_Conv_2(t_362)
|
||||||
|
t_365 = F.relu(t_364)
|
||||||
|
t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
|
||||||
|
t_366 = self.n_Conv_3(t_365_padded)
|
||||||
|
t_367 = F.relu(t_366)
|
||||||
|
t_368 = self.n_Conv_4(t_367)
|
||||||
|
t_369 = torch.add(t_368, t_363)
|
||||||
|
t_370 = F.relu(t_369)
|
||||||
|
t_371 = self.n_Conv_5(t_370)
|
||||||
|
t_372 = F.relu(t_371)
|
||||||
|
t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
|
||||||
|
t_373 = self.n_Conv_6(t_372_padded)
|
||||||
|
t_374 = F.relu(t_373)
|
||||||
|
t_375 = self.n_Conv_7(t_374)
|
||||||
|
t_376 = torch.add(t_375, t_370)
|
||||||
|
t_377 = F.relu(t_376)
|
||||||
|
t_378 = self.n_Conv_8(t_377)
|
||||||
|
t_379 = F.relu(t_378)
|
||||||
|
t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
|
||||||
|
t_380 = self.n_Conv_9(t_379_padded)
|
||||||
|
t_381 = F.relu(t_380)
|
||||||
|
t_382 = self.n_Conv_10(t_381)
|
||||||
|
t_383 = torch.add(t_382, t_377)
|
||||||
|
t_384 = F.relu(t_383)
|
||||||
|
t_385 = self.n_Conv_11(t_384)
|
||||||
|
t_386 = self.n_Conv_12(t_384)
|
||||||
|
t_387 = F.relu(t_386)
|
||||||
|
t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
|
||||||
|
t_388 = self.n_Conv_13(t_387_padded)
|
||||||
|
t_389 = F.relu(t_388)
|
||||||
|
t_390 = self.n_Conv_14(t_389)
|
||||||
|
t_391 = torch.add(t_390, t_385)
|
||||||
|
t_392 = F.relu(t_391)
|
||||||
|
t_393 = self.n_Conv_15(t_392)
|
||||||
|
t_394 = F.relu(t_393)
|
||||||
|
t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
|
||||||
|
t_395 = self.n_Conv_16(t_394_padded)
|
||||||
|
t_396 = F.relu(t_395)
|
||||||
|
t_397 = self.n_Conv_17(t_396)
|
||||||
|
t_398 = torch.add(t_397, t_392)
|
||||||
|
t_399 = F.relu(t_398)
|
||||||
|
t_400 = self.n_Conv_18(t_399)
|
||||||
|
t_401 = F.relu(t_400)
|
||||||
|
t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
|
||||||
|
t_402 = self.n_Conv_19(t_401_padded)
|
||||||
|
t_403 = F.relu(t_402)
|
||||||
|
t_404 = self.n_Conv_20(t_403)
|
||||||
|
t_405 = torch.add(t_404, t_399)
|
||||||
|
t_406 = F.relu(t_405)
|
||||||
|
t_407 = self.n_Conv_21(t_406)
|
||||||
|
t_408 = F.relu(t_407)
|
||||||
|
t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
|
||||||
|
t_409 = self.n_Conv_22(t_408_padded)
|
||||||
|
t_410 = F.relu(t_409)
|
||||||
|
t_411 = self.n_Conv_23(t_410)
|
||||||
|
t_412 = torch.add(t_411, t_406)
|
||||||
|
t_413 = F.relu(t_412)
|
||||||
|
t_414 = self.n_Conv_24(t_413)
|
||||||
|
t_415 = F.relu(t_414)
|
||||||
|
t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
|
||||||
|
t_416 = self.n_Conv_25(t_415_padded)
|
||||||
|
t_417 = F.relu(t_416)
|
||||||
|
t_418 = self.n_Conv_26(t_417)
|
||||||
|
t_419 = torch.add(t_418, t_413)
|
||||||
|
t_420 = F.relu(t_419)
|
||||||
|
t_421 = self.n_Conv_27(t_420)
|
||||||
|
t_422 = F.relu(t_421)
|
||||||
|
t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
|
||||||
|
t_423 = self.n_Conv_28(t_422_padded)
|
||||||
|
t_424 = F.relu(t_423)
|
||||||
|
t_425 = self.n_Conv_29(t_424)
|
||||||
|
t_426 = torch.add(t_425, t_420)
|
||||||
|
t_427 = F.relu(t_426)
|
||||||
|
t_428 = self.n_Conv_30(t_427)
|
||||||
|
t_429 = F.relu(t_428)
|
||||||
|
t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
|
||||||
|
t_430 = self.n_Conv_31(t_429_padded)
|
||||||
|
t_431 = F.relu(t_430)
|
||||||
|
t_432 = self.n_Conv_32(t_431)
|
||||||
|
t_433 = torch.add(t_432, t_427)
|
||||||
|
t_434 = F.relu(t_433)
|
||||||
|
t_435 = self.n_Conv_33(t_434)
|
||||||
|
t_436 = F.relu(t_435)
|
||||||
|
t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
|
||||||
|
t_437 = self.n_Conv_34(t_436_padded)
|
||||||
|
t_438 = F.relu(t_437)
|
||||||
|
t_439 = self.n_Conv_35(t_438)
|
||||||
|
t_440 = torch.add(t_439, t_434)
|
||||||
|
t_441 = F.relu(t_440)
|
||||||
|
t_442 = self.n_Conv_36(t_441)
|
||||||
|
t_443 = self.n_Conv_37(t_441)
|
||||||
|
t_444 = F.relu(t_443)
|
||||||
|
t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
|
||||||
|
t_445 = self.n_Conv_38(t_444_padded)
|
||||||
|
t_446 = F.relu(t_445)
|
||||||
|
t_447 = self.n_Conv_39(t_446)
|
||||||
|
t_448 = torch.add(t_447, t_442)
|
||||||
|
t_449 = F.relu(t_448)
|
||||||
|
t_450 = self.n_Conv_40(t_449)
|
||||||
|
t_451 = F.relu(t_450)
|
||||||
|
t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
|
||||||
|
t_452 = self.n_Conv_41(t_451_padded)
|
||||||
|
t_453 = F.relu(t_452)
|
||||||
|
t_454 = self.n_Conv_42(t_453)
|
||||||
|
t_455 = torch.add(t_454, t_449)
|
||||||
|
t_456 = F.relu(t_455)
|
||||||
|
t_457 = self.n_Conv_43(t_456)
|
||||||
|
t_458 = F.relu(t_457)
|
||||||
|
t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
|
||||||
|
t_459 = self.n_Conv_44(t_458_padded)
|
||||||
|
t_460 = F.relu(t_459)
|
||||||
|
t_461 = self.n_Conv_45(t_460)
|
||||||
|
t_462 = torch.add(t_461, t_456)
|
||||||
|
t_463 = F.relu(t_462)
|
||||||
|
t_464 = self.n_Conv_46(t_463)
|
||||||
|
t_465 = F.relu(t_464)
|
||||||
|
t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
|
||||||
|
t_466 = self.n_Conv_47(t_465_padded)
|
||||||
|
t_467 = F.relu(t_466)
|
||||||
|
t_468 = self.n_Conv_48(t_467)
|
||||||
|
t_469 = torch.add(t_468, t_463)
|
||||||
|
t_470 = F.relu(t_469)
|
||||||
|
t_471 = self.n_Conv_49(t_470)
|
||||||
|
t_472 = F.relu(t_471)
|
||||||
|
t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
|
||||||
|
t_473 = self.n_Conv_50(t_472_padded)
|
||||||
|
t_474 = F.relu(t_473)
|
||||||
|
t_475 = self.n_Conv_51(t_474)
|
||||||
|
t_476 = torch.add(t_475, t_470)
|
||||||
|
t_477 = F.relu(t_476)
|
||||||
|
t_478 = self.n_Conv_52(t_477)
|
||||||
|
t_479 = F.relu(t_478)
|
||||||
|
t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
|
||||||
|
t_480 = self.n_Conv_53(t_479_padded)
|
||||||
|
t_481 = F.relu(t_480)
|
||||||
|
t_482 = self.n_Conv_54(t_481)
|
||||||
|
t_483 = torch.add(t_482, t_477)
|
||||||
|
t_484 = F.relu(t_483)
|
||||||
|
t_485 = self.n_Conv_55(t_484)
|
||||||
|
t_486 = F.relu(t_485)
|
||||||
|
t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
|
||||||
|
t_487 = self.n_Conv_56(t_486_padded)
|
||||||
|
t_488 = F.relu(t_487)
|
||||||
|
t_489 = self.n_Conv_57(t_488)
|
||||||
|
t_490 = torch.add(t_489, t_484)
|
||||||
|
t_491 = F.relu(t_490)
|
||||||
|
t_492 = self.n_Conv_58(t_491)
|
||||||
|
t_493 = F.relu(t_492)
|
||||||
|
t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
|
||||||
|
t_494 = self.n_Conv_59(t_493_padded)
|
||||||
|
t_495 = F.relu(t_494)
|
||||||
|
t_496 = self.n_Conv_60(t_495)
|
||||||
|
t_497 = torch.add(t_496, t_491)
|
||||||
|
t_498 = F.relu(t_497)
|
||||||
|
t_499 = self.n_Conv_61(t_498)
|
||||||
|
t_500 = F.relu(t_499)
|
||||||
|
t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
|
||||||
|
t_501 = self.n_Conv_62(t_500_padded)
|
||||||
|
t_502 = F.relu(t_501)
|
||||||
|
t_503 = self.n_Conv_63(t_502)
|
||||||
|
t_504 = torch.add(t_503, t_498)
|
||||||
|
t_505 = F.relu(t_504)
|
||||||
|
t_506 = self.n_Conv_64(t_505)
|
||||||
|
t_507 = F.relu(t_506)
|
||||||
|
t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
|
||||||
|
t_508 = self.n_Conv_65(t_507_padded)
|
||||||
|
t_509 = F.relu(t_508)
|
||||||
|
t_510 = self.n_Conv_66(t_509)
|
||||||
|
t_511 = torch.add(t_510, t_505)
|
||||||
|
t_512 = F.relu(t_511)
|
||||||
|
t_513 = self.n_Conv_67(t_512)
|
||||||
|
t_514 = F.relu(t_513)
|
||||||
|
t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
|
||||||
|
t_515 = self.n_Conv_68(t_514_padded)
|
||||||
|
t_516 = F.relu(t_515)
|
||||||
|
t_517 = self.n_Conv_69(t_516)
|
||||||
|
t_518 = torch.add(t_517, t_512)
|
||||||
|
t_519 = F.relu(t_518)
|
||||||
|
t_520 = self.n_Conv_70(t_519)
|
||||||
|
t_521 = F.relu(t_520)
|
||||||
|
t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
|
||||||
|
t_522 = self.n_Conv_71(t_521_padded)
|
||||||
|
t_523 = F.relu(t_522)
|
||||||
|
t_524 = self.n_Conv_72(t_523)
|
||||||
|
t_525 = torch.add(t_524, t_519)
|
||||||
|
t_526 = F.relu(t_525)
|
||||||
|
t_527 = self.n_Conv_73(t_526)
|
||||||
|
t_528 = F.relu(t_527)
|
||||||
|
t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
|
||||||
|
t_529 = self.n_Conv_74(t_528_padded)
|
||||||
|
t_530 = F.relu(t_529)
|
||||||
|
t_531 = self.n_Conv_75(t_530)
|
||||||
|
t_532 = torch.add(t_531, t_526)
|
||||||
|
t_533 = F.relu(t_532)
|
||||||
|
t_534 = self.n_Conv_76(t_533)
|
||||||
|
t_535 = F.relu(t_534)
|
||||||
|
t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
|
||||||
|
t_536 = self.n_Conv_77(t_535_padded)
|
||||||
|
t_537 = F.relu(t_536)
|
||||||
|
t_538 = self.n_Conv_78(t_537)
|
||||||
|
t_539 = torch.add(t_538, t_533)
|
||||||
|
t_540 = F.relu(t_539)
|
||||||
|
t_541 = self.n_Conv_79(t_540)
|
||||||
|
t_542 = F.relu(t_541)
|
||||||
|
t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
|
||||||
|
t_543 = self.n_Conv_80(t_542_padded)
|
||||||
|
t_544 = F.relu(t_543)
|
||||||
|
t_545 = self.n_Conv_81(t_544)
|
||||||
|
t_546 = torch.add(t_545, t_540)
|
||||||
|
t_547 = F.relu(t_546)
|
||||||
|
t_548 = self.n_Conv_82(t_547)
|
||||||
|
t_549 = F.relu(t_548)
|
||||||
|
t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
|
||||||
|
t_550 = self.n_Conv_83(t_549_padded)
|
||||||
|
t_551 = F.relu(t_550)
|
||||||
|
t_552 = self.n_Conv_84(t_551)
|
||||||
|
t_553 = torch.add(t_552, t_547)
|
||||||
|
t_554 = F.relu(t_553)
|
||||||
|
t_555 = self.n_Conv_85(t_554)
|
||||||
|
t_556 = F.relu(t_555)
|
||||||
|
t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
|
||||||
|
t_557 = self.n_Conv_86(t_556_padded)
|
||||||
|
t_558 = F.relu(t_557)
|
||||||
|
t_559 = self.n_Conv_87(t_558)
|
||||||
|
t_560 = torch.add(t_559, t_554)
|
||||||
|
t_561 = F.relu(t_560)
|
||||||
|
t_562 = self.n_Conv_88(t_561)
|
||||||
|
t_563 = F.relu(t_562)
|
||||||
|
t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
|
||||||
|
t_564 = self.n_Conv_89(t_563_padded)
|
||||||
|
t_565 = F.relu(t_564)
|
||||||
|
t_566 = self.n_Conv_90(t_565)
|
||||||
|
t_567 = torch.add(t_566, t_561)
|
||||||
|
t_568 = F.relu(t_567)
|
||||||
|
t_569 = self.n_Conv_91(t_568)
|
||||||
|
t_570 = F.relu(t_569)
|
||||||
|
t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
|
||||||
|
t_571 = self.n_Conv_92(t_570_padded)
|
||||||
|
t_572 = F.relu(t_571)
|
||||||
|
t_573 = self.n_Conv_93(t_572)
|
||||||
|
t_574 = torch.add(t_573, t_568)
|
||||||
|
t_575 = F.relu(t_574)
|
||||||
|
t_576 = self.n_Conv_94(t_575)
|
||||||
|
t_577 = F.relu(t_576)
|
||||||
|
t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
|
||||||
|
t_578 = self.n_Conv_95(t_577_padded)
|
||||||
|
t_579 = F.relu(t_578)
|
||||||
|
t_580 = self.n_Conv_96(t_579)
|
||||||
|
t_581 = torch.add(t_580, t_575)
|
||||||
|
t_582 = F.relu(t_581)
|
||||||
|
t_583 = self.n_Conv_97(t_582)
|
||||||
|
t_584 = F.relu(t_583)
|
||||||
|
t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
|
||||||
|
t_585 = self.n_Conv_98(t_584_padded)
|
||||||
|
t_586 = F.relu(t_585)
|
||||||
|
t_587 = self.n_Conv_99(t_586)
|
||||||
|
t_588 = self.n_Conv_100(t_582)
|
||||||
|
t_589 = torch.add(t_587, t_588)
|
||||||
|
t_590 = F.relu(t_589)
|
||||||
|
t_591 = self.n_Conv_101(t_590)
|
||||||
|
t_592 = F.relu(t_591)
|
||||||
|
t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
|
||||||
|
t_593 = self.n_Conv_102(t_592_padded)
|
||||||
|
t_594 = F.relu(t_593)
|
||||||
|
t_595 = self.n_Conv_103(t_594)
|
||||||
|
t_596 = torch.add(t_595, t_590)
|
||||||
|
t_597 = F.relu(t_596)
|
||||||
|
t_598 = self.n_Conv_104(t_597)
|
||||||
|
t_599 = F.relu(t_598)
|
||||||
|
t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
|
||||||
|
t_600 = self.n_Conv_105(t_599_padded)
|
||||||
|
t_601 = F.relu(t_600)
|
||||||
|
t_602 = self.n_Conv_106(t_601)
|
||||||
|
t_603 = torch.add(t_602, t_597)
|
||||||
|
t_604 = F.relu(t_603)
|
||||||
|
t_605 = self.n_Conv_107(t_604)
|
||||||
|
t_606 = F.relu(t_605)
|
||||||
|
t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
|
||||||
|
t_607 = self.n_Conv_108(t_606_padded)
|
||||||
|
t_608 = F.relu(t_607)
|
||||||
|
t_609 = self.n_Conv_109(t_608)
|
||||||
|
t_610 = torch.add(t_609, t_604)
|
||||||
|
t_611 = F.relu(t_610)
|
||||||
|
t_612 = self.n_Conv_110(t_611)
|
||||||
|
t_613 = F.relu(t_612)
|
||||||
|
t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
|
||||||
|
t_614 = self.n_Conv_111(t_613_padded)
|
||||||
|
t_615 = F.relu(t_614)
|
||||||
|
t_616 = self.n_Conv_112(t_615)
|
||||||
|
t_617 = torch.add(t_616, t_611)
|
||||||
|
t_618 = F.relu(t_617)
|
||||||
|
t_619 = self.n_Conv_113(t_618)
|
||||||
|
t_620 = F.relu(t_619)
|
||||||
|
t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
|
||||||
|
t_621 = self.n_Conv_114(t_620_padded)
|
||||||
|
t_622 = F.relu(t_621)
|
||||||
|
t_623 = self.n_Conv_115(t_622)
|
||||||
|
t_624 = torch.add(t_623, t_618)
|
||||||
|
t_625 = F.relu(t_624)
|
||||||
|
t_626 = self.n_Conv_116(t_625)
|
||||||
|
t_627 = F.relu(t_626)
|
||||||
|
t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
|
||||||
|
t_628 = self.n_Conv_117(t_627_padded)
|
||||||
|
t_629 = F.relu(t_628)
|
||||||
|
t_630 = self.n_Conv_118(t_629)
|
||||||
|
t_631 = torch.add(t_630, t_625)
|
||||||
|
t_632 = F.relu(t_631)
|
||||||
|
t_633 = self.n_Conv_119(t_632)
|
||||||
|
t_634 = F.relu(t_633)
|
||||||
|
t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
|
||||||
|
t_635 = self.n_Conv_120(t_634_padded)
|
||||||
|
t_636 = F.relu(t_635)
|
||||||
|
t_637 = self.n_Conv_121(t_636)
|
||||||
|
t_638 = torch.add(t_637, t_632)
|
||||||
|
t_639 = F.relu(t_638)
|
||||||
|
t_640 = self.n_Conv_122(t_639)
|
||||||
|
t_641 = F.relu(t_640)
|
||||||
|
t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
|
||||||
|
t_642 = self.n_Conv_123(t_641_padded)
|
||||||
|
t_643 = F.relu(t_642)
|
||||||
|
t_644 = self.n_Conv_124(t_643)
|
||||||
|
t_645 = torch.add(t_644, t_639)
|
||||||
|
t_646 = F.relu(t_645)
|
||||||
|
t_647 = self.n_Conv_125(t_646)
|
||||||
|
t_648 = F.relu(t_647)
|
||||||
|
t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
|
||||||
|
t_649 = self.n_Conv_126(t_648_padded)
|
||||||
|
t_650 = F.relu(t_649)
|
||||||
|
t_651 = self.n_Conv_127(t_650)
|
||||||
|
t_652 = torch.add(t_651, t_646)
|
||||||
|
t_653 = F.relu(t_652)
|
||||||
|
t_654 = self.n_Conv_128(t_653)
|
||||||
|
t_655 = F.relu(t_654)
|
||||||
|
t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
|
||||||
|
t_656 = self.n_Conv_129(t_655_padded)
|
||||||
|
t_657 = F.relu(t_656)
|
||||||
|
t_658 = self.n_Conv_130(t_657)
|
||||||
|
t_659 = torch.add(t_658, t_653)
|
||||||
|
t_660 = F.relu(t_659)
|
||||||
|
t_661 = self.n_Conv_131(t_660)
|
||||||
|
t_662 = F.relu(t_661)
|
||||||
|
t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
|
||||||
|
t_663 = self.n_Conv_132(t_662_padded)
|
||||||
|
t_664 = F.relu(t_663)
|
||||||
|
t_665 = self.n_Conv_133(t_664)
|
||||||
|
t_666 = torch.add(t_665, t_660)
|
||||||
|
t_667 = F.relu(t_666)
|
||||||
|
t_668 = self.n_Conv_134(t_667)
|
||||||
|
t_669 = F.relu(t_668)
|
||||||
|
t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
|
||||||
|
t_670 = self.n_Conv_135(t_669_padded)
|
||||||
|
t_671 = F.relu(t_670)
|
||||||
|
t_672 = self.n_Conv_136(t_671)
|
||||||
|
t_673 = torch.add(t_672, t_667)
|
||||||
|
t_674 = F.relu(t_673)
|
||||||
|
t_675 = self.n_Conv_137(t_674)
|
||||||
|
t_676 = F.relu(t_675)
|
||||||
|
t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
|
||||||
|
t_677 = self.n_Conv_138(t_676_padded)
|
||||||
|
t_678 = F.relu(t_677)
|
||||||
|
t_679 = self.n_Conv_139(t_678)
|
||||||
|
t_680 = torch.add(t_679, t_674)
|
||||||
|
t_681 = F.relu(t_680)
|
||||||
|
t_682 = self.n_Conv_140(t_681)
|
||||||
|
t_683 = F.relu(t_682)
|
||||||
|
t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
|
||||||
|
t_684 = self.n_Conv_141(t_683_padded)
|
||||||
|
t_685 = F.relu(t_684)
|
||||||
|
t_686 = self.n_Conv_142(t_685)
|
||||||
|
t_687 = torch.add(t_686, t_681)
|
||||||
|
t_688 = F.relu(t_687)
|
||||||
|
t_689 = self.n_Conv_143(t_688)
|
||||||
|
t_690 = F.relu(t_689)
|
||||||
|
t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
|
||||||
|
t_691 = self.n_Conv_144(t_690_padded)
|
||||||
|
t_692 = F.relu(t_691)
|
||||||
|
t_693 = self.n_Conv_145(t_692)
|
||||||
|
t_694 = torch.add(t_693, t_688)
|
||||||
|
t_695 = F.relu(t_694)
|
||||||
|
t_696 = self.n_Conv_146(t_695)
|
||||||
|
t_697 = F.relu(t_696)
|
||||||
|
t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
|
||||||
|
t_698 = self.n_Conv_147(t_697_padded)
|
||||||
|
t_699 = F.relu(t_698)
|
||||||
|
t_700 = self.n_Conv_148(t_699)
|
||||||
|
t_701 = torch.add(t_700, t_695)
|
||||||
|
t_702 = F.relu(t_701)
|
||||||
|
t_703 = self.n_Conv_149(t_702)
|
||||||
|
t_704 = F.relu(t_703)
|
||||||
|
t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
|
||||||
|
t_705 = self.n_Conv_150(t_704_padded)
|
||||||
|
t_706 = F.relu(t_705)
|
||||||
|
t_707 = self.n_Conv_151(t_706)
|
||||||
|
t_708 = torch.add(t_707, t_702)
|
||||||
|
t_709 = F.relu(t_708)
|
||||||
|
t_710 = self.n_Conv_152(t_709)
|
||||||
|
t_711 = F.relu(t_710)
|
||||||
|
t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
|
||||||
|
t_712 = self.n_Conv_153(t_711_padded)
|
||||||
|
t_713 = F.relu(t_712)
|
||||||
|
t_714 = self.n_Conv_154(t_713)
|
||||||
|
t_715 = torch.add(t_714, t_709)
|
||||||
|
t_716 = F.relu(t_715)
|
||||||
|
t_717 = self.n_Conv_155(t_716)
|
||||||
|
t_718 = F.relu(t_717)
|
||||||
|
t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
|
||||||
|
t_719 = self.n_Conv_156(t_718_padded)
|
||||||
|
t_720 = F.relu(t_719)
|
||||||
|
t_721 = self.n_Conv_157(t_720)
|
||||||
|
t_722 = torch.add(t_721, t_716)
|
||||||
|
t_723 = F.relu(t_722)
|
||||||
|
t_724 = self.n_Conv_158(t_723)
|
||||||
|
t_725 = self.n_Conv_159(t_723)
|
||||||
|
t_726 = F.relu(t_725)
|
||||||
|
t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
|
||||||
|
t_727 = self.n_Conv_160(t_726_padded)
|
||||||
|
t_728 = F.relu(t_727)
|
||||||
|
t_729 = self.n_Conv_161(t_728)
|
||||||
|
t_730 = torch.add(t_729, t_724)
|
||||||
|
t_731 = F.relu(t_730)
|
||||||
|
t_732 = self.n_Conv_162(t_731)
|
||||||
|
t_733 = F.relu(t_732)
|
||||||
|
t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
|
||||||
|
t_734 = self.n_Conv_163(t_733_padded)
|
||||||
|
t_735 = F.relu(t_734)
|
||||||
|
t_736 = self.n_Conv_164(t_735)
|
||||||
|
t_737 = torch.add(t_736, t_731)
|
||||||
|
t_738 = F.relu(t_737)
|
||||||
|
t_739 = self.n_Conv_165(t_738)
|
||||||
|
t_740 = F.relu(t_739)
|
||||||
|
t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
|
||||||
|
t_741 = self.n_Conv_166(t_740_padded)
|
||||||
|
t_742 = F.relu(t_741)
|
||||||
|
t_743 = self.n_Conv_167(t_742)
|
||||||
|
t_744 = torch.add(t_743, t_738)
|
||||||
|
t_745 = F.relu(t_744)
|
||||||
|
t_746 = self.n_Conv_168(t_745)
|
||||||
|
t_747 = self.n_Conv_169(t_745)
|
||||||
|
t_748 = F.relu(t_747)
|
||||||
|
t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
|
||||||
|
t_749 = self.n_Conv_170(t_748_padded)
|
||||||
|
t_750 = F.relu(t_749)
|
||||||
|
t_751 = self.n_Conv_171(t_750)
|
||||||
|
t_752 = torch.add(t_751, t_746)
|
||||||
|
t_753 = F.relu(t_752)
|
||||||
|
t_754 = self.n_Conv_172(t_753)
|
||||||
|
t_755 = F.relu(t_754)
|
||||||
|
t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
|
||||||
|
t_756 = self.n_Conv_173(t_755_padded)
|
||||||
|
t_757 = F.relu(t_756)
|
||||||
|
t_758 = self.n_Conv_174(t_757)
|
||||||
|
t_759 = torch.add(t_758, t_753)
|
||||||
|
t_760 = F.relu(t_759)
|
||||||
|
t_761 = self.n_Conv_175(t_760)
|
||||||
|
t_762 = F.relu(t_761)
|
||||||
|
t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
|
||||||
|
t_763 = self.n_Conv_176(t_762_padded)
|
||||||
|
t_764 = F.relu(t_763)
|
||||||
|
t_765 = self.n_Conv_177(t_764)
|
||||||
|
t_766 = torch.add(t_765, t_760)
|
||||||
|
t_767 = F.relu(t_766)
|
||||||
|
t_768 = self.n_Conv_178(t_767)
|
||||||
|
t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
|
||||||
|
t_770 = torch.squeeze(t_769, 3)
|
||||||
|
t_770 = torch.squeeze(t_770, 2)
|
||||||
|
t_771 = torch.sigmoid(t_770)
|
||||||
|
return t_771
|
||||||
|
|
||||||
|
def load_state_dict(self, state_dict, **kwargs):
|
||||||
|
self.tags = state_dict.get('tags', [])
|
||||||
|
|
||||||
|
super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})
|
||||||
|
|
@ -1,62 +1,96 @@
|
|||||||
|
import sys, os, shlex
|
||||||
import contextlib
|
import contextlib
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from modules import errors
|
from modules import errors
|
||||||
|
from packaging import version
|
||||||
|
|
||||||
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
|
|
||||||
has_mps = getattr(torch, 'has_mps', False)
|
|
||||||
|
|
||||||
cpu = torch.device("cpu")
|
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
|
||||||
|
# check `getattr` and try it for compatibility
|
||||||
|
def has_mps() -> bool:
|
||||||
|
if not getattr(torch, 'has_mps', False):
|
||||||
|
return False
|
||||||
|
try:
|
||||||
|
torch.zeros(1).to(torch.device("mps"))
|
||||||
|
return True
|
||||||
|
except Exception:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def extract_device_id(args, name):
|
||||||
|
for x in range(len(args)):
|
||||||
|
if name in args[x]:
|
||||||
|
return args[x + 1]
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def get_cuda_device_string():
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
if shared.cmd_opts.device_id is not None:
|
||||||
|
return f"cuda:{shared.cmd_opts.device_id}"
|
||||||
|
|
||||||
|
return "cuda"
|
||||||
|
|
||||||
|
|
||||||
def get_optimal_device():
|
def get_optimal_device():
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
return torch.device("cuda")
|
return torch.device(get_cuda_device_string())
|
||||||
|
|
||||||
if has_mps:
|
if has_mps():
|
||||||
return torch.device("mps")
|
return torch.device("mps")
|
||||||
|
|
||||||
return cpu
|
return cpu
|
||||||
|
|
||||||
|
|
||||||
|
def get_device_for(task):
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
if task in shared.cmd_opts.use_cpu:
|
||||||
|
return cpu
|
||||||
|
|
||||||
|
return get_optimal_device()
|
||||||
|
|
||||||
|
|
||||||
def torch_gc():
|
def torch_gc():
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
torch.cuda.empty_cache()
|
with torch.cuda.device(get_cuda_device_string()):
|
||||||
torch.cuda.ipc_collect()
|
torch.cuda.empty_cache()
|
||||||
|
torch.cuda.ipc_collect()
|
||||||
|
|
||||||
|
|
||||||
def enable_tf32():
|
def enable_tf32():
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
|
|
||||||
|
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
|
||||||
|
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
|
||||||
|
if any([torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())]):
|
||||||
|
torch.backends.cudnn.benchmark = True
|
||||||
|
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
torch.backends.cudnn.allow_tf32 = True
|
torch.backends.cudnn.allow_tf32 = True
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
errors.run(enable_tf32, "Enabling TF32")
|
errors.run(enable_tf32, "Enabling TF32")
|
||||||
|
|
||||||
device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = get_optimal_device()
|
cpu = torch.device("cpu")
|
||||||
|
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
|
||||||
dtype = torch.float16
|
dtype = torch.float16
|
||||||
dtype_vae = torch.float16
|
dtype_vae = torch.float16
|
||||||
|
|
||||||
def randn(seed, shape):
|
|
||||||
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
|
|
||||||
if device.type == 'mps':
|
|
||||||
generator = torch.Generator(device=cpu)
|
|
||||||
generator.manual_seed(seed)
|
|
||||||
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
|
|
||||||
return noise
|
|
||||||
|
|
||||||
|
def randn(seed, shape):
|
||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
|
if device.type == 'mps':
|
||||||
|
return torch.randn(shape, device=cpu).to(device)
|
||||||
return torch.randn(shape, device=device)
|
return torch.randn(shape, device=device)
|
||||||
|
|
||||||
|
|
||||||
def randn_without_seed(shape):
|
def randn_without_seed(shape):
|
||||||
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
|
|
||||||
if device.type == 'mps':
|
if device.type == 'mps':
|
||||||
generator = torch.Generator(device=cpu)
|
return torch.randn(shape, device=cpu).to(device)
|
||||||
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
|
|
||||||
return noise
|
|
||||||
|
|
||||||
return torch.randn(shape, device=device)
|
return torch.randn(shape, device=device)
|
||||||
|
|
||||||
|
|
||||||
@ -70,3 +104,55 @@ def autocast(disable=False):
|
|||||||
return contextlib.nullcontext()
|
return contextlib.nullcontext()
|
||||||
|
|
||||||
return torch.autocast("cuda")
|
return torch.autocast("cuda")
|
||||||
|
|
||||||
|
|
||||||
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
|
||||||
|
orig_tensor_to = torch.Tensor.to
|
||||||
|
def tensor_to_fix(self, *args, **kwargs):
|
||||||
|
if self.device.type != 'mps' and \
|
||||||
|
((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
|
||||||
|
(isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
|
||||||
|
self = self.contiguous()
|
||||||
|
return orig_tensor_to(self, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
|
||||||
|
orig_layer_norm = torch.nn.functional.layer_norm
|
||||||
|
def layer_norm_fix(*args, **kwargs):
|
||||||
|
if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
|
||||||
|
args = list(args)
|
||||||
|
args[0] = args[0].contiguous()
|
||||||
|
return orig_layer_norm(*args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
|
||||||
|
orig_tensor_numpy = torch.Tensor.numpy
|
||||||
|
def numpy_fix(self, *args, **kwargs):
|
||||||
|
if self.requires_grad:
|
||||||
|
self = self.detach()
|
||||||
|
return orig_tensor_numpy(self, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/89784
|
||||||
|
orig_cumsum = torch.cumsum
|
||||||
|
orig_Tensor_cumsum = torch.Tensor.cumsum
|
||||||
|
def cumsum_fix(input, cumsum_func, *args, **kwargs):
|
||||||
|
if input.device.type == 'mps':
|
||||||
|
output_dtype = kwargs.get('dtype', input.dtype)
|
||||||
|
if any(output_dtype == broken_dtype for broken_dtype in [torch.bool, torch.int8, torch.int16, torch.int64]):
|
||||||
|
return cumsum_func(input.cpu(), *args, **kwargs).to(input.device)
|
||||||
|
return cumsum_func(input, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
if has_mps():
|
||||||
|
if version.parse(torch.__version__) < version.parse("1.13"):
|
||||||
|
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
|
||||||
|
torch.Tensor.to = tensor_to_fix
|
||||||
|
torch.nn.functional.layer_norm = layer_norm_fix
|
||||||
|
torch.Tensor.numpy = numpy_fix
|
||||||
|
elif version.parse(torch.__version__) > version.parse("1.13.1"):
|
||||||
|
if not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.Tensor([1,1]).to(torch.device("mps")).cumsum(0, dtype=torch.int16)):
|
||||||
|
torch.cumsum = lambda input, *args, **kwargs: ( cumsum_fix(input, orig_cumsum, *args, **kwargs) )
|
||||||
|
torch.Tensor.cumsum = lambda self, *args, **kwargs: ( cumsum_fix(self, orig_Tensor_cumsum, *args, **kwargs) )
|
||||||
|
orig_narrow = torch.narrow
|
||||||
|
torch.narrow = lambda *args, **kwargs: ( orig_narrow(*args, **kwargs).clone() )
|
||||||
|
@ -2,9 +2,30 @@ import sys
|
|||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
|
|
||||||
|
def print_error_explanation(message):
|
||||||
|
lines = message.strip().split("\n")
|
||||||
|
max_len = max([len(x) for x in lines])
|
||||||
|
|
||||||
|
print('=' * max_len, file=sys.stderr)
|
||||||
|
for line in lines:
|
||||||
|
print(line, file=sys.stderr)
|
||||||
|
print('=' * max_len, file=sys.stderr)
|
||||||
|
|
||||||
|
|
||||||
|
def display(e: Exception, task):
|
||||||
|
print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
message = str(e)
|
||||||
|
if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message:
|
||||||
|
print_error_explanation("""
|
||||||
|
The most likely cause of this is you are trying to load Stable Diffusion 2.0 model without specifying its connfig file.
|
||||||
|
See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20 for how to solve this.
|
||||||
|
""")
|
||||||
|
|
||||||
|
|
||||||
def run(code, task):
|
def run(code, task):
|
||||||
try:
|
try:
|
||||||
code()
|
code()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"{task}: {type(e).__name__}", file=sys.stderr)
|
display(task, e)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
|
||||||
|
@ -11,62 +11,118 @@ from modules.upscaler import Upscaler, UpscalerData
|
|||||||
from modules.shared import opts
|
from modules.shared import opts
|
||||||
|
|
||||||
|
|
||||||
def fix_model_layers(crt_model, pretrained_net):
|
|
||||||
# this code is adapted from https://github.com/xinntao/ESRGAN
|
|
||||||
if 'conv_first.weight' in pretrained_net:
|
|
||||||
return pretrained_net
|
|
||||||
|
|
||||||
if 'model.0.weight' not in pretrained_net:
|
def mod2normal(state_dict):
|
||||||
is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net["params_ema"]
|
# this code is copied from https://github.com/victorca25/iNNfer
|
||||||
if is_realesrgan:
|
if 'conv_first.weight' in state_dict:
|
||||||
raise Exception("The file is a RealESRGAN model, it can't be used as a ESRGAN model.")
|
crt_net = {}
|
||||||
else:
|
items = []
|
||||||
raise Exception("The file is not a ESRGAN model.")
|
for k, v in state_dict.items():
|
||||||
|
items.append(k)
|
||||||
|
|
||||||
crt_net = crt_model.state_dict()
|
crt_net['model.0.weight'] = state_dict['conv_first.weight']
|
||||||
load_net_clean = {}
|
crt_net['model.0.bias'] = state_dict['conv_first.bias']
|
||||||
for k, v in pretrained_net.items():
|
|
||||||
if k.startswith('module.'):
|
|
||||||
load_net_clean[k[7:]] = v
|
|
||||||
else:
|
|
||||||
load_net_clean[k] = v
|
|
||||||
pretrained_net = load_net_clean
|
|
||||||
|
|
||||||
tbd = []
|
for k in items.copy():
|
||||||
for k, v in crt_net.items():
|
if 'RDB' in k:
|
||||||
tbd.append(k)
|
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
|
||||||
|
if '.weight' in k:
|
||||||
|
ori_k = ori_k.replace('.weight', '.0.weight')
|
||||||
|
elif '.bias' in k:
|
||||||
|
ori_k = ori_k.replace('.bias', '.0.bias')
|
||||||
|
crt_net[ori_k] = state_dict[k]
|
||||||
|
items.remove(k)
|
||||||
|
|
||||||
# directly copy
|
crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight']
|
||||||
for k, v in crt_net.items():
|
crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias']
|
||||||
if k in pretrained_net and pretrained_net[k].size() == v.size():
|
crt_net['model.3.weight'] = state_dict['upconv1.weight']
|
||||||
crt_net[k] = pretrained_net[k]
|
crt_net['model.3.bias'] = state_dict['upconv1.bias']
|
||||||
tbd.remove(k)
|
crt_net['model.6.weight'] = state_dict['upconv2.weight']
|
||||||
|
crt_net['model.6.bias'] = state_dict['upconv2.bias']
|
||||||
|
crt_net['model.8.weight'] = state_dict['HRconv.weight']
|
||||||
|
crt_net['model.8.bias'] = state_dict['HRconv.bias']
|
||||||
|
crt_net['model.10.weight'] = state_dict['conv_last.weight']
|
||||||
|
crt_net['model.10.bias'] = state_dict['conv_last.bias']
|
||||||
|
state_dict = crt_net
|
||||||
|
return state_dict
|
||||||
|
|
||||||
crt_net['conv_first.weight'] = pretrained_net['model.0.weight']
|
|
||||||
crt_net['conv_first.bias'] = pretrained_net['model.0.bias']
|
|
||||||
|
|
||||||
for k in tbd.copy():
|
def resrgan2normal(state_dict, nb=23):
|
||||||
if 'RDB' in k:
|
# this code is copied from https://github.com/victorca25/iNNfer
|
||||||
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
|
if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
|
||||||
if '.weight' in k:
|
re8x = 0
|
||||||
ori_k = ori_k.replace('.weight', '.0.weight')
|
crt_net = {}
|
||||||
elif '.bias' in k:
|
items = []
|
||||||
ori_k = ori_k.replace('.bias', '.0.bias')
|
for k, v in state_dict.items():
|
||||||
crt_net[k] = pretrained_net[ori_k]
|
items.append(k)
|
||||||
tbd.remove(k)
|
|
||||||
|
|
||||||
crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight']
|
crt_net['model.0.weight'] = state_dict['conv_first.weight']
|
||||||
crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias']
|
crt_net['model.0.bias'] = state_dict['conv_first.bias']
|
||||||
crt_net['upconv1.weight'] = pretrained_net['model.3.weight']
|
|
||||||
crt_net['upconv1.bias'] = pretrained_net['model.3.bias']
|
for k in items.copy():
|
||||||
crt_net['upconv2.weight'] = pretrained_net['model.6.weight']
|
if "rdb" in k:
|
||||||
crt_net['upconv2.bias'] = pretrained_net['model.6.bias']
|
ori_k = k.replace('body.', 'model.1.sub.')
|
||||||
crt_net['HRconv.weight'] = pretrained_net['model.8.weight']
|
ori_k = ori_k.replace('.rdb', '.RDB')
|
||||||
crt_net['HRconv.bias'] = pretrained_net['model.8.bias']
|
if '.weight' in k:
|
||||||
crt_net['conv_last.weight'] = pretrained_net['model.10.weight']
|
ori_k = ori_k.replace('.weight', '.0.weight')
|
||||||
crt_net['conv_last.bias'] = pretrained_net['model.10.bias']
|
elif '.bias' in k:
|
||||||
|
ori_k = ori_k.replace('.bias', '.0.bias')
|
||||||
|
crt_net[ori_k] = state_dict[k]
|
||||||
|
items.remove(k)
|
||||||
|
|
||||||
|
crt_net[f'model.1.sub.{nb}.weight'] = state_dict['conv_body.weight']
|
||||||
|
crt_net[f'model.1.sub.{nb}.bias'] = state_dict['conv_body.bias']
|
||||||
|
crt_net['model.3.weight'] = state_dict['conv_up1.weight']
|
||||||
|
crt_net['model.3.bias'] = state_dict['conv_up1.bias']
|
||||||
|
crt_net['model.6.weight'] = state_dict['conv_up2.weight']
|
||||||
|
crt_net['model.6.bias'] = state_dict['conv_up2.bias']
|
||||||
|
|
||||||
|
if 'conv_up3.weight' in state_dict:
|
||||||
|
# modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py
|
||||||
|
re8x = 3
|
||||||
|
crt_net['model.9.weight'] = state_dict['conv_up3.weight']
|
||||||
|
crt_net['model.9.bias'] = state_dict['conv_up3.bias']
|
||||||
|
|
||||||
|
crt_net[f'model.{8+re8x}.weight'] = state_dict['conv_hr.weight']
|
||||||
|
crt_net[f'model.{8+re8x}.bias'] = state_dict['conv_hr.bias']
|
||||||
|
crt_net[f'model.{10+re8x}.weight'] = state_dict['conv_last.weight']
|
||||||
|
crt_net[f'model.{10+re8x}.bias'] = state_dict['conv_last.bias']
|
||||||
|
|
||||||
|
state_dict = crt_net
|
||||||
|
return state_dict
|
||||||
|
|
||||||
|
|
||||||
|
def infer_params(state_dict):
|
||||||
|
# this code is copied from https://github.com/victorca25/iNNfer
|
||||||
|
scale2x = 0
|
||||||
|
scalemin = 6
|
||||||
|
n_uplayer = 0
|
||||||
|
plus = False
|
||||||
|
|
||||||
|
for block in list(state_dict):
|
||||||
|
parts = block.split(".")
|
||||||
|
n_parts = len(parts)
|
||||||
|
if n_parts == 5 and parts[2] == "sub":
|
||||||
|
nb = int(parts[3])
|
||||||
|
elif n_parts == 3:
|
||||||
|
part_num = int(parts[1])
|
||||||
|
if (part_num > scalemin
|
||||||
|
and parts[0] == "model"
|
||||||
|
and parts[2] == "weight"):
|
||||||
|
scale2x += 1
|
||||||
|
if part_num > n_uplayer:
|
||||||
|
n_uplayer = part_num
|
||||||
|
out_nc = state_dict[block].shape[0]
|
||||||
|
if not plus and "conv1x1" in block:
|
||||||
|
plus = True
|
||||||
|
|
||||||
|
nf = state_dict["model.0.weight"].shape[0]
|
||||||
|
in_nc = state_dict["model.0.weight"].shape[1]
|
||||||
|
out_nc = out_nc
|
||||||
|
scale = 2 ** scale2x
|
||||||
|
|
||||||
|
return in_nc, out_nc, nf, nb, plus, scale
|
||||||
|
|
||||||
return crt_net
|
|
||||||
|
|
||||||
class UpscalerESRGAN(Upscaler):
|
class UpscalerESRGAN(Upscaler):
|
||||||
def __init__(self, dirname):
|
def __init__(self, dirname):
|
||||||
@ -109,20 +165,39 @@ class UpscalerESRGAN(Upscaler):
|
|||||||
print("Unable to load %s from %s" % (self.model_path, filename))
|
print("Unable to load %s from %s" % (self.model_path, filename))
|
||||||
return None
|
return None
|
||||||
|
|
||||||
pretrained_net = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
|
state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
|
||||||
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
|
|
||||||
|
|
||||||
pretrained_net = fix_model_layers(crt_model, pretrained_net)
|
if "params_ema" in state_dict:
|
||||||
crt_model.load_state_dict(pretrained_net)
|
state_dict = state_dict["params_ema"]
|
||||||
crt_model.eval()
|
elif "params" in state_dict:
|
||||||
|
state_dict = state_dict["params"]
|
||||||
|
num_conv = 16 if "realesr-animevideov3" in filename else 32
|
||||||
|
model = arch.SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=4, act_type='prelu')
|
||||||
|
model.load_state_dict(state_dict)
|
||||||
|
model.eval()
|
||||||
|
return model
|
||||||
|
|
||||||
return crt_model
|
if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict:
|
||||||
|
nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23
|
||||||
|
state_dict = resrgan2normal(state_dict, nb)
|
||||||
|
elif "conv_first.weight" in state_dict:
|
||||||
|
state_dict = mod2normal(state_dict)
|
||||||
|
elif "model.0.weight" not in state_dict:
|
||||||
|
raise Exception("The file is not a recognized ESRGAN model.")
|
||||||
|
|
||||||
|
in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict)
|
||||||
|
|
||||||
|
model = arch.RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus)
|
||||||
|
model.load_state_dict(state_dict)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
def upscale_without_tiling(model, img):
|
def upscale_without_tiling(model, img):
|
||||||
img = np.array(img)
|
img = np.array(img)
|
||||||
img = img[:, :, ::-1]
|
img = img[:, :, ::-1]
|
||||||
img = np.moveaxis(img, 2, 0) / 255
|
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
|
||||||
img = torch.from_numpy(img).float()
|
img = torch.from_numpy(img).float()
|
||||||
img = img.unsqueeze(0).to(devices.device_esrgan)
|
img = img.unsqueeze(0).to(devices.device_esrgan)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
|
@ -1,80 +1,463 @@
|
|||||||
# this file is taken from https://github.com/xinntao/ESRGAN
|
# this file is adapted from https://github.com/victorca25/iNNfer
|
||||||
|
|
||||||
|
import math
|
||||||
import functools
|
import functools
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
def make_layer(block, n_layers):
|
####################
|
||||||
layers = []
|
# RRDBNet Generator
|
||||||
for _ in range(n_layers):
|
####################
|
||||||
layers.append(block())
|
|
||||||
return nn.Sequential(*layers)
|
|
||||||
|
|
||||||
|
class RRDBNet(nn.Module):
|
||||||
|
def __init__(self, in_nc, out_nc, nf, nb, nr=3, gc=32, upscale=4, norm_type=None,
|
||||||
|
act_type='leakyrelu', mode='CNA', upsample_mode='upconv', convtype='Conv2D',
|
||||||
|
finalact=None, gaussian_noise=False, plus=False):
|
||||||
|
super(RRDBNet, self).__init__()
|
||||||
|
n_upscale = int(math.log(upscale, 2))
|
||||||
|
if upscale == 3:
|
||||||
|
n_upscale = 1
|
||||||
|
|
||||||
class ResidualDenseBlock_5C(nn.Module):
|
self.resrgan_scale = 0
|
||||||
def __init__(self, nf=64, gc=32, bias=True):
|
if in_nc % 16 == 0:
|
||||||
super(ResidualDenseBlock_5C, self).__init__()
|
self.resrgan_scale = 1
|
||||||
# gc: growth channel, i.e. intermediate channels
|
elif in_nc != 4 and in_nc % 4 == 0:
|
||||||
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
|
self.resrgan_scale = 2
|
||||||
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
|
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
||||||
|
|
||||||
# initialization
|
fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
|
||||||
# mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
rb_blocks = [RRDB(nf, nr, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
|
||||||
|
norm_type=norm_type, act_type=act_type, mode='CNA', convtype=convtype,
|
||||||
|
gaussian_noise=gaussian_noise, plus=plus) for _ in range(nb)]
|
||||||
|
LR_conv = conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode, convtype=convtype)
|
||||||
|
|
||||||
def forward(self, x):
|
if upsample_mode == 'upconv':
|
||||||
x1 = self.lrelu(self.conv1(x))
|
upsample_block = upconv_block
|
||||||
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
elif upsample_mode == 'pixelshuffle':
|
||||||
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
upsample_block = pixelshuffle_block
|
||||||
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
else:
|
||||||
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode))
|
||||||
return x5 * 0.2 + x
|
if upscale == 3:
|
||||||
|
upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
|
||||||
|
else:
|
||||||
|
upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)]
|
||||||
|
HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype)
|
||||||
|
HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
|
||||||
|
|
||||||
|
outact = act(finalact) if finalact else None
|
||||||
|
|
||||||
|
self.model = sequential(fea_conv, ShortcutBlock(sequential(*rb_blocks, LR_conv)),
|
||||||
|
*upsampler, HR_conv0, HR_conv1, outact)
|
||||||
|
|
||||||
|
def forward(self, x, outm=None):
|
||||||
|
if self.resrgan_scale == 1:
|
||||||
|
feat = pixel_unshuffle(x, scale=4)
|
||||||
|
elif self.resrgan_scale == 2:
|
||||||
|
feat = pixel_unshuffle(x, scale=2)
|
||||||
|
else:
|
||||||
|
feat = x
|
||||||
|
|
||||||
|
return self.model(feat)
|
||||||
|
|
||||||
|
|
||||||
class RRDB(nn.Module):
|
class RRDB(nn.Module):
|
||||||
'''Residual in Residual Dense Block'''
|
"""
|
||||||
|
Residual in Residual Dense Block
|
||||||
|
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, nf, gc=32):
|
def __init__(self, nf, nr=3, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
|
||||||
|
norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
|
||||||
|
spectral_norm=False, gaussian_noise=False, plus=False):
|
||||||
super(RRDB, self).__init__()
|
super(RRDB, self).__init__()
|
||||||
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
|
# This is for backwards compatibility with existing models
|
||||||
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
|
if nr == 3:
|
||||||
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
|
self.RDB1 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
|
||||||
|
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
|
||||||
|
gaussian_noise=gaussian_noise, plus=plus)
|
||||||
|
self.RDB2 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
|
||||||
|
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
|
||||||
|
gaussian_noise=gaussian_noise, plus=plus)
|
||||||
|
self.RDB3 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
|
||||||
|
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
|
||||||
|
gaussian_noise=gaussian_noise, plus=plus)
|
||||||
|
else:
|
||||||
|
RDB_list = [ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
|
||||||
|
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
|
||||||
|
gaussian_noise=gaussian_noise, plus=plus) for _ in range(nr)]
|
||||||
|
self.RDBs = nn.Sequential(*RDB_list)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
out = self.RDB1(x)
|
if hasattr(self, 'RDB1'):
|
||||||
out = self.RDB2(out)
|
out = self.RDB1(x)
|
||||||
out = self.RDB3(out)
|
out = self.RDB2(out)
|
||||||
|
out = self.RDB3(out)
|
||||||
|
else:
|
||||||
|
out = self.RDBs(x)
|
||||||
return out * 0.2 + x
|
return out * 0.2 + x
|
||||||
|
|
||||||
|
|
||||||
class RRDBNet(nn.Module):
|
class ResidualDenseBlock_5C(nn.Module):
|
||||||
def __init__(self, in_nc, out_nc, nf, nb, gc=32):
|
"""
|
||||||
super(RRDBNet, self).__init__()
|
Residual Dense Block
|
||||||
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
|
||||||
|
Modified options that can be used:
|
||||||
|
- "Partial Convolution based Padding" arXiv:1811.11718
|
||||||
|
- "Spectral normalization" arXiv:1802.05957
|
||||||
|
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
|
||||||
|
{Rakotonirina} and A. {Rasoanaivo}
|
||||||
|
"""
|
||||||
|
|
||||||
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
def __init__(self, nf=64, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
|
||||||
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
|
norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
|
||||||
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
spectral_norm=False, gaussian_noise=False, plus=False):
|
||||||
#### upsampling
|
super(ResidualDenseBlock_5C, self).__init__()
|
||||||
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
|
|
||||||
|
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
self.noise = GaussianNoise() if gaussian_noise else None
|
||||||
|
self.conv1x1 = conv1x1(nf, gc) if plus else None
|
||||||
|
|
||||||
|
self.conv1 = conv_block(nf, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
|
||||||
|
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
|
||||||
|
spectral_norm=spectral_norm)
|
||||||
|
self.conv2 = conv_block(nf+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
|
||||||
|
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
|
||||||
|
spectral_norm=spectral_norm)
|
||||||
|
self.conv3 = conv_block(nf+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
|
||||||
|
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
|
||||||
|
spectral_norm=spectral_norm)
|
||||||
|
self.conv4 = conv_block(nf+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
|
||||||
|
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
|
||||||
|
spectral_norm=spectral_norm)
|
||||||
|
if mode == 'CNA':
|
||||||
|
last_act = None
|
||||||
|
else:
|
||||||
|
last_act = act_type
|
||||||
|
self.conv5 = conv_block(nf+4*gc, nf, 3, stride, bias=bias, pad_type=pad_type,
|
||||||
|
norm_type=norm_type, act_type=last_act, mode=mode, convtype=convtype,
|
||||||
|
spectral_norm=spectral_norm)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
fea = self.conv_first(x)
|
x1 = self.conv1(x)
|
||||||
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
x2 = self.conv2(torch.cat((x, x1), 1))
|
||||||
fea = fea + trunk
|
if self.conv1x1:
|
||||||
|
x2 = x2 + self.conv1x1(x)
|
||||||
|
x3 = self.conv3(torch.cat((x, x1, x2), 1))
|
||||||
|
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
|
||||||
|
if self.conv1x1:
|
||||||
|
x4 = x4 + x2
|
||||||
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
||||||
|
if self.noise:
|
||||||
|
return self.noise(x5.mul(0.2) + x)
|
||||||
|
else:
|
||||||
|
return x5 * 0.2 + x
|
||||||
|
|
||||||
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
|
||||||
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
|
||||||
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# ESRGANplus
|
||||||
|
####################
|
||||||
|
|
||||||
|
class GaussianNoise(nn.Module):
|
||||||
|
def __init__(self, sigma=0.1, is_relative_detach=False):
|
||||||
|
super().__init__()
|
||||||
|
self.sigma = sigma
|
||||||
|
self.is_relative_detach = is_relative_detach
|
||||||
|
self.noise = torch.tensor(0, dtype=torch.float)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.training and self.sigma != 0:
|
||||||
|
self.noise = self.noise.to(x.device)
|
||||||
|
scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
|
||||||
|
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
|
||||||
|
x = x + sampled_noise
|
||||||
|
return x
|
||||||
|
|
||||||
|
def conv1x1(in_planes, out_planes, stride=1):
|
||||||
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# SRVGGNetCompact
|
||||||
|
####################
|
||||||
|
|
||||||
|
class SRVGGNetCompact(nn.Module):
|
||||||
|
"""A compact VGG-style network structure for super-resolution.
|
||||||
|
This class is copied from https://github.com/xinntao/Real-ESRGAN
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
|
||||||
|
super(SRVGGNetCompact, self).__init__()
|
||||||
|
self.num_in_ch = num_in_ch
|
||||||
|
self.num_out_ch = num_out_ch
|
||||||
|
self.num_feat = num_feat
|
||||||
|
self.num_conv = num_conv
|
||||||
|
self.upscale = upscale
|
||||||
|
self.act_type = act_type
|
||||||
|
|
||||||
|
self.body = nn.ModuleList()
|
||||||
|
# the first conv
|
||||||
|
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
|
||||||
|
# the first activation
|
||||||
|
if act_type == 'relu':
|
||||||
|
activation = nn.ReLU(inplace=True)
|
||||||
|
elif act_type == 'prelu':
|
||||||
|
activation = nn.PReLU(num_parameters=num_feat)
|
||||||
|
elif act_type == 'leakyrelu':
|
||||||
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||||
|
self.body.append(activation)
|
||||||
|
|
||||||
|
# the body structure
|
||||||
|
for _ in range(num_conv):
|
||||||
|
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
|
||||||
|
# activation
|
||||||
|
if act_type == 'relu':
|
||||||
|
activation = nn.ReLU(inplace=True)
|
||||||
|
elif act_type == 'prelu':
|
||||||
|
activation = nn.PReLU(num_parameters=num_feat)
|
||||||
|
elif act_type == 'leakyrelu':
|
||||||
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||||
|
self.body.append(activation)
|
||||||
|
|
||||||
|
# the last conv
|
||||||
|
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
|
||||||
|
# upsample
|
||||||
|
self.upsampler = nn.PixelShuffle(upscale)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
out = x
|
||||||
|
for i in range(0, len(self.body)):
|
||||||
|
out = self.body[i](out)
|
||||||
|
|
||||||
|
out = self.upsampler(out)
|
||||||
|
# add the nearest upsampled image, so that the network learns the residual
|
||||||
|
base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
|
||||||
|
out += base
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# Upsampler
|
||||||
|
####################
|
||||||
|
|
||||||
|
class Upsample(nn.Module):
|
||||||
|
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
|
||||||
|
The input data is assumed to be of the form
|
||||||
|
`minibatch x channels x [optional depth] x [optional height] x width`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None):
|
||||||
|
super(Upsample, self).__init__()
|
||||||
|
if isinstance(scale_factor, tuple):
|
||||||
|
self.scale_factor = tuple(float(factor) for factor in scale_factor)
|
||||||
|
else:
|
||||||
|
self.scale_factor = float(scale_factor) if scale_factor else None
|
||||||
|
self.mode = mode
|
||||||
|
self.size = size
|
||||||
|
self.align_corners = align_corners
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners)
|
||||||
|
|
||||||
|
def extra_repr(self):
|
||||||
|
if self.scale_factor is not None:
|
||||||
|
info = 'scale_factor=' + str(self.scale_factor)
|
||||||
|
else:
|
||||||
|
info = 'size=' + str(self.size)
|
||||||
|
info += ', mode=' + self.mode
|
||||||
|
return info
|
||||||
|
|
||||||
|
|
||||||
|
def pixel_unshuffle(x, scale):
|
||||||
|
""" Pixel unshuffle.
|
||||||
|
Args:
|
||||||
|
x (Tensor): Input feature with shape (b, c, hh, hw).
|
||||||
|
scale (int): Downsample ratio.
|
||||||
|
Returns:
|
||||||
|
Tensor: the pixel unshuffled feature.
|
||||||
|
"""
|
||||||
|
b, c, hh, hw = x.size()
|
||||||
|
out_channel = c * (scale**2)
|
||||||
|
assert hh % scale == 0 and hw % scale == 0
|
||||||
|
h = hh // scale
|
||||||
|
w = hw // scale
|
||||||
|
x_view = x.view(b, c, h, scale, w, scale)
|
||||||
|
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
||||||
|
|
||||||
|
|
||||||
|
def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
|
||||||
|
pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'):
|
||||||
|
"""
|
||||||
|
Pixel shuffle layer
|
||||||
|
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
|
||||||
|
Neural Network, CVPR17)
|
||||||
|
"""
|
||||||
|
conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias,
|
||||||
|
pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype)
|
||||||
|
pixel_shuffle = nn.PixelShuffle(upscale_factor)
|
||||||
|
|
||||||
|
n = norm(norm_type, out_nc) if norm_type else None
|
||||||
|
a = act(act_type) if act_type else None
|
||||||
|
return sequential(conv, pixel_shuffle, n, a)
|
||||||
|
|
||||||
|
|
||||||
|
def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
|
||||||
|
pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'):
|
||||||
|
""" Upconv layer """
|
||||||
|
upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor
|
||||||
|
upsample = Upsample(scale_factor=upscale_factor, mode=mode)
|
||||||
|
conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias,
|
||||||
|
pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype)
|
||||||
|
return sequential(upsample, conv)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# Basic blocks
|
||||||
|
####################
|
||||||
|
|
||||||
|
|
||||||
|
def make_layer(basic_block, num_basic_block, **kwarg):
|
||||||
|
"""Make layers by stacking the same blocks.
|
||||||
|
Args:
|
||||||
|
basic_block (nn.module): nn.module class for basic block. (block)
|
||||||
|
num_basic_block (int): number of blocks. (n_layers)
|
||||||
|
Returns:
|
||||||
|
nn.Sequential: Stacked blocks in nn.Sequential.
|
||||||
|
"""
|
||||||
|
layers = []
|
||||||
|
for _ in range(num_basic_block):
|
||||||
|
layers.append(basic_block(**kwarg))
|
||||||
|
return nn.Sequential(*layers)
|
||||||
|
|
||||||
|
|
||||||
|
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0):
|
||||||
|
""" activation helper """
|
||||||
|
act_type = act_type.lower()
|
||||||
|
if act_type == 'relu':
|
||||||
|
layer = nn.ReLU(inplace)
|
||||||
|
elif act_type in ('leakyrelu', 'lrelu'):
|
||||||
|
layer = nn.LeakyReLU(neg_slope, inplace)
|
||||||
|
elif act_type == 'prelu':
|
||||||
|
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
|
||||||
|
elif act_type == 'tanh': # [-1, 1] range output
|
||||||
|
layer = nn.Tanh()
|
||||||
|
elif act_type == 'sigmoid': # [0, 1] range output
|
||||||
|
layer = nn.Sigmoid()
|
||||||
|
else:
|
||||||
|
raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type))
|
||||||
|
return layer
|
||||||
|
|
||||||
|
|
||||||
|
class Identity(nn.Module):
|
||||||
|
def __init__(self, *kwargs):
|
||||||
|
super(Identity, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, x, *kwargs):
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def norm(norm_type, nc):
|
||||||
|
""" Return a normalization layer """
|
||||||
|
norm_type = norm_type.lower()
|
||||||
|
if norm_type == 'batch':
|
||||||
|
layer = nn.BatchNorm2d(nc, affine=True)
|
||||||
|
elif norm_type == 'instance':
|
||||||
|
layer = nn.InstanceNorm2d(nc, affine=False)
|
||||||
|
elif norm_type == 'none':
|
||||||
|
def norm_layer(x): return Identity()
|
||||||
|
else:
|
||||||
|
raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type))
|
||||||
|
return layer
|
||||||
|
|
||||||
|
|
||||||
|
def pad(pad_type, padding):
|
||||||
|
""" padding layer helper """
|
||||||
|
pad_type = pad_type.lower()
|
||||||
|
if padding == 0:
|
||||||
|
return None
|
||||||
|
if pad_type == 'reflect':
|
||||||
|
layer = nn.ReflectionPad2d(padding)
|
||||||
|
elif pad_type == 'replicate':
|
||||||
|
layer = nn.ReplicationPad2d(padding)
|
||||||
|
elif pad_type == 'zero':
|
||||||
|
layer = nn.ZeroPad2d(padding)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type))
|
||||||
|
return layer
|
||||||
|
|
||||||
|
|
||||||
|
def get_valid_padding(kernel_size, dilation):
|
||||||
|
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
|
||||||
|
padding = (kernel_size - 1) // 2
|
||||||
|
return padding
|
||||||
|
|
||||||
|
|
||||||
|
class ShortcutBlock(nn.Module):
|
||||||
|
""" Elementwise sum the output of a submodule to its input """
|
||||||
|
def __init__(self, submodule):
|
||||||
|
super(ShortcutBlock, self).__init__()
|
||||||
|
self.sub = submodule
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
output = x + self.sub(x)
|
||||||
|
return output
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|')
|
||||||
|
|
||||||
|
|
||||||
|
def sequential(*args):
|
||||||
|
""" Flatten Sequential. It unwraps nn.Sequential. """
|
||||||
|
if len(args) == 1:
|
||||||
|
if isinstance(args[0], OrderedDict):
|
||||||
|
raise NotImplementedError('sequential does not support OrderedDict input.')
|
||||||
|
return args[0] # No sequential is needed.
|
||||||
|
modules = []
|
||||||
|
for module in args:
|
||||||
|
if isinstance(module, nn.Sequential):
|
||||||
|
for submodule in module.children():
|
||||||
|
modules.append(submodule)
|
||||||
|
elif isinstance(module, nn.Module):
|
||||||
|
modules.append(module)
|
||||||
|
return nn.Sequential(*modules)
|
||||||
|
|
||||||
|
|
||||||
|
def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True,
|
||||||
|
pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D',
|
||||||
|
spectral_norm=False):
|
||||||
|
""" Conv layer with padding, normalization, activation """
|
||||||
|
assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode)
|
||||||
|
padding = get_valid_padding(kernel_size, dilation)
|
||||||
|
p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
|
||||||
|
padding = padding if pad_type == 'zero' else 0
|
||||||
|
|
||||||
|
if convtype=='PartialConv2D':
|
||||||
|
c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
|
||||||
|
dilation=dilation, bias=bias, groups=groups)
|
||||||
|
elif convtype=='DeformConv2D':
|
||||||
|
c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
|
||||||
|
dilation=dilation, bias=bias, groups=groups)
|
||||||
|
elif convtype=='Conv3D':
|
||||||
|
c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
|
||||||
|
dilation=dilation, bias=bias, groups=groups)
|
||||||
|
else:
|
||||||
|
c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
|
||||||
|
dilation=dilation, bias=bias, groups=groups)
|
||||||
|
|
||||||
|
if spectral_norm:
|
||||||
|
c = nn.utils.spectral_norm(c)
|
||||||
|
|
||||||
|
a = act(act_type) if act_type else None
|
||||||
|
if 'CNA' in mode:
|
||||||
|
n = norm(norm_type, out_nc) if norm_type else None
|
||||||
|
return sequential(p, c, n, a)
|
||||||
|
elif mode == 'NAC':
|
||||||
|
if norm_type is None and act_type is not None:
|
||||||
|
a = act(act_type, inplace=False)
|
||||||
|
n = norm(norm_type, in_nc) if norm_type else None
|
||||||
|
return sequential(n, a, p, c)
|
||||||
|
99
modules/extensions.py
Normal file
99
modules/extensions.py
Normal file
@ -0,0 +1,99 @@
|
|||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
import git
|
||||||
|
|
||||||
|
from modules import paths, shared
|
||||||
|
|
||||||
|
extensions = []
|
||||||
|
extensions_dir = os.path.join(paths.script_path, "extensions")
|
||||||
|
extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin")
|
||||||
|
|
||||||
|
|
||||||
|
def active():
|
||||||
|
return [x for x in extensions if x.enabled]
|
||||||
|
|
||||||
|
|
||||||
|
class Extension:
|
||||||
|
def __init__(self, name, path, enabled=True, is_builtin=False):
|
||||||
|
self.name = name
|
||||||
|
self.path = path
|
||||||
|
self.enabled = enabled
|
||||||
|
self.status = ''
|
||||||
|
self.can_update = False
|
||||||
|
self.is_builtin = is_builtin
|
||||||
|
|
||||||
|
repo = None
|
||||||
|
try:
|
||||||
|
if os.path.exists(os.path.join(path, ".git")):
|
||||||
|
repo = git.Repo(path)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error reading github repository info from {path}:", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
if repo is None or repo.bare:
|
||||||
|
self.remote = None
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
self.remote = next(repo.remote().urls, None)
|
||||||
|
self.status = 'unknown'
|
||||||
|
except Exception:
|
||||||
|
self.remote = None
|
||||||
|
|
||||||
|
def list_files(self, subdir, extension):
|
||||||
|
from modules import scripts
|
||||||
|
|
||||||
|
dirpath = os.path.join(self.path, subdir)
|
||||||
|
if not os.path.isdir(dirpath):
|
||||||
|
return []
|
||||||
|
|
||||||
|
res = []
|
||||||
|
for filename in sorted(os.listdir(dirpath)):
|
||||||
|
res.append(scripts.ScriptFile(self.path, filename, os.path.join(dirpath, filename)))
|
||||||
|
|
||||||
|
res = [x for x in res if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
def check_updates(self):
|
||||||
|
repo = git.Repo(self.path)
|
||||||
|
for fetch in repo.remote().fetch("--dry-run"):
|
||||||
|
if fetch.flags != fetch.HEAD_UPTODATE:
|
||||||
|
self.can_update = True
|
||||||
|
self.status = "behind"
|
||||||
|
return
|
||||||
|
|
||||||
|
self.can_update = False
|
||||||
|
self.status = "latest"
|
||||||
|
|
||||||
|
def fetch_and_reset_hard(self):
|
||||||
|
repo = git.Repo(self.path)
|
||||||
|
# Fix: `error: Your local changes to the following files would be overwritten by merge`,
|
||||||
|
# because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
|
||||||
|
repo.git.fetch('--all')
|
||||||
|
repo.git.reset('--hard', 'origin')
|
||||||
|
|
||||||
|
|
||||||
|
def list_extensions():
|
||||||
|
extensions.clear()
|
||||||
|
|
||||||
|
if not os.path.isdir(extensions_dir):
|
||||||
|
return
|
||||||
|
|
||||||
|
paths = []
|
||||||
|
for dirname in [extensions_dir, extensions_builtin_dir]:
|
||||||
|
if not os.path.isdir(dirname):
|
||||||
|
return
|
||||||
|
|
||||||
|
for extension_dirname in sorted(os.listdir(dirname)):
|
||||||
|
path = os.path.join(dirname, extension_dirname)
|
||||||
|
if not os.path.isdir(path):
|
||||||
|
continue
|
||||||
|
|
||||||
|
paths.append((extension_dirname, path, dirname == extensions_builtin_dir))
|
||||||
|
|
||||||
|
for dirname, path, is_builtin in paths:
|
||||||
|
extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin)
|
||||||
|
extensions.append(extension)
|
||||||
|
|
@ -1,5 +1,9 @@
|
|||||||
|
from __future__ import annotations
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
import shutil
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
@ -7,27 +11,60 @@ from PIL import Image
|
|||||||
import torch
|
import torch
|
||||||
import tqdm
|
import tqdm
|
||||||
|
|
||||||
from modules import processing, shared, images, devices, sd_models
|
from typing import Callable, List, OrderedDict, Tuple
|
||||||
|
from functools import partial
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
from modules import processing, shared, images, devices, sd_models, sd_samplers
|
||||||
from modules.shared import opts
|
from modules.shared import opts
|
||||||
import modules.gfpgan_model
|
import modules.gfpgan_model
|
||||||
from modules.ui import plaintext_to_html
|
from modules.ui import plaintext_to_html
|
||||||
import modules.codeformer_model
|
import modules.codeformer_model
|
||||||
import piexif
|
|
||||||
import piexif.helper
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
import safetensors.torch
|
||||||
|
|
||||||
|
class LruCache(OrderedDict):
|
||||||
|
@dataclass(frozen=True)
|
||||||
|
class Key:
|
||||||
|
image_hash: int
|
||||||
|
info_hash: int
|
||||||
|
args_hash: int
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Value:
|
||||||
|
image: Image.Image
|
||||||
|
info: str
|
||||||
|
|
||||||
|
def __init__(self, max_size: int = 5, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self._max_size = max_size
|
||||||
|
|
||||||
|
def get(self, key: LruCache.Key) -> LruCache.Value:
|
||||||
|
ret = super().get(key)
|
||||||
|
if ret is not None:
|
||||||
|
self.move_to_end(key) # Move to end of eviction list
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
|
||||||
|
self[key] = value
|
||||||
|
while len(self) > self._max_size:
|
||||||
|
self.popitem(last=False)
|
||||||
|
|
||||||
|
|
||||||
cached_images = {}
|
cached_images: LruCache = LruCache(max_size=5)
|
||||||
|
|
||||||
|
|
||||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
|
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
|
shared.state.begin()
|
||||||
|
shared.state.job = 'extras'
|
||||||
|
|
||||||
imageArr = []
|
imageArr = []
|
||||||
# Also keep track of original file names
|
# Also keep track of original file names
|
||||||
imageNameArr = []
|
imageNameArr = []
|
||||||
outputs = []
|
outputs = []
|
||||||
|
|
||||||
if extras_mode == 1:
|
if extras_mode == 1:
|
||||||
#convert file to pillow image
|
#convert file to pillow image
|
||||||
for img in image_folder:
|
for img in image_folder:
|
||||||
@ -39,9 +76,12 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
|||||||
|
|
||||||
if input_dir == '':
|
if input_dir == '':
|
||||||
return outputs, "Please select an input directory.", ''
|
return outputs, "Please select an input directory.", ''
|
||||||
image_list = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
|
image_list = shared.listfiles(input_dir)
|
||||||
for img in image_list:
|
for img in image_list:
|
||||||
image = Image.open(img)
|
try:
|
||||||
|
image = Image.open(img)
|
||||||
|
except Exception:
|
||||||
|
continue
|
||||||
imageArr.append(image)
|
imageArr.append(image)
|
||||||
imageNameArr.append(img)
|
imageNameArr.append(img)
|
||||||
else:
|
else:
|
||||||
@ -53,80 +93,128 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
|||||||
else:
|
else:
|
||||||
outpath = opts.outdir_samples or opts.outdir_extras_samples
|
outpath = opts.outdir_samples or opts.outdir_extras_samples
|
||||||
|
|
||||||
|
# Extra operation definitions
|
||||||
for image, image_name in zip(imageArr, imageNameArr):
|
|
||||||
if image is None:
|
|
||||||
return outputs, "Please select an input image.", ''
|
|
||||||
existing_pnginfo = image.info or {}
|
|
||||||
|
|
||||||
image = image.convert("RGB")
|
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
info = ""
|
shared.state.job = 'extras-gfpgan'
|
||||||
|
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
||||||
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
if gfpgan_visibility > 0:
|
if gfpgan_visibility < 1.0:
|
||||||
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
res = Image.blend(image, res, gfpgan_visibility)
|
||||||
res = Image.fromarray(restored_img)
|
|
||||||
|
|
||||||
if gfpgan_visibility < 1.0:
|
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
|
||||||
res = Image.blend(image, res, gfpgan_visibility)
|
return (res, info)
|
||||||
|
|
||||||
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
|
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
image = res
|
shared.state.job = 'extras-codeformer'
|
||||||
|
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
||||||
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
if codeformer_visibility > 0:
|
if codeformer_visibility < 1.0:
|
||||||
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
res = Image.blend(image, res, codeformer_visibility)
|
||||||
res = Image.fromarray(restored_img)
|
|
||||||
|
|
||||||
if codeformer_visibility < 1.0:
|
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
||||||
res = Image.blend(image, res, codeformer_visibility)
|
return (res, info)
|
||||||
|
|
||||||
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
||||||
image = res
|
shared.state.job = 'extras-upscale'
|
||||||
|
upscaler = shared.sd_upscalers[scaler_index]
|
||||||
|
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
||||||
|
if mode == 1 and crop:
|
||||||
|
cropped = Image.new("RGB", (resize_w, resize_h))
|
||||||
|
cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
|
||||||
|
res = cropped
|
||||||
|
return res
|
||||||
|
|
||||||
|
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
|
||||||
|
nonlocal upscaling_resize
|
||||||
if resize_mode == 1:
|
if resize_mode == 1:
|
||||||
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
|
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
|
||||||
crop_info = " (crop)" if upscaling_crop else ""
|
crop_info = " (crop)" if upscaling_crop else ""
|
||||||
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
|
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
|
||||||
|
return (image, info)
|
||||||
|
|
||||||
if upscaling_resize != 1.0:
|
@dataclass
|
||||||
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
class UpscaleParams:
|
||||||
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
|
upscaler_idx: int
|
||||||
pixels = tuple(np.array(small).flatten().tolist())
|
blend_alpha: float
|
||||||
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight,
|
|
||||||
resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels
|
|
||||||
|
|
||||||
c = cached_images.get(key)
|
def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
if c is None:
|
blended_result: Image.Image = None
|
||||||
upscaler = shared.sd_upscalers[scaler_index]
|
image_hash: str = hash(np.array(image.getdata()).tobytes())
|
||||||
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
for upscaler in params:
|
||||||
if mode == 1 and crop:
|
upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
|
||||||
cropped = Image.new("RGB", (resize_w, resize_h))
|
upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
||||||
cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
|
cache_key = LruCache.Key(image_hash=image_hash,
|
||||||
c = cropped
|
info_hash=hash(info),
|
||||||
cached_images[key] = c
|
args_hash=hash(upscale_args))
|
||||||
|
cached_entry = cached_images.get(cache_key)
|
||||||
|
if cached_entry is None:
|
||||||
|
res = upscale(image, *upscale_args)
|
||||||
|
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
|
||||||
|
cached_images.put(cache_key, LruCache.Value(image=res, info=info))
|
||||||
|
else:
|
||||||
|
res, info = cached_entry.image, cached_entry.info
|
||||||
|
|
||||||
return c
|
if blended_result is None:
|
||||||
|
blended_result = res
|
||||||
|
else:
|
||||||
|
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
|
||||||
|
return (blended_result, info)
|
||||||
|
|
||||||
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
|
# Build a list of operations to run
|
||||||
res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
facefix_ops: List[Callable] = []
|
||||||
|
facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
|
||||||
|
facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
|
||||||
|
|
||||||
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
upscale_ops: List[Callable] = []
|
||||||
res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
|
||||||
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
|
|
||||||
res = Image.blend(res, res2, extras_upscaler_2_visibility)
|
|
||||||
|
|
||||||
image = res
|
if upscaling_resize != 0:
|
||||||
|
step_params: List[UpscaleParams] = []
|
||||||
|
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
|
||||||
|
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
||||||
|
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
|
||||||
|
|
||||||
while len(cached_images) > 2:
|
upscale_ops.append(partial(run_upscalers_blend, step_params))
|
||||||
del cached_images[next(iter(cached_images.keys()))]
|
|
||||||
|
|
||||||
images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
|
extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
|
||||||
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
|
|
||||||
forced_filename=image_name if opts.use_original_name_batch else None)
|
|
||||||
|
|
||||||
if opts.enable_pnginfo:
|
for image, image_name in zip(imageArr, imageNameArr):
|
||||||
|
if image is None:
|
||||||
|
return outputs, "Please select an input image.", ''
|
||||||
|
|
||||||
|
shared.state.textinfo = f'Processing image {image_name}'
|
||||||
|
|
||||||
|
existing_pnginfo = image.info or {}
|
||||||
|
|
||||||
|
image = image.convert("RGB")
|
||||||
|
info = ""
|
||||||
|
# Run each operation on each image
|
||||||
|
for op in extras_ops:
|
||||||
|
image, info = op(image, info)
|
||||||
|
|
||||||
|
if opts.use_original_name_batch and image_name is not None:
|
||||||
|
basename = os.path.splitext(os.path.basename(image_name))[0]
|
||||||
|
else:
|
||||||
|
basename = ''
|
||||||
|
|
||||||
|
if opts.enable_pnginfo: # append info before save
|
||||||
image.info = existing_pnginfo
|
image.info = existing_pnginfo
|
||||||
image.info["extras"] = info
|
image.info["extras"] = info
|
||||||
|
|
||||||
|
if save_output:
|
||||||
|
# Add upscaler name as a suffix.
|
||||||
|
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
|
||||||
|
# Add second upscaler if applicable.
|
||||||
|
if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
|
||||||
|
suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
|
||||||
|
|
||||||
|
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
|
||||||
|
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
|
||||||
|
|
||||||
if extras_mode != 2 or show_extras_results :
|
if extras_mode != 2 or show_extras_results :
|
||||||
outputs.append(image)
|
outputs.append(image)
|
||||||
|
|
||||||
@ -134,30 +222,16 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
|||||||
|
|
||||||
return outputs, plaintext_to_html(info), ''
|
return outputs, plaintext_to_html(info), ''
|
||||||
|
|
||||||
|
def clear_cache():
|
||||||
|
cached_images.clear()
|
||||||
|
|
||||||
|
|
||||||
def run_pnginfo(image):
|
def run_pnginfo(image):
|
||||||
if image is None:
|
if image is None:
|
||||||
return '', '', ''
|
return '', '', ''
|
||||||
|
|
||||||
items = image.info
|
geninfo, items = images.read_info_from_image(image)
|
||||||
geninfo = ''
|
items = {**{'parameters': geninfo}, **items}
|
||||||
|
|
||||||
if "exif" in image.info:
|
|
||||||
exif = piexif.load(image.info["exif"])
|
|
||||||
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
|
|
||||||
try:
|
|
||||||
exif_comment = piexif.helper.UserComment.load(exif_comment)
|
|
||||||
except ValueError:
|
|
||||||
exif_comment = exif_comment.decode('utf8', errors="ignore")
|
|
||||||
|
|
||||||
items['exif comment'] = exif_comment
|
|
||||||
geninfo = exif_comment
|
|
||||||
|
|
||||||
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
|
|
||||||
'loop', 'background', 'timestamp', 'duration']:
|
|
||||||
items.pop(field, None)
|
|
||||||
|
|
||||||
geninfo = items.get('parameters', geninfo)
|
|
||||||
|
|
||||||
info = ''
|
info = ''
|
||||||
for key, text in items.items():
|
for key, text in items.items():
|
||||||
@ -175,7 +249,35 @@ def run_pnginfo(image):
|
|||||||
return '', geninfo, info
|
return '', geninfo, info
|
||||||
|
|
||||||
|
|
||||||
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name):
|
def create_config(ckpt_result, config_source, a, b, c):
|
||||||
|
def config(x):
|
||||||
|
return sd_models.find_checkpoint_config(x) if x else None
|
||||||
|
|
||||||
|
if config_source == 0:
|
||||||
|
cfg = config(a) or config(b) or config(c)
|
||||||
|
elif config_source == 1:
|
||||||
|
cfg = config(b)
|
||||||
|
elif config_source == 2:
|
||||||
|
cfg = config(c)
|
||||||
|
else:
|
||||||
|
cfg = None
|
||||||
|
|
||||||
|
if cfg is None:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename, _ = os.path.splitext(ckpt_result)
|
||||||
|
checkpoint_filename = filename + ".yaml"
|
||||||
|
|
||||||
|
print("Copying config:")
|
||||||
|
print(" from:", cfg)
|
||||||
|
print(" to:", checkpoint_filename)
|
||||||
|
shutil.copyfile(cfg, checkpoint_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source):
|
||||||
|
shared.state.begin()
|
||||||
|
shared.state.job = 'model-merge'
|
||||||
|
|
||||||
def weighted_sum(theta0, theta1, alpha):
|
def weighted_sum(theta0, theta1, alpha):
|
||||||
return ((1 - alpha) * theta0) + (alpha * theta1)
|
return ((1 - alpha) * theta0) + (alpha * theta1)
|
||||||
|
|
||||||
@ -187,23 +289,8 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||||||
|
|
||||||
primary_model_info = sd_models.checkpoints_list[primary_model_name]
|
primary_model_info = sd_models.checkpoints_list[primary_model_name]
|
||||||
secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
|
secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
|
||||||
teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
|
tertiary_model_info = sd_models.checkpoints_list.get(tertiary_model_name, None)
|
||||||
|
result_is_inpainting_model = False
|
||||||
print(f"Loading {primary_model_info.filename}...")
|
|
||||||
primary_model = torch.load(primary_model_info.filename, map_location='cpu')
|
|
||||||
theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
|
|
||||||
|
|
||||||
print(f"Loading {secondary_model_info.filename}...")
|
|
||||||
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
|
|
||||||
theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)
|
|
||||||
|
|
||||||
if teritary_model_info is not None:
|
|
||||||
print(f"Loading {teritary_model_info.filename}...")
|
|
||||||
teritary_model = torch.load(teritary_model_info.filename, map_location='cpu')
|
|
||||||
theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model)
|
|
||||||
else:
|
|
||||||
teritary_model = None
|
|
||||||
theta_2 = None
|
|
||||||
|
|
||||||
theta_funcs = {
|
theta_funcs = {
|
||||||
"Weighted sum": (None, weighted_sum),
|
"Weighted sum": (None, weighted_sum),
|
||||||
@ -211,9 +298,19 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||||||
}
|
}
|
||||||
theta_func1, theta_func2 = theta_funcs[interp_method]
|
theta_func1, theta_func2 = theta_funcs[interp_method]
|
||||||
|
|
||||||
print(f"Merging...")
|
if theta_func1 and not tertiary_model_info:
|
||||||
|
shared.state.textinfo = "Failed: Interpolation method requires a tertiary model."
|
||||||
|
shared.state.end()
|
||||||
|
return ["Failed: Interpolation method requires a tertiary model."] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
|
||||||
|
|
||||||
|
shared.state.textinfo = f"Loading {secondary_model_info.filename}..."
|
||||||
|
print(f"Loading {secondary_model_info.filename}...")
|
||||||
|
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
|
||||||
|
|
||||||
if theta_func1:
|
if theta_func1:
|
||||||
|
print(f"Loading {tertiary_model_info.filename}...")
|
||||||
|
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
|
||||||
|
|
||||||
for key in tqdm.tqdm(theta_1.keys()):
|
for key in tqdm.tqdm(theta_1.keys()):
|
||||||
if 'model' in key:
|
if 'model' in key:
|
||||||
if key in theta_2:
|
if key in theta_2:
|
||||||
@ -221,12 +318,33 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||||||
theta_1[key] = theta_func1(theta_1[key], t2)
|
theta_1[key] = theta_func1(theta_1[key], t2)
|
||||||
else:
|
else:
|
||||||
theta_1[key] = torch.zeros_like(theta_1[key])
|
theta_1[key] = torch.zeros_like(theta_1[key])
|
||||||
del theta_2, teritary_model
|
del theta_2
|
||||||
|
|
||||||
|
shared.state.textinfo = f"Loading {primary_model_info.filename}..."
|
||||||
|
print(f"Loading {primary_model_info.filename}...")
|
||||||
|
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
|
||||||
|
|
||||||
|
print("Merging...")
|
||||||
|
|
||||||
for key in tqdm.tqdm(theta_0.keys()):
|
for key in tqdm.tqdm(theta_0.keys()):
|
||||||
if 'model' in key and key in theta_1:
|
if 'model' in key and key in theta_1:
|
||||||
|
a = theta_0[key]
|
||||||
|
b = theta_1[key]
|
||||||
|
|
||||||
theta_0[key] = theta_func2(theta_0[key], theta_1[key], multiplier)
|
shared.state.textinfo = f'Merging layer {key}'
|
||||||
|
# this enables merging an inpainting model (A) with another one (B);
|
||||||
|
# where normal model would have 4 channels, for latenst space, inpainting model would
|
||||||
|
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
|
||||||
|
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
|
||||||
|
if a.shape[1] == 4 and b.shape[1] == 9:
|
||||||
|
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
|
||||||
|
|
||||||
|
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
|
||||||
|
|
||||||
|
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
|
||||||
|
result_is_inpainting_model = True
|
||||||
|
else:
|
||||||
|
theta_0[key] = theta_func2(a, b, multiplier)
|
||||||
|
|
||||||
if save_as_half:
|
if save_as_half:
|
||||||
theta_0[key] = theta_0[key].half()
|
theta_0[key] = theta_0[key].half()
|
||||||
@ -237,17 +355,37 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||||||
theta_0[key] = theta_1[key]
|
theta_0[key] = theta_1[key]
|
||||||
if save_as_half:
|
if save_as_half:
|
||||||
theta_0[key] = theta_0[key].half()
|
theta_0[key] = theta_0[key].half()
|
||||||
|
del theta_1
|
||||||
|
|
||||||
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
||||||
|
|
||||||
filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
filename = \
|
||||||
filename = filename if custom_name == '' else (custom_name + '.ckpt')
|
primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + \
|
||||||
|
secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + \
|
||||||
|
interp_method.replace(" ", "_") + \
|
||||||
|
'-merged.' + \
|
||||||
|
("inpainting." if result_is_inpainting_model else "") + \
|
||||||
|
checkpoint_format
|
||||||
|
|
||||||
|
filename = filename if custom_name == '' else (custom_name + '.' + checkpoint_format)
|
||||||
|
|
||||||
output_modelname = os.path.join(ckpt_dir, filename)
|
output_modelname = os.path.join(ckpt_dir, filename)
|
||||||
|
|
||||||
|
shared.state.textinfo = f"Saving to {output_modelname}..."
|
||||||
print(f"Saving to {output_modelname}...")
|
print(f"Saving to {output_modelname}...")
|
||||||
torch.save(primary_model, output_modelname)
|
|
||||||
|
_, extension = os.path.splitext(output_modelname)
|
||||||
|
if extension.lower() == ".safetensors":
|
||||||
|
safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
|
||||||
|
else:
|
||||||
|
torch.save(theta_0, output_modelname)
|
||||||
|
|
||||||
sd_models.list_models()
|
sd_models.list_models()
|
||||||
|
|
||||||
print(f"Checkpoint saved.")
|
create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)
|
||||||
|
|
||||||
|
print("Checkpoint saved.")
|
||||||
|
shared.state.textinfo = "Checkpoint saved to " + output_modelname
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
|
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
|
||||||
|
@ -1,14 +1,226 @@
|
|||||||
|
import base64
|
||||||
|
import io
|
||||||
|
import math
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
from modules.shared import script_path
|
from modules.shared import script_path
|
||||||
from modules import shared
|
from modules import shared, ui_tempdir, script_callbacks
|
||||||
|
import tempfile
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
re_param_code = r"\s*([\w ]+):\s*([^,]+)(?:,|$)"
|
re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
|
||||||
re_param = re.compile(re_param_code)
|
re_param = re.compile(re_param_code)
|
||||||
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
|
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
|
||||||
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
|
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
|
||||||
|
re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$")
|
||||||
type_of_gr_update = type(gr.update())
|
type_of_gr_update = type(gr.update())
|
||||||
|
paste_fields = {}
|
||||||
|
bind_list = []
|
||||||
|
|
||||||
|
|
||||||
|
def reset():
|
||||||
|
paste_fields.clear()
|
||||||
|
bind_list.clear()
|
||||||
|
|
||||||
|
|
||||||
|
def quote(text):
|
||||||
|
if ',' not in str(text):
|
||||||
|
return text
|
||||||
|
|
||||||
|
text = str(text)
|
||||||
|
text = text.replace('\\', '\\\\')
|
||||||
|
text = text.replace('"', '\\"')
|
||||||
|
return f'"{text}"'
|
||||||
|
|
||||||
|
|
||||||
|
def image_from_url_text(filedata):
|
||||||
|
if type(filedata) == list and len(filedata) > 0 and type(filedata[0]) == dict and filedata[0].get("is_file", False):
|
||||||
|
filedata = filedata[0]
|
||||||
|
|
||||||
|
if type(filedata) == dict and filedata.get("is_file", False):
|
||||||
|
filename = filedata["name"]
|
||||||
|
is_in_right_dir = ui_tempdir.check_tmp_file(shared.demo, filename)
|
||||||
|
assert is_in_right_dir, 'trying to open image file outside of allowed directories'
|
||||||
|
|
||||||
|
return Image.open(filename)
|
||||||
|
|
||||||
|
if type(filedata) == list:
|
||||||
|
if len(filedata) == 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
filedata = filedata[0]
|
||||||
|
|
||||||
|
if filedata.startswith("data:image/png;base64,"):
|
||||||
|
filedata = filedata[len("data:image/png;base64,"):]
|
||||||
|
|
||||||
|
filedata = base64.decodebytes(filedata.encode('utf-8'))
|
||||||
|
image = Image.open(io.BytesIO(filedata))
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
def add_paste_fields(tabname, init_img, fields):
|
||||||
|
paste_fields[tabname] = {"init_img": init_img, "fields": fields}
|
||||||
|
|
||||||
|
# backwards compatibility for existing extensions
|
||||||
|
import modules.ui
|
||||||
|
if tabname == 'txt2img':
|
||||||
|
modules.ui.txt2img_paste_fields = fields
|
||||||
|
elif tabname == 'img2img':
|
||||||
|
modules.ui.img2img_paste_fields = fields
|
||||||
|
|
||||||
|
|
||||||
|
def integrate_settings_paste_fields(component_dict):
|
||||||
|
from modules import ui
|
||||||
|
|
||||||
|
settings_map = {
|
||||||
|
'sd_hypernetwork': 'Hypernet',
|
||||||
|
'sd_hypernetwork_strength': 'Hypernet strength',
|
||||||
|
'CLIP_stop_at_last_layers': 'Clip skip',
|
||||||
|
'inpainting_mask_weight': 'Conditional mask weight',
|
||||||
|
'sd_model_checkpoint': 'Model hash',
|
||||||
|
'eta_noise_seed_delta': 'ENSD',
|
||||||
|
'initial_noise_multiplier': 'Noise multiplier',
|
||||||
|
}
|
||||||
|
settings_paste_fields = [
|
||||||
|
(component_dict[k], lambda d, k=k, v=v: ui.apply_setting(k, d.get(v, None)))
|
||||||
|
for k, v in settings_map.items()
|
||||||
|
]
|
||||||
|
|
||||||
|
for tabname, info in paste_fields.items():
|
||||||
|
if info["fields"] is not None:
|
||||||
|
info["fields"] += settings_paste_fields
|
||||||
|
|
||||||
|
|
||||||
|
def create_buttons(tabs_list):
|
||||||
|
buttons = {}
|
||||||
|
for tab in tabs_list:
|
||||||
|
buttons[tab] = gr.Button(f"Send to {tab}", elem_id=f"{tab}_tab")
|
||||||
|
return buttons
|
||||||
|
|
||||||
|
|
||||||
|
#if send_generate_info is a tab name, mean generate_info comes from the params fields of the tab
|
||||||
|
def bind_buttons(buttons, send_image, send_generate_info):
|
||||||
|
bind_list.append([buttons, send_image, send_generate_info])
|
||||||
|
|
||||||
|
|
||||||
|
def send_image_and_dimensions(x):
|
||||||
|
if isinstance(x, Image.Image):
|
||||||
|
img = x
|
||||||
|
else:
|
||||||
|
img = image_from_url_text(x)
|
||||||
|
|
||||||
|
if shared.opts.send_size and isinstance(img, Image.Image):
|
||||||
|
w = img.width
|
||||||
|
h = img.height
|
||||||
|
else:
|
||||||
|
w = gr.update()
|
||||||
|
h = gr.update()
|
||||||
|
|
||||||
|
return img, w, h
|
||||||
|
|
||||||
|
|
||||||
|
def run_bind():
|
||||||
|
for buttons, source_image_component, send_generate_info in bind_list:
|
||||||
|
for tab in buttons:
|
||||||
|
button = buttons[tab]
|
||||||
|
destination_image_component = paste_fields[tab]["init_img"]
|
||||||
|
fields = paste_fields[tab]["fields"]
|
||||||
|
|
||||||
|
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
|
||||||
|
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
|
||||||
|
|
||||||
|
if source_image_component and destination_image_component:
|
||||||
|
if isinstance(source_image_component, gr.Gallery):
|
||||||
|
func = send_image_and_dimensions if destination_width_component else image_from_url_text
|
||||||
|
jsfunc = "extract_image_from_gallery"
|
||||||
|
else:
|
||||||
|
func = send_image_and_dimensions if destination_width_component else lambda x: x
|
||||||
|
jsfunc = None
|
||||||
|
|
||||||
|
button.click(
|
||||||
|
fn=func,
|
||||||
|
_js=jsfunc,
|
||||||
|
inputs=[source_image_component],
|
||||||
|
outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
|
||||||
|
)
|
||||||
|
|
||||||
|
if send_generate_info and fields is not None:
|
||||||
|
if send_generate_info in paste_fields:
|
||||||
|
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
|
||||||
|
button.click(
|
||||||
|
fn=lambda *x: x,
|
||||||
|
inputs=[field for field, name in paste_fields[send_generate_info]["fields"] if name in paste_field_names],
|
||||||
|
outputs=[field for field, name in fields if name in paste_field_names],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
connect_paste(button, fields, send_generate_info)
|
||||||
|
|
||||||
|
button.click(
|
||||||
|
fn=None,
|
||||||
|
_js=f"switch_to_{tab}",
|
||||||
|
inputs=None,
|
||||||
|
outputs=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
|
||||||
|
"""Determines the config parameter name to use for the hypernet based on the parameters in the infotext.
|
||||||
|
|
||||||
|
Example: an infotext provides "Hypernet: ke-ta" and "Hypernet hash: 1234abcd". For the "Hypernet" config
|
||||||
|
parameter this means there should be an entry that looks like "ke-ta-10000(1234abcd)" to set it to.
|
||||||
|
|
||||||
|
If the infotext has no hash, then a hypernet with the same name will be selected instead.
|
||||||
|
"""
|
||||||
|
hypernet_name = hypernet_name.lower()
|
||||||
|
if hypernet_hash is not None:
|
||||||
|
# Try to match the hash in the name
|
||||||
|
for hypernet_key in shared.hypernetworks.keys():
|
||||||
|
result = re_hypernet_hash.search(hypernet_key)
|
||||||
|
if result is not None and result[1] == hypernet_hash:
|
||||||
|
return hypernet_key
|
||||||
|
else:
|
||||||
|
# Fall back to a hypernet with the same name
|
||||||
|
for hypernet_key in shared.hypernetworks.keys():
|
||||||
|
if hypernet_key.lower().startswith(hypernet_name):
|
||||||
|
return hypernet_key
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def restore_old_hires_fix_params(res):
|
||||||
|
"""for infotexts that specify old First pass size parameter, convert it into
|
||||||
|
width, height, and hr scale"""
|
||||||
|
|
||||||
|
firstpass_width = res.get('First pass size-1', None)
|
||||||
|
firstpass_height = res.get('First pass size-2', None)
|
||||||
|
|
||||||
|
if shared.opts.use_old_hires_fix_width_height:
|
||||||
|
hires_width = int(res.get("Hires resize-1", 0))
|
||||||
|
hires_height = int(res.get("Hires resize-2", 0))
|
||||||
|
|
||||||
|
if hires_width and hires_height:
|
||||||
|
res['Size-1'] = hires_width
|
||||||
|
res['Size-2'] = hires_height
|
||||||
|
return
|
||||||
|
|
||||||
|
if firstpass_width is None or firstpass_height is None:
|
||||||
|
return
|
||||||
|
|
||||||
|
firstpass_width, firstpass_height = int(firstpass_width), int(firstpass_height)
|
||||||
|
width = int(res.get("Size-1", 512))
|
||||||
|
height = int(res.get("Size-2", 512))
|
||||||
|
|
||||||
|
if firstpass_width == 0 or firstpass_height == 0:
|
||||||
|
from modules import processing
|
||||||
|
firstpass_width, firstpass_height = processing.old_hires_fix_first_pass_dimensions(width, height)
|
||||||
|
|
||||||
|
res['Size-1'] = firstpass_width
|
||||||
|
res['Size-2'] = firstpass_height
|
||||||
|
res['Hires resize-1'] = width
|
||||||
|
res['Hires resize-2'] = height
|
||||||
|
|
||||||
|
|
||||||
def parse_generation_parameters(x: str):
|
def parse_generation_parameters(x: str):
|
||||||
@ -56,10 +268,28 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
|||||||
else:
|
else:
|
||||||
res[k] = v
|
res[k] = v
|
||||||
|
|
||||||
|
# Missing CLIP skip means it was set to 1 (the default)
|
||||||
|
if "Clip skip" not in res:
|
||||||
|
res["Clip skip"] = "1"
|
||||||
|
|
||||||
|
if "Hypernet strength" not in res:
|
||||||
|
res["Hypernet strength"] = "1"
|
||||||
|
|
||||||
|
if "Hypernet" in res:
|
||||||
|
hypernet_name = res["Hypernet"]
|
||||||
|
hypernet_hash = res.get("Hypernet hash", None)
|
||||||
|
res["Hypernet"] = find_hypernetwork_key(hypernet_name, hypernet_hash)
|
||||||
|
|
||||||
|
if "Hires resize-1" not in res:
|
||||||
|
res["Hires resize-1"] = 0
|
||||||
|
res["Hires resize-2"] = 0
|
||||||
|
|
||||||
|
restore_old_hires_fix_params(res)
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
def connect_paste(button, paste_fields, input_comp, js=None):
|
def connect_paste(button, paste_fields, input_comp, jsfunc=None):
|
||||||
def paste_func(prompt):
|
def paste_func(prompt):
|
||||||
if not prompt and not shared.cmd_opts.hide_ui_dir_config:
|
if not prompt and not shared.cmd_opts.hide_ui_dir_config:
|
||||||
filename = os.path.join(script_path, "params.txt")
|
filename = os.path.join(script_path, "params.txt")
|
||||||
@ -68,6 +298,7 @@ def connect_paste(button, paste_fields, input_comp, js=None):
|
|||||||
prompt = file.read()
|
prompt = file.read()
|
||||||
|
|
||||||
params = parse_generation_parameters(prompt)
|
params = parse_generation_parameters(prompt)
|
||||||
|
script_callbacks.infotext_pasted_callback(prompt, params)
|
||||||
res = []
|
res = []
|
||||||
|
|
||||||
for output, key in paste_fields:
|
for output, key in paste_fields:
|
||||||
@ -83,7 +314,12 @@ def connect_paste(button, paste_fields, input_comp, js=None):
|
|||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
valtype = type(output.value)
|
valtype = type(output.value)
|
||||||
val = valtype(v)
|
|
||||||
|
if valtype == bool and v == "False":
|
||||||
|
val = False
|
||||||
|
else:
|
||||||
|
val = valtype(v)
|
||||||
|
|
||||||
res.append(gr.update(value=val))
|
res.append(gr.update(value=val))
|
||||||
except Exception:
|
except Exception:
|
||||||
res.append(gr.update())
|
res.append(gr.update())
|
||||||
@ -92,7 +328,9 @@ def connect_paste(button, paste_fields, input_comp, js=None):
|
|||||||
|
|
||||||
button.click(
|
button.click(
|
||||||
fn=paste_func,
|
fn=paste_func,
|
||||||
_js=js,
|
_js=jsfunc,
|
||||||
inputs=[input_comp],
|
inputs=[input_comp],
|
||||||
outputs=[x[0] for x in paste_fields],
|
outputs=[x[0] for x in paste_fields],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -36,7 +36,9 @@ def gfpgann():
|
|||||||
else:
|
else:
|
||||||
print("Unable to load gfpgan model!")
|
print("Unable to load gfpgan model!")
|
||||||
return None
|
return None
|
||||||
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
|
if hasattr(facexlib.detection.retinaface, 'device'):
|
||||||
|
facexlib.detection.retinaface.device = devices.device_gfpgan
|
||||||
|
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan)
|
||||||
loaded_gfpgan_model = model
|
loaded_gfpgan_model = model
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
@ -1,39 +1,75 @@
|
|||||||
|
import csv
|
||||||
import datetime
|
import datetime
|
||||||
import glob
|
import glob
|
||||||
import html
|
import html
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
import tqdm
|
import inspect
|
||||||
import csv
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from ldm.util import default
|
|
||||||
from modules import devices, shared, processing, sd_models
|
|
||||||
import torch
|
|
||||||
from torch import einsum
|
|
||||||
from einops import rearrange, repeat
|
|
||||||
import modules.textual_inversion.dataset
|
import modules.textual_inversion.dataset
|
||||||
from modules.textual_inversion import textual_inversion
|
import torch
|
||||||
|
import tqdm
|
||||||
|
from einops import rearrange, repeat
|
||||||
|
from ldm.util import default
|
||||||
|
from modules import devices, processing, sd_models, shared, sd_samplers
|
||||||
|
from modules.textual_inversion import textual_inversion, logging
|
||||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||||
|
from torch import einsum
|
||||||
|
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
|
||||||
|
|
||||||
|
from collections import defaultdict, deque
|
||||||
|
from statistics import stdev, mean
|
||||||
|
|
||||||
|
|
||||||
|
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
|
||||||
|
|
||||||
class HypernetworkModule(torch.nn.Module):
|
class HypernetworkModule(torch.nn.Module):
|
||||||
multiplier = 1.0
|
multiplier = 1.0
|
||||||
|
activation_dict = {
|
||||||
|
"linear": torch.nn.Identity,
|
||||||
|
"relu": torch.nn.ReLU,
|
||||||
|
"leakyrelu": torch.nn.LeakyReLU,
|
||||||
|
"elu": torch.nn.ELU,
|
||||||
|
"swish": torch.nn.Hardswish,
|
||||||
|
"tanh": torch.nn.Tanh,
|
||||||
|
"sigmoid": torch.nn.Sigmoid,
|
||||||
|
}
|
||||||
|
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
|
||||||
|
|
||||||
def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
|
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
|
||||||
|
add_layer_norm=False, activate_output=False, dropout_structure=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
assert layer_structure is not None, "layer_structure mut not be None"
|
assert layer_structure is not None, "layer_structure must not be None"
|
||||||
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
|
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
|
||||||
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
|
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
|
||||||
|
|
||||||
linears = []
|
linears = []
|
||||||
for i in range(len(layer_structure) - 1):
|
for i in range(len(layer_structure) - 1):
|
||||||
|
|
||||||
|
# Add a fully-connected layer
|
||||||
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
||||||
|
|
||||||
|
# Add an activation func except last layer
|
||||||
|
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
|
||||||
|
pass
|
||||||
|
elif activation_func in self.activation_dict:
|
||||||
|
linears.append(self.activation_dict[activation_func]())
|
||||||
|
else:
|
||||||
|
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
|
||||||
|
|
||||||
|
# Add layer normalization
|
||||||
if add_layer_norm:
|
if add_layer_norm:
|
||||||
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
||||||
|
|
||||||
|
# Everything should be now parsed into dropout structure, and applied here.
|
||||||
|
# Since we only have dropouts after layers, dropout structure should start with 0 and end with 0.
|
||||||
|
if dropout_structure is not None and dropout_structure[i+1] > 0:
|
||||||
|
assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!"
|
||||||
|
linears.append(torch.nn.Dropout(p=dropout_structure[i+1]))
|
||||||
|
# Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0].
|
||||||
|
|
||||||
self.linear = torch.nn.Sequential(*linears)
|
self.linear = torch.nn.Sequential(*linears)
|
||||||
|
|
||||||
if state_dict is not None:
|
if state_dict is not None:
|
||||||
@ -41,9 +77,25 @@ class HypernetworkModule(torch.nn.Module):
|
|||||||
self.load_state_dict(state_dict)
|
self.load_state_dict(state_dict)
|
||||||
else:
|
else:
|
||||||
for layer in self.linear:
|
for layer in self.linear:
|
||||||
layer.weight.data.normal_(mean=0.0, std=0.01)
|
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
|
||||||
layer.bias.data.zero_()
|
w, b = layer.weight.data, layer.bias.data
|
||||||
|
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
|
||||||
|
normal_(w, mean=0.0, std=0.01)
|
||||||
|
normal_(b, mean=0.0, std=0)
|
||||||
|
elif weight_init == 'XavierUniform':
|
||||||
|
xavier_uniform_(w)
|
||||||
|
zeros_(b)
|
||||||
|
elif weight_init == 'XavierNormal':
|
||||||
|
xavier_normal_(w)
|
||||||
|
zeros_(b)
|
||||||
|
elif weight_init == 'KaimingUniform':
|
||||||
|
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
|
||||||
|
zeros_(b)
|
||||||
|
elif weight_init == 'KaimingNormal':
|
||||||
|
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
|
||||||
|
zeros_(b)
|
||||||
|
else:
|
||||||
|
raise KeyError(f"Key {weight_init} is not defined as initialization!")
|
||||||
self.to(devices.device)
|
self.to(devices.device)
|
||||||
|
|
||||||
def fix_old_state_dict(self, state_dict):
|
def fix_old_state_dict(self, state_dict):
|
||||||
@ -63,24 +115,40 @@ class HypernetworkModule(torch.nn.Module):
|
|||||||
state_dict[to] = x
|
state_dict[to] = x
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return x + self.linear(x) * self.multiplier
|
return x + self.linear(x) * (HypernetworkModule.multiplier if not self.training else 1)
|
||||||
|
|
||||||
def trainables(self):
|
def trainables(self):
|
||||||
layer_structure = []
|
layer_structure = []
|
||||||
for layer in self.linear:
|
for layer in self.linear:
|
||||||
layer_structure += [layer.weight, layer.bias]
|
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
|
||||||
|
layer_structure += [layer.weight, layer.bias]
|
||||||
return layer_structure
|
return layer_structure
|
||||||
|
|
||||||
|
|
||||||
def apply_strength(value=None):
|
def apply_strength(value=None):
|
||||||
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
|
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
|
||||||
|
|
||||||
|
#param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check.
|
||||||
|
def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout):
|
||||||
|
if layer_structure is None:
|
||||||
|
layer_structure = [1, 2, 1]
|
||||||
|
if not use_dropout:
|
||||||
|
return [0] * len(layer_structure)
|
||||||
|
dropout_values = [0]
|
||||||
|
dropout_values.extend([0.3] * (len(layer_structure) - 3))
|
||||||
|
if last_layer_dropout:
|
||||||
|
dropout_values.append(0.3)
|
||||||
|
else:
|
||||||
|
dropout_values.append(0)
|
||||||
|
dropout_values.append(0)
|
||||||
|
return dropout_values
|
||||||
|
|
||||||
|
|
||||||
class Hypernetwork:
|
class Hypernetwork:
|
||||||
filename = None
|
filename = None
|
||||||
name = None
|
name = None
|
||||||
|
|
||||||
def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False):
|
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
|
||||||
self.filename = None
|
self.filename = None
|
||||||
self.name = name
|
self.name = name
|
||||||
self.layers = {}
|
self.layers = {}
|
||||||
@ -88,26 +156,52 @@ class Hypernetwork:
|
|||||||
self.sd_checkpoint = None
|
self.sd_checkpoint = None
|
||||||
self.sd_checkpoint_name = None
|
self.sd_checkpoint_name = None
|
||||||
self.layer_structure = layer_structure
|
self.layer_structure = layer_structure
|
||||||
|
self.activation_func = activation_func
|
||||||
|
self.weight_init = weight_init
|
||||||
self.add_layer_norm = add_layer_norm
|
self.add_layer_norm = add_layer_norm
|
||||||
|
self.use_dropout = use_dropout
|
||||||
|
self.activate_output = activate_output
|
||||||
|
self.last_layer_dropout = kwargs.get('last_layer_dropout', True)
|
||||||
|
self.dropout_structure = kwargs.get('dropout_structure', None)
|
||||||
|
if self.dropout_structure is None:
|
||||||
|
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
|
||||||
|
self.optimizer_name = None
|
||||||
|
self.optimizer_state_dict = None
|
||||||
|
self.optional_info = None
|
||||||
|
|
||||||
for size in enable_sizes or []:
|
for size in enable_sizes or []:
|
||||||
self.layers[size] = (
|
self.layers[size] = (
|
||||||
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
|
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
||||||
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
|
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
|
||||||
|
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
||||||
|
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
|
||||||
)
|
)
|
||||||
|
self.eval()
|
||||||
|
|
||||||
def weights(self):
|
def weights(self):
|
||||||
res = []
|
res = []
|
||||||
|
|
||||||
for k, layers in self.layers.items():
|
for k, layers in self.layers.items():
|
||||||
for layer in layers:
|
for layer in layers:
|
||||||
layer.train()
|
res += layer.parameters()
|
||||||
res += layer.trainables()
|
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
def train(self, mode=True):
|
||||||
|
for k, layers in self.layers.items():
|
||||||
|
for layer in layers:
|
||||||
|
layer.train(mode=mode)
|
||||||
|
for param in layer.parameters():
|
||||||
|
param.requires_grad = mode
|
||||||
|
|
||||||
|
def eval(self):
|
||||||
|
for k, layers in self.layers.items():
|
||||||
|
for layer in layers:
|
||||||
|
layer.eval()
|
||||||
|
for param in layer.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
def save(self, filename):
|
def save(self, filename):
|
||||||
state_dict = {}
|
state_dict = {}
|
||||||
|
optimizer_saved_dict = {}
|
||||||
|
|
||||||
for k, v in self.layers.items():
|
for k, v in self.layers.items():
|
||||||
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
|
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
|
||||||
@ -115,11 +209,25 @@ class Hypernetwork:
|
|||||||
state_dict['step'] = self.step
|
state_dict['step'] = self.step
|
||||||
state_dict['name'] = self.name
|
state_dict['name'] = self.name
|
||||||
state_dict['layer_structure'] = self.layer_structure
|
state_dict['layer_structure'] = self.layer_structure
|
||||||
|
state_dict['activation_func'] = self.activation_func
|
||||||
state_dict['is_layer_norm'] = self.add_layer_norm
|
state_dict['is_layer_norm'] = self.add_layer_norm
|
||||||
|
state_dict['weight_initialization'] = self.weight_init
|
||||||
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
||||||
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
||||||
|
state_dict['activate_output'] = self.activate_output
|
||||||
|
state_dict['use_dropout'] = self.use_dropout
|
||||||
|
state_dict['dropout_structure'] = self.dropout_structure
|
||||||
|
state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout
|
||||||
|
state_dict['optional_info'] = self.optional_info if self.optional_info else None
|
||||||
|
|
||||||
|
if self.optimizer_name is not None:
|
||||||
|
optimizer_saved_dict['optimizer_name'] = self.optimizer_name
|
||||||
|
|
||||||
torch.save(state_dict, filename)
|
torch.save(state_dict, filename)
|
||||||
|
if shared.opts.save_optimizer_state and self.optimizer_state_dict:
|
||||||
|
optimizer_saved_dict['hash'] = sd_models.model_hash(filename)
|
||||||
|
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
|
||||||
|
torch.save(optimizer_saved_dict, filename + '.optim')
|
||||||
|
|
||||||
def load(self, filename):
|
def load(self, filename):
|
||||||
self.filename = filename
|
self.filename = filename
|
||||||
@ -129,32 +237,73 @@ class Hypernetwork:
|
|||||||
state_dict = torch.load(filename, map_location='cpu')
|
state_dict = torch.load(filename, map_location='cpu')
|
||||||
|
|
||||||
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
|
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
|
||||||
|
print(self.layer_structure)
|
||||||
|
optional_info = state_dict.get('optional_info', None)
|
||||||
|
if optional_info is not None:
|
||||||
|
print(f"INFO:\n {optional_info}\n")
|
||||||
|
self.optional_info = optional_info
|
||||||
|
self.activation_func = state_dict.get('activation_func', None)
|
||||||
|
print(f"Activation function is {self.activation_func}")
|
||||||
|
self.weight_init = state_dict.get('weight_initialization', 'Normal')
|
||||||
|
print(f"Weight initialization is {self.weight_init}")
|
||||||
self.add_layer_norm = state_dict.get('is_layer_norm', False)
|
self.add_layer_norm = state_dict.get('is_layer_norm', False)
|
||||||
|
print(f"Layer norm is set to {self.add_layer_norm}")
|
||||||
|
self.dropout_structure = state_dict.get('dropout_structure', None)
|
||||||
|
self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False)
|
||||||
|
print(f"Dropout usage is set to {self.use_dropout}" )
|
||||||
|
self.activate_output = state_dict.get('activate_output', True)
|
||||||
|
print(f"Activate last layer is set to {self.activate_output}")
|
||||||
|
self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
|
||||||
|
# Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0.
|
||||||
|
if self.dropout_structure is None:
|
||||||
|
print("Using previous dropout structure")
|
||||||
|
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
|
||||||
|
print(f"Dropout structure is set to {self.dropout_structure}")
|
||||||
|
|
||||||
|
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {}
|
||||||
|
|
||||||
|
if sd_models.model_hash(filename) == optimizer_saved_dict.get('hash', None):
|
||||||
|
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
|
||||||
|
else:
|
||||||
|
self.optimizer_state_dict = None
|
||||||
|
if self.optimizer_state_dict:
|
||||||
|
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
|
||||||
|
print("Loaded existing optimizer from checkpoint")
|
||||||
|
print(f"Optimizer name is {self.optimizer_name}")
|
||||||
|
else:
|
||||||
|
self.optimizer_name = "AdamW"
|
||||||
|
print("No saved optimizer exists in checkpoint")
|
||||||
|
|
||||||
for size, sd in state_dict.items():
|
for size, sd in state_dict.items():
|
||||||
if type(size) == int:
|
if type(size) == int:
|
||||||
self.layers[size] = (
|
self.layers[size] = (
|
||||||
HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm),
|
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
|
||||||
HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm),
|
self.add_layer_norm, self.activate_output, self.dropout_structure),
|
||||||
|
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
|
||||||
|
self.add_layer_norm, self.activate_output, self.dropout_structure),
|
||||||
)
|
)
|
||||||
|
|
||||||
self.name = state_dict.get('name', self.name)
|
self.name = state_dict.get('name', self.name)
|
||||||
self.step = state_dict.get('step', 0)
|
self.step = state_dict.get('step', 0)
|
||||||
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
|
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
|
||||||
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
|
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
|
||||||
|
self.eval()
|
||||||
|
|
||||||
|
|
||||||
def list_hypernetworks(path):
|
def list_hypernetworks(path):
|
||||||
res = {}
|
res = {}
|
||||||
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)):
|
||||||
name = os.path.splitext(os.path.basename(filename))[0]
|
name = os.path.splitext(os.path.basename(filename))[0]
|
||||||
res[name] = filename
|
# Prevent a hypothetical "None.pt" from being listed.
|
||||||
|
if name != "None":
|
||||||
|
res[name + f"({sd_models.model_hash(filename)})"] = filename
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
def load_hypernetwork(filename):
|
def load_hypernetwork(filename):
|
||||||
path = shared.hypernetworks.get(filename, None)
|
path = shared.hypernetworks.get(filename, None)
|
||||||
if path is not None:
|
# Prevent any file named "None.pt" from being loaded.
|
||||||
|
if path is not None and filename != "None":
|
||||||
print(f"Loading hypernetwork {filename}")
|
print(f"Loading hypernetwork {filename}")
|
||||||
try:
|
try:
|
||||||
shared.loaded_hypernetwork = Hypernetwork()
|
shared.loaded_hypernetwork = Hypernetwork()
|
||||||
@ -165,7 +314,7 @@ def load_hypernetwork(filename):
|
|||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
else:
|
else:
|
||||||
if shared.loaded_hypernetwork is not None:
|
if shared.loaded_hypernetwork is not None:
|
||||||
print(f"Unloading hypernetwork")
|
print("Unloading hypernetwork")
|
||||||
|
|
||||||
shared.loaded_hypernetwork = None
|
shared.loaded_hypernetwork = None
|
||||||
|
|
||||||
@ -239,16 +388,84 @@ def stack_conds(conds):
|
|||||||
return torch.stack(conds)
|
return torch.stack(conds)
|
||||||
|
|
||||||
|
|
||||||
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
def statistics(data):
|
||||||
assert hypernetwork_name, 'hypernetwork not selected'
|
if len(data) < 2:
|
||||||
|
std = 0
|
||||||
|
else:
|
||||||
|
std = stdev(data)
|
||||||
|
total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
|
||||||
|
recent_data = data[-32:]
|
||||||
|
if len(recent_data) < 2:
|
||||||
|
std = 0
|
||||||
|
else:
|
||||||
|
std = stdev(recent_data)
|
||||||
|
recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
|
||||||
|
return total_information, recent_information
|
||||||
|
|
||||||
|
|
||||||
|
def report_statistics(loss_info:dict):
|
||||||
|
keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
|
||||||
|
for key in keys:
|
||||||
|
try:
|
||||||
|
print("Loss statistics for file " + key)
|
||||||
|
info, recent = statistics(list(loss_info[key]))
|
||||||
|
print(info)
|
||||||
|
print(recent)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
|
||||||
|
|
||||||
|
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
|
||||||
|
# Remove illegal characters from name.
|
||||||
|
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
|
||||||
|
assert name, "Name cannot be empty!"
|
||||||
|
|
||||||
|
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
|
||||||
|
if not overwrite_old:
|
||||||
|
assert not os.path.exists(fn), f"file {fn} already exists"
|
||||||
|
|
||||||
|
if type(layer_structure) == str:
|
||||||
|
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
|
||||||
|
|
||||||
|
if use_dropout and dropout_structure and type(dropout_structure) == str:
|
||||||
|
dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")]
|
||||||
|
else:
|
||||||
|
dropout_structure = [0] * len(layer_structure)
|
||||||
|
|
||||||
|
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
|
||||||
|
name=name,
|
||||||
|
enable_sizes=[int(x) for x in enable_sizes],
|
||||||
|
layer_structure=layer_structure,
|
||||||
|
activation_func=activation_func,
|
||||||
|
weight_init=weight_init,
|
||||||
|
add_layer_norm=add_layer_norm,
|
||||||
|
use_dropout=use_dropout,
|
||||||
|
dropout_structure=dropout_structure
|
||||||
|
)
|
||||||
|
hypernet.save(fn)
|
||||||
|
|
||||||
|
shared.reload_hypernetworks()
|
||||||
|
|
||||||
|
|
||||||
|
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||||
|
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
||||||
|
from modules import images
|
||||||
|
|
||||||
|
save_hypernetwork_every = save_hypernetwork_every or 0
|
||||||
|
create_image_every = create_image_every or 0
|
||||||
|
template_file = textual_inversion.textual_inversion_templates.get(template_filename, None)
|
||||||
|
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
|
||||||
|
template_file = template_file.path
|
||||||
|
|
||||||
path = shared.hypernetworks.get(hypernetwork_name, None)
|
path = shared.hypernetworks.get(hypernetwork_name, None)
|
||||||
shared.loaded_hypernetwork = Hypernetwork()
|
shared.loaded_hypernetwork = Hypernetwork()
|
||||||
shared.loaded_hypernetwork.load(path)
|
shared.loaded_hypernetwork.load(path)
|
||||||
|
|
||||||
|
shared.state.job = "train-hypernetwork"
|
||||||
shared.state.textinfo = "Initializing hypernetwork training..."
|
shared.state.textinfo = "Initializing hypernetwork training..."
|
||||||
shared.state.job_count = steps
|
shared.state.job_count = steps
|
||||||
|
|
||||||
|
hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
|
||||||
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||||
|
|
||||||
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
|
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
|
||||||
@ -266,142 +483,266 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||||||
else:
|
else:
|
||||||
images_dir = None
|
images_dir = None
|
||||||
|
|
||||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
|
||||||
with torch.autocast("cuda"):
|
|
||||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
|
|
||||||
if unload:
|
|
||||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
|
||||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
|
||||||
|
|
||||||
hypernetwork = shared.loaded_hypernetwork
|
hypernetwork = shared.loaded_hypernetwork
|
||||||
weights = hypernetwork.weights()
|
checkpoint = sd_models.select_checkpoint()
|
||||||
for weight in weights:
|
|
||||||
weight.requires_grad = True
|
|
||||||
|
|
||||||
losses = torch.zeros((32,))
|
|
||||||
|
|
||||||
last_saved_file = "<none>"
|
|
||||||
last_saved_image = "<none>"
|
|
||||||
|
|
||||||
initial_step = hypernetwork.step or 0
|
initial_step = hypernetwork.step or 0
|
||||||
if initial_step > steps:
|
if initial_step >= steps:
|
||||||
|
shared.state.textinfo = "Model has already been trained beyond specified max steps"
|
||||||
return hypernetwork, filename
|
return hypernetwork, filename
|
||||||
|
|
||||||
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
||||||
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
|
||||||
|
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None
|
||||||
|
if clip_grad:
|
||||||
|
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
|
||||||
|
|
||||||
if shared.opts.training_enable_tensorboard:
|
if shared.opts.training_enable_tensorboard:
|
||||||
tensorboard_writer = textual_inversion.tensorboard_setup(log_directory)
|
tensorboard_writer = textual_inversion.tensorboard_setup(log_directory)
|
||||||
|
|
||||||
pbar = tqdm.tqdm(enumerate(ds), total=steps - initial_step)
|
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||||
for i, entries in pbar:
|
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||||
hypernetwork.step = i + initial_step
|
|
||||||
|
|
||||||
scheduler.apply(optimizer, hypernetwork.step)
|
pin_memory = shared.opts.pin_memory
|
||||||
if scheduler.finished:
|
|
||||||
break
|
|
||||||
|
|
||||||
if shared.state.interrupted:
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
|
||||||
break
|
|
||||||
|
|
||||||
with torch.autocast("cuda"):
|
if shared.opts.save_training_settings_to_txt:
|
||||||
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
|
saved_params = dict(
|
||||||
# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
|
model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds),
|
||||||
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
|
**{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]}
|
||||||
loss = shared.sd_model(x, c)[0]
|
)
|
||||||
del x
|
logging.save_settings_to_file(log_directory, {**saved_params, **locals()})
|
||||||
del c
|
|
||||||
|
|
||||||
losses[hypernetwork.step % losses.shape[0]] = loss.item()
|
latent_sampling_method = ds.latent_sampling_method
|
||||||
|
|
||||||
optimizer.zero_grad()
|
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
mean_loss = losses.mean()
|
old_parallel_processing_allowed = shared.parallel_processing_allowed
|
||||||
if torch.isnan(mean_loss):
|
|
||||||
raise RuntimeError("Loss diverged.")
|
|
||||||
pbar.set_description(f"loss: {mean_loss:.7f}")
|
|
||||||
|
|
||||||
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
|
if unload:
|
||||||
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
|
shared.parallel_processing_allowed = False
|
||||||
hypernetwork.save(last_saved_file)
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||||
if shared.opts.training_enable_tensorboard:
|
|
||||||
epoch_num = hypernetwork.step // len(ds)
|
|
||||||
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
|
|
||||||
|
|
||||||
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss,
|
|
||||||
global_step=hypernetwork.step, step=epoch_step,
|
|
||||||
learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
|
|
||||||
|
|
||||||
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
|
weights = hypernetwork.weights()
|
||||||
"loss": f"{mean_loss:.7f}",
|
hypernetwork.train()
|
||||||
"learn_rate": scheduler.learn_rate
|
|
||||||
})
|
|
||||||
|
|
||||||
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
|
# Here we use optimizer from saved HN, or we can specify as UI option.
|
||||||
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
|
if hypernetwork.optimizer_name in optimizer_dict:
|
||||||
|
optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
|
||||||
|
optimizer_name = hypernetwork.optimizer_name
|
||||||
|
else:
|
||||||
|
print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
|
||||||
|
optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
|
||||||
|
optimizer_name = 'AdamW'
|
||||||
|
|
||||||
optimizer.zero_grad()
|
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
|
||||||
shared.sd_model.cond_stage_model.to(devices.device)
|
try:
|
||||||
shared.sd_model.first_stage_model.to(devices.device)
|
optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
|
||||||
|
except RuntimeError as e:
|
||||||
|
print("Cannot resume from saved optimizer!")
|
||||||
|
print(e)
|
||||||
|
|
||||||
p = processing.StableDiffusionProcessingTxt2Img(
|
scaler = torch.cuda.amp.GradScaler()
|
||||||
sd_model=shared.sd_model,
|
|
||||||
do_not_save_grid=True,
|
batch_size = ds.batch_size
|
||||||
do_not_save_samples=True,
|
gradient_step = ds.gradient_step
|
||||||
)
|
# n steps = batch_size * gradient_step * n image processed
|
||||||
|
steps_per_epoch = len(ds) // batch_size // gradient_step
|
||||||
|
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
|
||||||
|
loss_step = 0
|
||||||
|
_loss_step = 0 #internal
|
||||||
|
# size = len(ds.indexes)
|
||||||
|
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
||||||
|
# losses = torch.zeros((size,))
|
||||||
|
# previous_mean_losses = [0]
|
||||||
|
# previous_mean_loss = 0
|
||||||
|
# print("Mean loss of {} elements".format(size))
|
||||||
|
|
||||||
if preview_from_txt2img:
|
steps_without_grad = 0
|
||||||
p.prompt = preview_prompt
|
|
||||||
p.negative_prompt = preview_negative_prompt
|
|
||||||
p.steps = preview_steps
|
|
||||||
p.sampler_index = preview_sampler_index
|
|
||||||
p.cfg_scale = preview_cfg_scale
|
|
||||||
p.seed = preview_seed
|
|
||||||
p.width = preview_width
|
|
||||||
p.height = preview_height
|
|
||||||
else:
|
|
||||||
p.prompt = entries[0].cond_text
|
|
||||||
p.steps = 20
|
|
||||||
|
|
||||||
preview_text = p.prompt
|
last_saved_file = "<none>"
|
||||||
|
last_saved_image = "<none>"
|
||||||
|
forced_filename = "<none>"
|
||||||
|
|
||||||
processed = processing.process_images(p)
|
pbar = tqdm.tqdm(total=steps - initial_step)
|
||||||
image = processed.images[0] if len(processed.images)>0 else None
|
try:
|
||||||
|
for i in range((steps-initial_step) * gradient_step):
|
||||||
|
if scheduler.finished:
|
||||||
|
break
|
||||||
|
if shared.state.interrupted:
|
||||||
|
break
|
||||||
|
for j, batch in enumerate(dl):
|
||||||
|
# works as a drop_last=True for gradient accumulation
|
||||||
|
if j == max_steps_per_epoch:
|
||||||
|
break
|
||||||
|
scheduler.apply(optimizer, hypernetwork.step)
|
||||||
|
if scheduler.finished:
|
||||||
|
break
|
||||||
|
if shared.state.interrupted:
|
||||||
|
break
|
||||||
|
|
||||||
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
|
if clip_grad:
|
||||||
textual_inversion.tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}",
|
clip_grad_sched.step(hypernetwork.step)
|
||||||
image, hypernetwork.step)
|
|
||||||
|
with devices.autocast():
|
||||||
|
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
||||||
|
if tag_drop_out != 0 or shuffle_tags:
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
|
else:
|
||||||
|
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
||||||
|
loss = shared.sd_model(x, c)[0] / gradient_step
|
||||||
|
del x
|
||||||
|
del c
|
||||||
|
|
||||||
if unload:
|
_loss_step += loss.item()
|
||||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
scaler.scale(loss).backward()
|
||||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
|
||||||
|
# go back until we reach gradient accumulation steps
|
||||||
|
if (j + 1) % gradient_step != 0:
|
||||||
|
continue
|
||||||
|
|
||||||
if image is not None:
|
if clip_grad:
|
||||||
shared.state.current_image = image
|
clip_grad(weights, clip_grad_sched.learn_rate)
|
||||||
image.save(last_saved_image)
|
|
||||||
last_saved_image += f", prompt: {preview_text}"
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
hypernetwork.step += 1
|
||||||
|
pbar.update()
|
||||||
|
optimizer.zero_grad(set_to_none=True)
|
||||||
|
loss_step = _loss_step
|
||||||
|
_loss_step = 0
|
||||||
|
|
||||||
shared.state.job_no = hypernetwork.step
|
steps_done = hypernetwork.step + 1
|
||||||
|
|
||||||
|
epoch_num = hypernetwork.step // steps_per_epoch
|
||||||
|
epoch_step = hypernetwork.step % steps_per_epoch
|
||||||
|
|
||||||
shared.state.textinfo = f"""
|
description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}"
|
||||||
|
pbar.set_description(description)
|
||||||
|
shared.state.textinfo = description
|
||||||
|
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
|
||||||
|
# Before saving, change name to match current checkpoint.
|
||||||
|
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
|
||||||
|
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
|
||||||
|
hypernetwork.optimizer_name = optimizer_name
|
||||||
|
if shared.opts.save_optimizer_state:
|
||||||
|
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
||||||
|
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
|
||||||
|
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if shared.opts.training_enable_tensorboard:
|
||||||
|
epoch_num = hypernetwork.step // len(ds)
|
||||||
|
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
|
||||||
|
|
||||||
|
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
|
||||||
|
|
||||||
|
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
|
||||||
|
"loss": f"{loss_step:.7f}",
|
||||||
|
"learn_rate": scheduler.learn_rate
|
||||||
|
})
|
||||||
|
|
||||||
|
if images_dir is not None and steps_done % create_image_every == 0:
|
||||||
|
forced_filename = f'{hypernetwork_name}-{steps_done}'
|
||||||
|
last_saved_image = os.path.join(images_dir, forced_filename)
|
||||||
|
hypernetwork.eval()
|
||||||
|
rng_state = torch.get_rng_state()
|
||||||
|
cuda_rng_state = None
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
cuda_rng_state = torch.cuda.get_rng_state_all()
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.device)
|
||||||
|
|
||||||
|
p = processing.StableDiffusionProcessingTxt2Img(
|
||||||
|
sd_model=shared.sd_model,
|
||||||
|
do_not_save_grid=True,
|
||||||
|
do_not_save_samples=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
if preview_from_txt2img:
|
||||||
|
p.prompt = preview_prompt
|
||||||
|
p.negative_prompt = preview_negative_prompt
|
||||||
|
p.steps = preview_steps
|
||||||
|
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
|
||||||
|
p.cfg_scale = preview_cfg_scale
|
||||||
|
p.seed = preview_seed
|
||||||
|
p.width = preview_width
|
||||||
|
p.height = preview_height
|
||||||
|
else:
|
||||||
|
p.prompt = batch.cond_text[0]
|
||||||
|
p.steps = 20
|
||||||
|
p.width = training_width
|
||||||
|
p.height = training_height
|
||||||
|
|
||||||
|
preview_text = p.prompt
|
||||||
|
|
||||||
|
processed = processing.process_images(p)
|
||||||
|
image = processed.images[0] if len(processed.images) > 0 else None
|
||||||
|
|
||||||
|
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
|
||||||
|
textual_inversion.tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, hypernetwork.step)
|
||||||
|
|
||||||
|
if unload:
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||||
|
torch.set_rng_state(rng_state)
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.set_rng_state_all(cuda_rng_state)
|
||||||
|
hypernetwork.train()
|
||||||
|
if image is not None:
|
||||||
|
shared.state.current_image = image
|
||||||
|
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
||||||
|
last_saved_image += f", prompt: {preview_text}"
|
||||||
|
|
||||||
|
shared.state.job_no = hypernetwork.step
|
||||||
|
|
||||||
|
shared.state.textinfo = f"""
|
||||||
<p>
|
<p>
|
||||||
Loss: {mean_loss:.7f}<br/>
|
Loss: {loss_step:.7f}<br/>
|
||||||
Step: {hypernetwork.step}<br/>
|
Step: {steps_done}<br/>
|
||||||
Last prompt: {html.escape(entries[0].cond_text)}<br/>
|
Last prompt: {html.escape(batch.cond_text[0])}<br/>
|
||||||
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
|
||||||
Last saved image: {html.escape(last_saved_image)}<br/>
|
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||||
</p>
|
</p>
|
||||||
"""
|
"""
|
||||||
|
except Exception:
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
finally:
|
||||||
|
pbar.leave = False
|
||||||
|
pbar.close()
|
||||||
|
hypernetwork.eval()
|
||||||
|
#report_statistics(loss_dict)
|
||||||
|
|
||||||
checkpoint = sd_models.select_checkpoint()
|
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||||
|
hypernetwork.optimizer_name = optimizer_name
|
||||||
|
if shared.opts.save_optimizer_state:
|
||||||
|
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
||||||
|
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
|
||||||
|
|
||||||
hypernetwork.sd_checkpoint = checkpoint.hash
|
del optimizer
|
||||||
hypernetwork.sd_checkpoint_name = checkpoint.model_name
|
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||||
hypernetwork.save(filename)
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.device)
|
||||||
|
shared.parallel_processing_allowed = old_parallel_processing_allowed
|
||||||
|
|
||||||
return hypernetwork, filename
|
return hypernetwork, filename
|
||||||
|
|
||||||
|
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
|
||||||
|
old_hypernetwork_name = hypernetwork.name
|
||||||
|
old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
|
||||||
|
old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
|
||||||
|
try:
|
||||||
|
hypernetwork.sd_checkpoint = checkpoint.hash
|
||||||
|
hypernetwork.sd_checkpoint_name = checkpoint.model_name
|
||||||
|
hypernetwork.name = hypernetwork_name
|
||||||
|
hypernetwork.save(filename)
|
||||||
|
except:
|
||||||
|
hypernetwork.sd_checkpoint = old_sd_checkpoint
|
||||||
|
hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
|
||||||
|
hypernetwork.name = old_hypernetwork_name
|
||||||
|
raise
|
||||||
|
@ -3,31 +3,16 @@ import os
|
|||||||
import re
|
import re
|
||||||
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
import modules.hypernetworks.hypernetwork
|
||||||
|
from modules import devices, sd_hijack, shared
|
||||||
|
|
||||||
import modules.textual_inversion.textual_inversion
|
not_available = ["hardswish", "multiheadattention"]
|
||||||
import modules.textual_inversion.preprocess
|
keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
|
||||||
from modules import sd_hijack, shared, devices
|
|
||||||
from modules.hypernetworks import hypernetwork
|
|
||||||
|
|
||||||
|
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
|
||||||
|
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure)
|
||||||
|
|
||||||
def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False):
|
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", ""
|
||||||
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
|
|
||||||
assert not os.path.exists(fn), f"file {fn} already exists"
|
|
||||||
|
|
||||||
if type(layer_structure) == str:
|
|
||||||
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
|
|
||||||
|
|
||||||
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
|
|
||||||
name=name,
|
|
||||||
enable_sizes=[int(x) for x in enable_sizes],
|
|
||||||
layer_structure=layer_structure,
|
|
||||||
add_layer_norm=add_layer_norm,
|
|
||||||
)
|
|
||||||
hypernet.save(fn)
|
|
||||||
|
|
||||||
shared.reload_hypernetworks()
|
|
||||||
|
|
||||||
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
|
|
||||||
|
|
||||||
|
|
||||||
def train_hypernetwork(*args):
|
def train_hypernetwork(*args):
|
||||||
|
@ -1,4 +1,8 @@
|
|||||||
import datetime
|
import datetime
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
import pytz
|
||||||
import io
|
import io
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
@ -11,8 +15,9 @@ import piexif.helper
|
|||||||
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
|
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
|
||||||
from fonts.ttf import Roboto
|
from fonts.ttf import Roboto
|
||||||
import string
|
import string
|
||||||
|
import json
|
||||||
|
|
||||||
from modules import sd_samplers, shared
|
from modules import sd_samplers, shared, script_callbacks
|
||||||
from modules.shared import opts, cmd_opts
|
from modules.shared import opts, cmd_opts
|
||||||
|
|
||||||
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
||||||
@ -34,11 +39,14 @@ def image_grid(imgs, batch_size=1, rows=None):
|
|||||||
|
|
||||||
cols = math.ceil(len(imgs) / rows)
|
cols = math.ceil(len(imgs) / rows)
|
||||||
|
|
||||||
w, h = imgs[0].size
|
params = script_callbacks.ImageGridLoopParams(imgs, cols, rows)
|
||||||
grid = Image.new('RGB', size=(cols * w, rows * h), color='black')
|
script_callbacks.image_grid_callback(params)
|
||||||
|
|
||||||
for i, img in enumerate(imgs):
|
w, h = imgs[0].size
|
||||||
grid.paste(img, box=(i % cols * w, i // cols * h))
|
grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black')
|
||||||
|
|
||||||
|
for i, img in enumerate(params.imgs):
|
||||||
|
grid.paste(img, box=(i % params.cols * w, i // params.cols * h))
|
||||||
|
|
||||||
return grid
|
return grid
|
||||||
|
|
||||||
@ -131,8 +139,19 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
|||||||
lines.append(word)
|
lines.append(word)
|
||||||
return lines
|
return lines
|
||||||
|
|
||||||
def draw_texts(drawing, draw_x, draw_y, lines):
|
def get_font(fontsize):
|
||||||
|
try:
|
||||||
|
return ImageFont.truetype(opts.font or Roboto, fontsize)
|
||||||
|
except Exception:
|
||||||
|
return ImageFont.truetype(Roboto, fontsize)
|
||||||
|
|
||||||
|
def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize):
|
||||||
for i, line in enumerate(lines):
|
for i, line in enumerate(lines):
|
||||||
|
fnt = initial_fnt
|
||||||
|
fontsize = initial_fontsize
|
||||||
|
while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0:
|
||||||
|
fontsize -= 1
|
||||||
|
fnt = get_font(fontsize)
|
||||||
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
|
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
|
||||||
|
|
||||||
if not line.is_active:
|
if not line.is_active:
|
||||||
@ -143,10 +162,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
|||||||
fontsize = (width + height) // 25
|
fontsize = (width + height) // 25
|
||||||
line_spacing = fontsize // 2
|
line_spacing = fontsize // 2
|
||||||
|
|
||||||
try:
|
fnt = get_font(fontsize)
|
||||||
fnt = ImageFont.truetype(opts.font or Roboto, fontsize)
|
|
||||||
except Exception:
|
|
||||||
fnt = ImageFont.truetype(Roboto, fontsize)
|
|
||||||
|
|
||||||
color_active = (0, 0, 0)
|
color_active = (0, 0, 0)
|
||||||
color_inactive = (153, 153, 153)
|
color_inactive = (153, 153, 153)
|
||||||
@ -173,6 +189,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
|||||||
for line in texts:
|
for line in texts:
|
||||||
bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt)
|
bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt)
|
||||||
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1])
|
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1])
|
||||||
|
line.allowed_width = allowed_width
|
||||||
|
|
||||||
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
|
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
|
||||||
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
|
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
|
||||||
@ -189,13 +206,13 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
|||||||
x = pad_left + width * col + width / 2
|
x = pad_left + width * col + width / 2
|
||||||
y = pad_top / 2 - hor_text_heights[col] / 2
|
y = pad_top / 2 - hor_text_heights[col] / 2
|
||||||
|
|
||||||
draw_texts(d, x, y, hor_texts[col])
|
draw_texts(d, x, y, hor_texts[col], fnt, fontsize)
|
||||||
|
|
||||||
for row in range(rows):
|
for row in range(rows):
|
||||||
x = pad_left / 2
|
x = pad_left / 2
|
||||||
y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2
|
y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2
|
||||||
|
|
||||||
draw_texts(d, x, y, ver_texts[row])
|
draw_texts(d, x, y, ver_texts[row], fnt, fontsize)
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
@ -213,16 +230,32 @@ def draw_prompt_matrix(im, width, height, all_prompts):
|
|||||||
return draw_grid_annotations(im, width, height, hor_texts, ver_texts)
|
return draw_grid_annotations(im, width, height, hor_texts, ver_texts)
|
||||||
|
|
||||||
|
|
||||||
def resize_image(resize_mode, im, width, height):
|
def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
||||||
|
"""
|
||||||
|
Resizes an image with the specified resize_mode, width, and height.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
resize_mode: The mode to use when resizing the image.
|
||||||
|
0: Resize the image to the specified width and height.
|
||||||
|
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
|
||||||
|
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
|
||||||
|
im: The image to resize.
|
||||||
|
width: The width to resize the image to.
|
||||||
|
height: The height to resize the image to.
|
||||||
|
upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img.
|
||||||
|
"""
|
||||||
|
|
||||||
|
upscaler_name = upscaler_name or opts.upscaler_for_img2img
|
||||||
|
|
||||||
def resize(im, w, h):
|
def resize(im, w, h):
|
||||||
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None" or im.mode == 'L':
|
if upscaler_name is None or upscaler_name == "None" or im.mode == 'L':
|
||||||
return im.resize((w, h), resample=LANCZOS)
|
return im.resize((w, h), resample=LANCZOS)
|
||||||
|
|
||||||
scale = max(w / im.width, h / im.height)
|
scale = max(w / im.width, h / im.height)
|
||||||
|
|
||||||
if scale > 1.0:
|
if scale > 1.0:
|
||||||
upscalers = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_img2img]
|
upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name]
|
||||||
assert len(upscalers) > 0, f"could not find upscaler named {opts.upscaler_for_img2img}"
|
assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}"
|
||||||
|
|
||||||
upscaler = upscalers[0]
|
upscaler = upscalers[0]
|
||||||
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
|
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
|
||||||
@ -273,10 +306,15 @@ invalid_filename_chars = '<>:"/\\|?*\n'
|
|||||||
invalid_filename_prefix = ' '
|
invalid_filename_prefix = ' '
|
||||||
invalid_filename_postfix = ' .'
|
invalid_filename_postfix = ' .'
|
||||||
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
|
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
|
||||||
|
re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)")
|
||||||
|
re_pattern_arg = re.compile(r"(.*)<([^>]*)>$")
|
||||||
max_filename_part_length = 128
|
max_filename_part_length = 128
|
||||||
|
|
||||||
|
|
||||||
def sanitize_filename_part(text, replace_spaces=True):
|
def sanitize_filename_part(text, replace_spaces=True):
|
||||||
|
if text is None:
|
||||||
|
return None
|
||||||
|
|
||||||
if replace_spaces:
|
if replace_spaces:
|
||||||
text = text.replace(' ', '_')
|
text = text.replace(' ', '_')
|
||||||
|
|
||||||
@ -286,49 +324,105 @@ def sanitize_filename_part(text, replace_spaces=True):
|
|||||||
return text
|
return text
|
||||||
|
|
||||||
|
|
||||||
def apply_filename_pattern(x, p, seed, prompt):
|
class FilenameGenerator:
|
||||||
max_prompt_words = opts.directories_max_prompt_words
|
replacements = {
|
||||||
|
'seed': lambda self: self.seed if self.seed is not None else '',
|
||||||
|
'steps': lambda self: self.p and self.p.steps,
|
||||||
|
'cfg': lambda self: self.p and self.p.cfg_scale,
|
||||||
|
'width': lambda self: self.image.width,
|
||||||
|
'height': lambda self: self.image.height,
|
||||||
|
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
|
||||||
|
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
|
||||||
|
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
|
||||||
|
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False),
|
||||||
|
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
|
||||||
|
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
|
||||||
|
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
|
||||||
|
'prompt': lambda self: sanitize_filename_part(self.prompt),
|
||||||
|
'prompt_no_styles': lambda self: self.prompt_no_style(),
|
||||||
|
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
|
||||||
|
'prompt_words': lambda self: self.prompt_words(),
|
||||||
|
}
|
||||||
|
default_time_format = '%Y%m%d%H%M%S'
|
||||||
|
|
||||||
if seed is not None:
|
def __init__(self, p, seed, prompt, image):
|
||||||
x = x.replace("[seed]", str(seed))
|
self.p = p
|
||||||
|
self.seed = seed
|
||||||
|
self.prompt = prompt
|
||||||
|
self.image = image
|
||||||
|
|
||||||
if p is not None:
|
def prompt_no_style(self):
|
||||||
x = x.replace("[steps]", str(p.steps))
|
if self.p is None or self.prompt is None:
|
||||||
x = x.replace("[cfg]", str(p.cfg_scale))
|
return None
|
||||||
x = x.replace("[width]", str(p.width))
|
|
||||||
x = x.replace("[height]", str(p.height))
|
|
||||||
x = x.replace("[styles]", sanitize_filename_part(", ".join([x for x in p.styles if not x == "None"]) or "None", replace_spaces=False))
|
|
||||||
x = x.replace("[sampler]", sanitize_filename_part(sd_samplers.samplers[p.sampler_index].name, replace_spaces=False))
|
|
||||||
|
|
||||||
x = x.replace("[model_hash]", getattr(p, "sd_model_hash", shared.sd_model.sd_model_hash))
|
prompt_no_style = self.prompt
|
||||||
x = x.replace("[date]", datetime.date.today().isoformat())
|
for style in shared.prompt_styles.get_style_prompts(self.p.styles):
|
||||||
x = x.replace("[datetime]", datetime.datetime.now().strftime("%Y%m%d%H%M%S"))
|
if len(style) > 0:
|
||||||
x = x.replace("[job_timestamp]", getattr(p, "job_timestamp", shared.state.job_timestamp))
|
for part in style.split("{prompt}"):
|
||||||
|
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
|
||||||
|
|
||||||
# Apply [prompt] at last. Because it may contain any replacement word.^M
|
prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
|
||||||
if prompt is not None:
|
|
||||||
x = x.replace("[prompt]", sanitize_filename_part(prompt))
|
|
||||||
if "[prompt_no_styles]" in x:
|
|
||||||
prompt_no_style = prompt
|
|
||||||
for style in shared.prompt_styles.get_style_prompts(p.styles):
|
|
||||||
if len(style) > 0:
|
|
||||||
style_parts = [y for y in style.split("{prompt}")]
|
|
||||||
for part in style_parts:
|
|
||||||
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
|
|
||||||
prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
|
|
||||||
x = x.replace("[prompt_no_styles]", sanitize_filename_part(prompt_no_style, replace_spaces=False))
|
|
||||||
|
|
||||||
x = x.replace("[prompt_spaces]", sanitize_filename_part(prompt, replace_spaces=False))
|
return sanitize_filename_part(prompt_no_style, replace_spaces=False)
|
||||||
if "[prompt_words]" in x:
|
|
||||||
words = [x for x in re_nonletters.split(prompt or "") if len(x) > 0]
|
|
||||||
if len(words) == 0:
|
|
||||||
words = ["empty"]
|
|
||||||
x = x.replace("[prompt_words]", sanitize_filename_part(" ".join(words[0:max_prompt_words]), replace_spaces=False))
|
|
||||||
|
|
||||||
if cmd_opts.hide_ui_dir_config:
|
def prompt_words(self):
|
||||||
x = re.sub(r'^[\\/]+|\.{2,}[\\/]+|[\\/]+\.{2,}', '', x)
|
words = [x for x in re_nonletters.split(self.prompt or "") if len(x) > 0]
|
||||||
|
if len(words) == 0:
|
||||||
|
words = ["empty"]
|
||||||
|
return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False)
|
||||||
|
|
||||||
return x
|
def datetime(self, *args):
|
||||||
|
time_datetime = datetime.datetime.now()
|
||||||
|
|
||||||
|
time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format
|
||||||
|
try:
|
||||||
|
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
|
||||||
|
except pytz.exceptions.UnknownTimeZoneError as _:
|
||||||
|
time_zone = None
|
||||||
|
|
||||||
|
time_zone_time = time_datetime.astimezone(time_zone)
|
||||||
|
try:
|
||||||
|
formatted_time = time_zone_time.strftime(time_format)
|
||||||
|
except (ValueError, TypeError) as _:
|
||||||
|
formatted_time = time_zone_time.strftime(self.default_time_format)
|
||||||
|
|
||||||
|
return sanitize_filename_part(formatted_time, replace_spaces=False)
|
||||||
|
|
||||||
|
def apply(self, x):
|
||||||
|
res = ''
|
||||||
|
|
||||||
|
for m in re_pattern.finditer(x):
|
||||||
|
text, pattern = m.groups()
|
||||||
|
res += text
|
||||||
|
|
||||||
|
if pattern is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
pattern_args = []
|
||||||
|
while True:
|
||||||
|
m = re_pattern_arg.match(pattern)
|
||||||
|
if m is None:
|
||||||
|
break
|
||||||
|
|
||||||
|
pattern, arg = m.groups()
|
||||||
|
pattern_args.insert(0, arg)
|
||||||
|
|
||||||
|
fun = self.replacements.get(pattern.lower())
|
||||||
|
if fun is not None:
|
||||||
|
try:
|
||||||
|
replacement = fun(self, *pattern_args)
|
||||||
|
except Exception:
|
||||||
|
replacement = None
|
||||||
|
print(f"Error adding [{pattern}] to filename", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
if replacement is not None:
|
||||||
|
res += str(replacement)
|
||||||
|
continue
|
||||||
|
|
||||||
|
res += f'[{pattern}]'
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
def get_next_sequence_number(path, basename):
|
def get_next_sequence_number(path, basename):
|
||||||
@ -354,7 +448,7 @@ def get_next_sequence_number(path, basename):
|
|||||||
|
|
||||||
|
|
||||||
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None):
|
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None):
|
||||||
'''Save an image.
|
"""Save an image.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
image (`PIL.Image`):
|
image (`PIL.Image`):
|
||||||
@ -363,7 +457,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||||||
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory.
|
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory.
|
||||||
basename (`str`):
|
basename (`str`):
|
||||||
The base filename which will be applied to `filename pattern`.
|
The base filename which will be applied to `filename pattern`.
|
||||||
seed, prompt, short_filename,
|
seed, prompt, short_filename,
|
||||||
extension (`str`):
|
extension (`str`):
|
||||||
Image file extension, default is `png`.
|
Image file extension, default is `png`.
|
||||||
pngsectionname (`str`):
|
pngsectionname (`str`):
|
||||||
@ -385,66 +479,94 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||||||
The full path of the saved imaged.
|
The full path of the saved imaged.
|
||||||
txt_fullfn (`str` or None):
|
txt_fullfn (`str` or None):
|
||||||
If a text file is saved for this image, this will be its full path. Otherwise None.
|
If a text file is saved for this image, this will be its full path. Otherwise None.
|
||||||
'''
|
"""
|
||||||
if short_filename or prompt is None or seed is None:
|
namegen = FilenameGenerator(p, seed, prompt, image)
|
||||||
file_decoration = ""
|
|
||||||
elif opts.save_to_dirs:
|
|
||||||
file_decoration = opts.samples_filename_pattern or "[seed]"
|
|
||||||
else:
|
|
||||||
file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
|
|
||||||
|
|
||||||
if file_decoration != "":
|
|
||||||
file_decoration = "-" + file_decoration.lower()
|
|
||||||
|
|
||||||
file_decoration = apply_filename_pattern(file_decoration, p, seed, prompt) + suffix
|
|
||||||
|
|
||||||
if extension == 'png' and opts.enable_pnginfo and info is not None:
|
|
||||||
pnginfo = PngImagePlugin.PngInfo()
|
|
||||||
|
|
||||||
if existing_info is not None:
|
|
||||||
for k, v in existing_info.items():
|
|
||||||
pnginfo.add_text(k, str(v))
|
|
||||||
|
|
||||||
pnginfo.add_text(pnginfo_section_name, info)
|
|
||||||
else:
|
|
||||||
pnginfo = None
|
|
||||||
|
|
||||||
if save_to_dirs is None:
|
if save_to_dirs is None:
|
||||||
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
|
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
|
||||||
|
|
||||||
if save_to_dirs:
|
if save_to_dirs:
|
||||||
dirname = apply_filename_pattern(opts.directories_filename_pattern or "[prompt_words]", p, seed, prompt).strip('\\ /')
|
dirname = namegen.apply(opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /')
|
||||||
path = os.path.join(path, dirname)
|
path = os.path.join(path, dirname)
|
||||||
|
|
||||||
os.makedirs(path, exist_ok=True)
|
os.makedirs(path, exist_ok=True)
|
||||||
|
|
||||||
if forced_filename is None:
|
if forced_filename is None:
|
||||||
basecount = get_next_sequence_number(path, basename)
|
if short_filename or seed is None:
|
||||||
fullfn = "a.png"
|
file_decoration = ""
|
||||||
fullfn_without_extension = "a"
|
elif opts.save_to_dirs:
|
||||||
for i in range(500):
|
file_decoration = opts.samples_filename_pattern or "[seed]"
|
||||||
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
|
else:
|
||||||
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
|
file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
|
||||||
fullfn_without_extension = os.path.join(path, f"{fn}{file_decoration}")
|
|
||||||
if not os.path.exists(fullfn):
|
add_number = opts.save_images_add_number or file_decoration == ''
|
||||||
break
|
|
||||||
|
if file_decoration != "" and add_number:
|
||||||
|
file_decoration = "-" + file_decoration
|
||||||
|
|
||||||
|
file_decoration = namegen.apply(file_decoration) + suffix
|
||||||
|
|
||||||
|
if add_number:
|
||||||
|
basecount = get_next_sequence_number(path, basename)
|
||||||
|
fullfn = None
|
||||||
|
for i in range(500):
|
||||||
|
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
|
||||||
|
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
|
||||||
|
if not os.path.exists(fullfn):
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
fullfn = os.path.join(path, f"{file_decoration}.{extension}")
|
||||||
else:
|
else:
|
||||||
fullfn = os.path.join(path, f"{forced_filename}.{extension}")
|
fullfn = os.path.join(path, f"{forced_filename}.{extension}")
|
||||||
fullfn_without_extension = os.path.join(path, forced_filename)
|
|
||||||
|
|
||||||
def exif_bytes():
|
pnginfo = existing_info or {}
|
||||||
return piexif.dump({
|
if info is not None:
|
||||||
"Exif": {
|
pnginfo[pnginfo_section_name] = info
|
||||||
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode")
|
|
||||||
},
|
|
||||||
})
|
|
||||||
|
|
||||||
if extension.lower() in ("jpg", "jpeg", "webp"):
|
params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo)
|
||||||
image.save(fullfn, quality=opts.jpeg_quality)
|
script_callbacks.before_image_saved_callback(params)
|
||||||
if opts.enable_pnginfo and info is not None:
|
|
||||||
piexif.insert(exif_bytes(), fullfn)
|
image = params.image
|
||||||
else:
|
fullfn = params.filename
|
||||||
image.save(fullfn, quality=opts.jpeg_quality, pnginfo=pnginfo)
|
info = params.pnginfo.get(pnginfo_section_name, None)
|
||||||
|
|
||||||
|
def _atomically_save_image(image_to_save, filename_without_extension, extension):
|
||||||
|
# save image with .tmp extension to avoid race condition when another process detects new image in the directory
|
||||||
|
temp_file_path = filename_without_extension + ".tmp"
|
||||||
|
image_format = Image.registered_extensions()[extension]
|
||||||
|
|
||||||
|
if extension.lower() == '.png':
|
||||||
|
pnginfo_data = PngImagePlugin.PngInfo()
|
||||||
|
if opts.enable_pnginfo:
|
||||||
|
for k, v in params.pnginfo.items():
|
||||||
|
pnginfo_data.add_text(k, str(v))
|
||||||
|
|
||||||
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
|
||||||
|
|
||||||
|
elif extension.lower() in (".jpg", ".jpeg", ".webp"):
|
||||||
|
if image_to_save.mode == 'RGBA':
|
||||||
|
image_to_save = image_to_save.convert("RGB")
|
||||||
|
|
||||||
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
|
||||||
|
|
||||||
|
if opts.enable_pnginfo and info is not None:
|
||||||
|
exif_bytes = piexif.dump({
|
||||||
|
"Exif": {
|
||||||
|
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode")
|
||||||
|
},
|
||||||
|
})
|
||||||
|
|
||||||
|
piexif.insert(exif_bytes, temp_file_path)
|
||||||
|
else:
|
||||||
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
|
||||||
|
|
||||||
|
# atomically rename the file with correct extension
|
||||||
|
os.replace(temp_file_path, filename_without_extension + extension)
|
||||||
|
|
||||||
|
fullfn_without_extension, extension = os.path.splitext(params.filename)
|
||||||
|
_atomically_save_image(image, fullfn_without_extension, extension)
|
||||||
|
|
||||||
|
image.already_saved_as = fullfn
|
||||||
|
|
||||||
target_side_length = 4000
|
target_side_length = 4000
|
||||||
oversize = image.width > target_side_length or image.height > target_side_length
|
oversize = image.width > target_side_length or image.height > target_side_length
|
||||||
@ -456,9 +578,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||||||
elif oversize:
|
elif oversize:
|
||||||
image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS)
|
image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS)
|
||||||
|
|
||||||
image.save(fullfn_without_extension + ".jpg", quality=opts.jpeg_quality)
|
_atomically_save_image(image, fullfn_without_extension, ".jpg")
|
||||||
if opts.enable_pnginfo and info is not None:
|
|
||||||
piexif.insert(exif_bytes(), fullfn_without_extension + ".jpg")
|
|
||||||
|
|
||||||
if opts.save_txt and info is not None:
|
if opts.save_txt and info is not None:
|
||||||
txt_fullfn = f"{fullfn_without_extension}.txt"
|
txt_fullfn = f"{fullfn_without_extension}.txt"
|
||||||
@ -467,13 +587,50 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||||||
else:
|
else:
|
||||||
txt_fullfn = None
|
txt_fullfn = None
|
||||||
|
|
||||||
|
script_callbacks.image_saved_callback(params)
|
||||||
|
|
||||||
return fullfn, txt_fullfn
|
return fullfn, txt_fullfn
|
||||||
|
|
||||||
|
|
||||||
|
def read_info_from_image(image):
|
||||||
|
items = image.info or {}
|
||||||
|
|
||||||
|
geninfo = items.pop('parameters', None)
|
||||||
|
|
||||||
|
if "exif" in items:
|
||||||
|
exif = piexif.load(items["exif"])
|
||||||
|
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
|
||||||
|
try:
|
||||||
|
exif_comment = piexif.helper.UserComment.load(exif_comment)
|
||||||
|
except ValueError:
|
||||||
|
exif_comment = exif_comment.decode('utf8', errors="ignore")
|
||||||
|
|
||||||
|
items['exif comment'] = exif_comment
|
||||||
|
geninfo = exif_comment
|
||||||
|
|
||||||
|
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
|
||||||
|
'loop', 'background', 'timestamp', 'duration']:
|
||||||
|
items.pop(field, None)
|
||||||
|
|
||||||
|
if items.get("Software", None) == "NovelAI":
|
||||||
|
try:
|
||||||
|
json_info = json.loads(items["Comment"])
|
||||||
|
sampler = sd_samplers.samplers_map.get(json_info["sampler"], "Euler a")
|
||||||
|
|
||||||
|
geninfo = f"""{items["Description"]}
|
||||||
|
Negative prompt: {json_info["uc"]}
|
||||||
|
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
|
||||||
|
except Exception:
|
||||||
|
print("Error parsing NovelAI image generation parameters:", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
return geninfo, items
|
||||||
|
|
||||||
|
|
||||||
def image_data(data):
|
def image_data(data):
|
||||||
try:
|
try:
|
||||||
image = Image.open(io.BytesIO(data))
|
image = Image.open(io.BytesIO(data))
|
||||||
textinfo = image.text["parameters"]
|
textinfo, _ = read_info_from_image(image)
|
||||||
return textinfo, None
|
return textinfo, None
|
||||||
except Exception:
|
except Exception:
|
||||||
pass
|
pass
|
||||||
@ -487,3 +644,14 @@ def image_data(data):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
return '', None
|
return '', None
|
||||||
|
|
||||||
|
|
||||||
|
def flatten(img, bgcolor):
|
||||||
|
"""replaces transparency with bgcolor (example: "#ffffff"), returning an RGB mode image with no transparency"""
|
||||||
|
|
||||||
|
if img.mode == "RGBA":
|
||||||
|
background = Image.new('RGBA', img.size, bgcolor)
|
||||||
|
background.paste(img, mask=img)
|
||||||
|
img = background
|
||||||
|
|
||||||
|
return img.convert('RGB')
|
||||||
|
@ -1,183 +0,0 @@
|
|||||||
import os
|
|
||||||
import shutil
|
|
||||||
import sys
|
|
||||||
|
|
||||||
def traverse_all_files(output_dir, image_list, curr_dir=None):
|
|
||||||
curr_path = output_dir if curr_dir is None else os.path.join(output_dir, curr_dir)
|
|
||||||
try:
|
|
||||||
f_list = os.listdir(curr_path)
|
|
||||||
except:
|
|
||||||
if curr_dir[-10:].rfind(".") > 0 and curr_dir[-4:] != ".txt":
|
|
||||||
image_list.append(curr_dir)
|
|
||||||
return image_list
|
|
||||||
for file in f_list:
|
|
||||||
file = file if curr_dir is None else os.path.join(curr_dir, file)
|
|
||||||
file_path = os.path.join(curr_path, file)
|
|
||||||
if file[-4:] == ".txt":
|
|
||||||
pass
|
|
||||||
elif os.path.isfile(file_path) and file[-10:].rfind(".") > 0:
|
|
||||||
image_list.append(file)
|
|
||||||
else:
|
|
||||||
image_list = traverse_all_files(output_dir, image_list, file)
|
|
||||||
return image_list
|
|
||||||
|
|
||||||
|
|
||||||
def get_recent_images(dir_name, page_index, step, image_index, tabname):
|
|
||||||
page_index = int(page_index)
|
|
||||||
image_list = []
|
|
||||||
if not os.path.exists(dir_name):
|
|
||||||
pass
|
|
||||||
elif os.path.isdir(dir_name):
|
|
||||||
image_list = traverse_all_files(dir_name, image_list)
|
|
||||||
image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file)))
|
|
||||||
else:
|
|
||||||
print(f'ERROR: "{dir_name}" is not a directory. Check the path in the settings.', file=sys.stderr)
|
|
||||||
num = 48 if tabname != "extras" else 12
|
|
||||||
max_page_index = len(image_list) // num + 1
|
|
||||||
page_index = max_page_index if page_index == -1 else page_index + step
|
|
||||||
page_index = 1 if page_index < 1 else page_index
|
|
||||||
page_index = max_page_index if page_index > max_page_index else page_index
|
|
||||||
idx_frm = (page_index - 1) * num
|
|
||||||
image_list = image_list[idx_frm:idx_frm + num]
|
|
||||||
image_index = int(image_index)
|
|
||||||
if image_index < 0 or image_index > len(image_list) - 1:
|
|
||||||
current_file = None
|
|
||||||
hidden = None
|
|
||||||
else:
|
|
||||||
current_file = image_list[int(image_index)]
|
|
||||||
hidden = os.path.join(dir_name, current_file)
|
|
||||||
return [os.path.join(dir_name, file) for file in image_list], page_index, image_list, current_file, hidden, ""
|
|
||||||
|
|
||||||
|
|
||||||
def first_page_click(dir_name, page_index, image_index, tabname):
|
|
||||||
return get_recent_images(dir_name, 1, 0, image_index, tabname)
|
|
||||||
|
|
||||||
|
|
||||||
def end_page_click(dir_name, page_index, image_index, tabname):
|
|
||||||
return get_recent_images(dir_name, -1, 0, image_index, tabname)
|
|
||||||
|
|
||||||
|
|
||||||
def prev_page_click(dir_name, page_index, image_index, tabname):
|
|
||||||
return get_recent_images(dir_name, page_index, -1, image_index, tabname)
|
|
||||||
|
|
||||||
|
|
||||||
def next_page_click(dir_name, page_index, image_index, tabname):
|
|
||||||
return get_recent_images(dir_name, page_index, 1, image_index, tabname)
|
|
||||||
|
|
||||||
|
|
||||||
def page_index_change(dir_name, page_index, image_index, tabname):
|
|
||||||
return get_recent_images(dir_name, page_index, 0, image_index, tabname)
|
|
||||||
|
|
||||||
|
|
||||||
def show_image_info(num, image_path, filenames):
|
|
||||||
# print(f"select image {num}")
|
|
||||||
file = filenames[int(num)]
|
|
||||||
return file, num, os.path.join(image_path, file)
|
|
||||||
|
|
||||||
|
|
||||||
def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, image_index):
|
|
||||||
if name == "":
|
|
||||||
return filenames, delete_num
|
|
||||||
else:
|
|
||||||
delete_num = int(delete_num)
|
|
||||||
index = list(filenames).index(name)
|
|
||||||
i = 0
|
|
||||||
new_file_list = []
|
|
||||||
for name in filenames:
|
|
||||||
if i >= index and i < index + delete_num:
|
|
||||||
path = os.path.join(dir_name, name)
|
|
||||||
if os.path.exists(path):
|
|
||||||
print(f"Delete file {path}")
|
|
||||||
os.remove(path)
|
|
||||||
txt_file = os.path.splitext(path)[0] + ".txt"
|
|
||||||
if os.path.exists(txt_file):
|
|
||||||
os.remove(txt_file)
|
|
||||||
else:
|
|
||||||
print(f"Not exists file {path}")
|
|
||||||
else:
|
|
||||||
new_file_list.append(name)
|
|
||||||
i += 1
|
|
||||||
return new_file_list, 1
|
|
||||||
|
|
||||||
|
|
||||||
def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
|
|
||||||
if opts.outdir_samples != "":
|
|
||||||
dir_name = opts.outdir_samples
|
|
||||||
elif tabname == "txt2img":
|
|
||||||
dir_name = opts.outdir_txt2img_samples
|
|
||||||
elif tabname == "img2img":
|
|
||||||
dir_name = opts.outdir_img2img_samples
|
|
||||||
elif tabname == "extras":
|
|
||||||
dir_name = opts.outdir_extras_samples
|
|
||||||
else:
|
|
||||||
return
|
|
||||||
with gr.Row():
|
|
||||||
renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page")
|
|
||||||
first_page = gr.Button('First Page')
|
|
||||||
prev_page = gr.Button('Prev Page')
|
|
||||||
page_index = gr.Number(value=1, label="Page Index")
|
|
||||||
next_page = gr.Button('Next Page')
|
|
||||||
end_page = gr.Button('End Page')
|
|
||||||
with gr.Row(elem_id=tabname + "_images_history"):
|
|
||||||
with gr.Row():
|
|
||||||
with gr.Column(scale=2):
|
|
||||||
history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6)
|
|
||||||
with gr.Row():
|
|
||||||
delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
|
|
||||||
delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
|
|
||||||
with gr.Column():
|
|
||||||
with gr.Row():
|
|
||||||
pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
|
|
||||||
pnginfo_send_to_img2img = gr.Button('Send to img2img')
|
|
||||||
with gr.Row():
|
|
||||||
with gr.Column():
|
|
||||||
img_file_info = gr.Textbox(label="Generate Info", interactive=False)
|
|
||||||
img_file_name = gr.Textbox(label="File Name", interactive=False)
|
|
||||||
with gr.Row():
|
|
||||||
# hiden items
|
|
||||||
|
|
||||||
img_path = gr.Textbox(dir_name.rstrip("/"), visible=False)
|
|
||||||
tabname_box = gr.Textbox(tabname, visible=False)
|
|
||||||
image_index = gr.Textbox(value=-1, visible=False)
|
|
||||||
set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index", visible=False)
|
|
||||||
filenames = gr.State()
|
|
||||||
hidden = gr.Image(type="pil", visible=False)
|
|
||||||
info1 = gr.Textbox(visible=False)
|
|
||||||
info2 = gr.Textbox(visible=False)
|
|
||||||
|
|
||||||
# turn pages
|
|
||||||
gallery_inputs = [img_path, page_index, image_index, tabname_box]
|
|
||||||
gallery_outputs = [history_gallery, page_index, filenames, img_file_name, hidden, img_file_name]
|
|
||||||
|
|
||||||
first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
|
||||||
next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
|
||||||
prev_page.click(prev_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
|
||||||
end_page.click(end_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
|
||||||
page_index.submit(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
|
||||||
renew_page.click(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
|
||||||
# page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index])
|
|
||||||
|
|
||||||
# other funcitons
|
|
||||||
set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, img_path, filenames], outputs=[img_file_name, image_index, hidden])
|
|
||||||
img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
|
|
||||||
delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_path, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num])
|
|
||||||
hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
|
|
||||||
|
|
||||||
# pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
|
|
||||||
switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img')
|
|
||||||
switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img')
|
|
||||||
|
|
||||||
|
|
||||||
def create_history_tabs(gr, opts, run_pnginfo, switch_dict):
|
|
||||||
with gr.Blocks(analytics_enabled=False) as images_history:
|
|
||||||
with gr.Tabs() as tabs:
|
|
||||||
with gr.Tab("txt2img history"):
|
|
||||||
with gr.Blocks(analytics_enabled=False) as images_history_txt2img:
|
|
||||||
show_images_history(gr, opts, "txt2img", run_pnginfo, switch_dict)
|
|
||||||
with gr.Tab("img2img history"):
|
|
||||||
with gr.Blocks(analytics_enabled=False) as images_history_img2img:
|
|
||||||
show_images_history(gr, opts, "img2img", run_pnginfo, switch_dict)
|
|
||||||
with gr.Tab("extras history"):
|
|
||||||
with gr.Blocks(analytics_enabled=False) as images_history_img2img:
|
|
||||||
show_images_history(gr, opts, "extras", run_pnginfo, switch_dict)
|
|
||||||
return images_history
|
|
@ -4,9 +4,9 @@ import sys
|
|||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image, ImageOps, ImageChops
|
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
|
||||||
|
|
||||||
from modules import devices
|
from modules import devices, sd_samplers
|
||||||
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
||||||
from modules.shared import opts, state
|
from modules.shared import opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
@ -19,7 +19,7 @@ import modules.scripts
|
|||||||
def process_batch(p, input_dir, output_dir, args):
|
def process_batch(p, input_dir, output_dir, args):
|
||||||
processing.fix_seed(p)
|
processing.fix_seed(p)
|
||||||
|
|
||||||
images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
|
images = shared.listfiles(input_dir)
|
||||||
|
|
||||||
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
|
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
|
||||||
|
|
||||||
@ -39,6 +39,8 @@ def process_batch(p, input_dir, output_dir, args):
|
|||||||
break
|
break
|
||||||
|
|
||||||
img = Image.open(image)
|
img = Image.open(image)
|
||||||
|
# Use the EXIF orientation of photos taken by smartphones.
|
||||||
|
img = ImageOps.exif_transpose(img)
|
||||||
p.init_images = [img] * p.batch_size
|
p.init_images = [img] * p.batch_size
|
||||||
|
|
||||||
proc = modules.scripts.scripts_img2img.run(p, *args)
|
proc = modules.scripts.scripts_img2img.run(p, *args)
|
||||||
@ -53,26 +55,43 @@ def process_batch(p, input_dir, output_dir, args):
|
|||||||
filename = f"{left}-{n}{right}"
|
filename = f"{left}-{n}{right}"
|
||||||
|
|
||||||
if not save_normally:
|
if not save_normally:
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
processed_image.save(os.path.join(output_dir, filename))
|
processed_image.save(os.path.join(output_dir, filename))
|
||||||
|
|
||||||
|
|
||||||
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
|
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
|
||||||
is_inpaint = mode == 1
|
is_batch = mode == 5
|
||||||
is_batch = mode == 2
|
|
||||||
|
|
||||||
if is_inpaint:
|
if mode == 0: # img2img
|
||||||
if mask_mode == 0:
|
image = init_img.convert("RGB")
|
||||||
image = init_img_with_mask['image']
|
|
||||||
mask = init_img_with_mask['mask']
|
|
||||||
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
|
|
||||||
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
|
|
||||||
image = image.convert('RGB')
|
|
||||||
else:
|
|
||||||
image = init_img_inpaint
|
|
||||||
mask = init_mask_inpaint
|
|
||||||
else:
|
|
||||||
image = init_img
|
|
||||||
mask = None
|
mask = None
|
||||||
|
elif mode == 1: # img2img sketch
|
||||||
|
image = sketch.convert("RGB")
|
||||||
|
mask = None
|
||||||
|
elif mode == 2: # inpaint
|
||||||
|
image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
|
||||||
|
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
|
||||||
|
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
|
||||||
|
image = image.convert("RGB")
|
||||||
|
elif mode == 3: # inpaint sketch
|
||||||
|
image = inpaint_color_sketch
|
||||||
|
orig = inpaint_color_sketch_orig or inpaint_color_sketch
|
||||||
|
pred = np.any(np.array(image) != np.array(orig), axis=-1)
|
||||||
|
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
|
||||||
|
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
|
||||||
|
blur = ImageFilter.GaussianBlur(mask_blur)
|
||||||
|
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
|
||||||
|
image = image.convert("RGB")
|
||||||
|
elif mode == 4: # inpaint upload mask
|
||||||
|
image = init_img_inpaint
|
||||||
|
mask = init_mask_inpaint
|
||||||
|
else:
|
||||||
|
image = None
|
||||||
|
mask = None
|
||||||
|
|
||||||
|
# Use the EXIF orientation of photos taken by smartphones.
|
||||||
|
if image is not None:
|
||||||
|
image = ImageOps.exif_transpose(image)
|
||||||
|
|
||||||
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||||
|
|
||||||
@ -89,7 +108,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
|||||||
seed_resize_from_h=seed_resize_from_h,
|
seed_resize_from_h=seed_resize_from_h,
|
||||||
seed_resize_from_w=seed_resize_from_w,
|
seed_resize_from_w=seed_resize_from_w,
|
||||||
seed_enable_extras=seed_enable_extras,
|
seed_enable_extras=seed_enable_extras,
|
||||||
sampler_index=sampler_index,
|
sampler_name=sd_samplers.samplers_for_img2img[sampler_index].name,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
n_iter=n_iter,
|
n_iter=n_iter,
|
||||||
steps=steps,
|
steps=steps,
|
||||||
@ -109,6 +128,9 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
|||||||
inpainting_mask_invert=inpainting_mask_invert,
|
inpainting_mask_invert=inpainting_mask_invert,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
p.scripts = modules.scripts.scripts_txt2img
|
||||||
|
p.script_args = args
|
||||||
|
|
||||||
if shared.cmd_opts.enable_console_prompts:
|
if shared.cmd_opts.enable_console_prompts:
|
||||||
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
|
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
|
||||||
|
|
||||||
@ -125,6 +147,8 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
|||||||
if processed is None:
|
if processed is None:
|
||||||
processed = process_images(p)
|
processed = process_images(p)
|
||||||
|
|
||||||
|
p.close()
|
||||||
|
|
||||||
shared.total_tqdm.clear()
|
shared.total_tqdm.clear()
|
||||||
|
|
||||||
generation_info_js = processed.js()
|
generation_info_js = processed.js()
|
||||||
@ -134,4 +158,4 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
|||||||
if opts.do_not_show_images:
|
if opts.do_not_show_images:
|
||||||
processed.images = []
|
processed.images = []
|
||||||
|
|
||||||
return processed.images, generation_info_js, plaintext_to_html(processed.info)
|
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)
|
||||||
|
5
modules/import_hook.py
Normal file
5
modules/import_hook.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
import sys
|
||||||
|
|
||||||
|
# this will break any attempt to import xformers which will prevent stability diffusion repo from trying to use it
|
||||||
|
if "--xformers" not in "".join(sys.argv):
|
||||||
|
sys.modules["xformers"] = None
|
@ -1,4 +1,3 @@
|
|||||||
import contextlib
|
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
@ -11,10 +10,9 @@ from torchvision import transforms
|
|||||||
from torchvision.transforms.functional import InterpolationMode
|
from torchvision.transforms.functional import InterpolationMode
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
from modules import devices, paths, lowvram
|
from modules import devices, paths, lowvram, modelloader
|
||||||
|
|
||||||
blip_image_eval_size = 384
|
blip_image_eval_size = 384
|
||||||
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
|
|
||||||
clip_model_name = 'ViT-L/14'
|
clip_model_name = 'ViT-L/14'
|
||||||
|
|
||||||
Category = namedtuple("Category", ["name", "topn", "items"])
|
Category = namedtuple("Category", ["name", "topn", "items"])
|
||||||
@ -28,9 +26,11 @@ class InterrogateModels:
|
|||||||
clip_preprocess = None
|
clip_preprocess = None
|
||||||
categories = None
|
categories = None
|
||||||
dtype = None
|
dtype = None
|
||||||
|
running_on_cpu = None
|
||||||
|
|
||||||
def __init__(self, content_dir):
|
def __init__(self, content_dir):
|
||||||
self.categories = []
|
self.categories = []
|
||||||
|
self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
|
||||||
|
|
||||||
if os.path.exists(content_dir):
|
if os.path.exists(content_dir):
|
||||||
for filename in os.listdir(content_dir):
|
for filename in os.listdir(content_dir):
|
||||||
@ -45,7 +45,14 @@ class InterrogateModels:
|
|||||||
def load_blip_model(self):
|
def load_blip_model(self):
|
||||||
import models.blip
|
import models.blip
|
||||||
|
|
||||||
blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
|
files = modelloader.load_models(
|
||||||
|
model_path=os.path.join(paths.models_path, "BLIP"),
|
||||||
|
model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth',
|
||||||
|
ext_filter=[".pth"],
|
||||||
|
download_name='model_base_caption_capfilt_large.pth',
|
||||||
|
)
|
||||||
|
|
||||||
|
blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
|
||||||
blip_model.eval()
|
blip_model.eval()
|
||||||
|
|
||||||
return blip_model
|
return blip_model
|
||||||
@ -53,7 +60,11 @@ class InterrogateModels:
|
|||||||
def load_clip_model(self):
|
def load_clip_model(self):
|
||||||
import clip
|
import clip
|
||||||
|
|
||||||
model, preprocess = clip.load(clip_model_name)
|
if self.running_on_cpu:
|
||||||
|
model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path)
|
||||||
|
else:
|
||||||
|
model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path)
|
||||||
|
|
||||||
model.eval()
|
model.eval()
|
||||||
model = model.to(devices.device_interrogate)
|
model = model.to(devices.device_interrogate)
|
||||||
|
|
||||||
@ -62,14 +73,14 @@ class InterrogateModels:
|
|||||||
def load(self):
|
def load(self):
|
||||||
if self.blip_model is None:
|
if self.blip_model is None:
|
||||||
self.blip_model = self.load_blip_model()
|
self.blip_model = self.load_blip_model()
|
||||||
if not shared.cmd_opts.no_half:
|
if not shared.cmd_opts.no_half and not self.running_on_cpu:
|
||||||
self.blip_model = self.blip_model.half()
|
self.blip_model = self.blip_model.half()
|
||||||
|
|
||||||
self.blip_model = self.blip_model.to(devices.device_interrogate)
|
self.blip_model = self.blip_model.to(devices.device_interrogate)
|
||||||
|
|
||||||
if self.clip_model is None:
|
if self.clip_model is None:
|
||||||
self.clip_model, self.clip_preprocess = self.load_clip_model()
|
self.clip_model, self.clip_preprocess = self.load_clip_model()
|
||||||
if not shared.cmd_opts.no_half:
|
if not shared.cmd_opts.no_half and not self.running_on_cpu:
|
||||||
self.clip_model = self.clip_model.half()
|
self.clip_model = self.clip_model.half()
|
||||||
|
|
||||||
self.clip_model = self.clip_model.to(devices.device_interrogate)
|
self.clip_model = self.clip_model.to(devices.device_interrogate)
|
||||||
@ -124,8 +135,9 @@ class InterrogateModels:
|
|||||||
return caption[0]
|
return caption[0]
|
||||||
|
|
||||||
def interrogate(self, pil_image):
|
def interrogate(self, pil_image):
|
||||||
res = None
|
res = ""
|
||||||
|
shared.state.begin()
|
||||||
|
shared.state.job = 'interrogate'
|
||||||
try:
|
try:
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
@ -142,8 +154,7 @@ class InterrogateModels:
|
|||||||
|
|
||||||
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
|
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
|
||||||
|
|
||||||
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
|
with torch.no_grad(), devices.autocast():
|
||||||
with torch.no_grad(), precision_scope("cuda"):
|
|
||||||
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
|
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
|
||||||
|
|
||||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||||
@ -162,10 +173,11 @@ class InterrogateModels:
|
|||||||
res += ", " + match
|
res += ", " + match
|
||||||
|
|
||||||
except Exception:
|
except Exception:
|
||||||
print(f"Error interrogating", file=sys.stderr)
|
print("Error interrogating", file=sys.stderr)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
res += "<error>"
|
res += "<error>"
|
||||||
|
|
||||||
self.unload()
|
self.unload()
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
@ -3,6 +3,7 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
|
|
||||||
localizations = {}
|
localizations = {}
|
||||||
|
|
||||||
|
|
||||||
@ -16,6 +17,11 @@ def list_localizations(dirname):
|
|||||||
|
|
||||||
localizations[fn] = os.path.join(dirname, file)
|
localizations[fn] = os.path.join(dirname, file)
|
||||||
|
|
||||||
|
from modules import scripts
|
||||||
|
for file in scripts.list_scripts("localizations", ".json"):
|
||||||
|
fn, ext = os.path.splitext(file.filename)
|
||||||
|
localizations[fn] = file.path
|
||||||
|
|
||||||
|
|
||||||
def localization_js(current_localization_name):
|
def localization_js(current_localization_name):
|
||||||
fn = localizations.get(current_localization_name, None)
|
fn = localizations.get(current_localization_name, None)
|
||||||
|
@ -1,9 +1,8 @@
|
|||||||
import torch
|
import torch
|
||||||
from modules.devices import get_optimal_device
|
from modules import devices
|
||||||
|
|
||||||
module_in_gpu = None
|
module_in_gpu = None
|
||||||
cpu = torch.device("cpu")
|
cpu = torch.device("cpu")
|
||||||
device = gpu = get_optimal_device()
|
|
||||||
|
|
||||||
|
|
||||||
def send_everything_to_cpu():
|
def send_everything_to_cpu():
|
||||||
@ -33,34 +32,49 @@ def setup_for_low_vram(sd_model, use_medvram):
|
|||||||
if module_in_gpu is not None:
|
if module_in_gpu is not None:
|
||||||
module_in_gpu.to(cpu)
|
module_in_gpu.to(cpu)
|
||||||
|
|
||||||
module.to(gpu)
|
module.to(devices.device)
|
||||||
module_in_gpu = module
|
module_in_gpu = module
|
||||||
|
|
||||||
# see below for register_forward_pre_hook;
|
# see below for register_forward_pre_hook;
|
||||||
# first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is
|
# first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is
|
||||||
# useless here, and we just replace those methods
|
# useless here, and we just replace those methods
|
||||||
def first_stage_model_encode_wrap(self, encoder, x):
|
|
||||||
send_me_to_gpu(self, None)
|
|
||||||
return encoder(x)
|
|
||||||
|
|
||||||
def first_stage_model_decode_wrap(self, decoder, z):
|
first_stage_model = sd_model.first_stage_model
|
||||||
send_me_to_gpu(self, None)
|
first_stage_model_encode = sd_model.first_stage_model.encode
|
||||||
return decoder(z)
|
first_stage_model_decode = sd_model.first_stage_model.decode
|
||||||
|
|
||||||
# remove three big modules, cond, first_stage, and unet from the model and then
|
def first_stage_model_encode_wrap(x):
|
||||||
|
send_me_to_gpu(first_stage_model, None)
|
||||||
|
return first_stage_model_encode(x)
|
||||||
|
|
||||||
|
def first_stage_model_decode_wrap(z):
|
||||||
|
send_me_to_gpu(first_stage_model, None)
|
||||||
|
return first_stage_model_decode(z)
|
||||||
|
|
||||||
|
# for SD1, cond_stage_model is CLIP and its NN is in the tranformer frield, but for SD2, it's open clip, and it's in model field
|
||||||
|
if hasattr(sd_model.cond_stage_model, 'model'):
|
||||||
|
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
|
||||||
|
|
||||||
|
# remove four big modules, cond, first_stage, depth (if applicable), and unet from the model and then
|
||||||
# send the model to GPU. Then put modules back. the modules will be in CPU.
|
# send the model to GPU. Then put modules back. the modules will be in CPU.
|
||||||
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model
|
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), sd_model.model
|
||||||
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None
|
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = None, None, None, None
|
||||||
sd_model.to(device)
|
sd_model.to(devices.device)
|
||||||
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored
|
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = stored
|
||||||
|
|
||||||
# register hooks for those the first two models
|
# register hooks for those the first three models
|
||||||
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
|
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
|
||||||
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
|
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
|
||||||
sd_model.first_stage_model.encode = lambda x, en=sd_model.first_stage_model.encode: first_stage_model_encode_wrap(sd_model.first_stage_model, en, x)
|
sd_model.first_stage_model.encode = first_stage_model_encode_wrap
|
||||||
sd_model.first_stage_model.decode = lambda z, de=sd_model.first_stage_model.decode: first_stage_model_decode_wrap(sd_model.first_stage_model, de, z)
|
sd_model.first_stage_model.decode = first_stage_model_decode_wrap
|
||||||
|
if sd_model.depth_model:
|
||||||
|
sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
|
||||||
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
|
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
|
||||||
|
|
||||||
|
if hasattr(sd_model.cond_stage_model, 'model'):
|
||||||
|
sd_model.cond_stage_model.model = sd_model.cond_stage_model.transformer
|
||||||
|
del sd_model.cond_stage_model.transformer
|
||||||
|
|
||||||
if use_medvram:
|
if use_medvram:
|
||||||
sd_model.model.register_forward_pre_hook(send_me_to_gpu)
|
sd_model.model.register_forward_pre_hook(send_me_to_gpu)
|
||||||
else:
|
else:
|
||||||
@ -70,7 +84,7 @@ def setup_for_low_vram(sd_model, use_medvram):
|
|||||||
# so that only one of them is in GPU at a time
|
# so that only one of them is in GPU at a time
|
||||||
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
|
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
|
||||||
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
|
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
|
||||||
sd_model.model.to(device)
|
sd_model.model.to(devices.device)
|
||||||
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored
|
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored
|
||||||
|
|
||||||
# install hooks for bits of third model
|
# install hooks for bits of third model
|
||||||
|
@ -49,7 +49,7 @@ def expand_crop_region(crop_region, processing_width, processing_height, image_w
|
|||||||
ratio_processing = processing_width / processing_height
|
ratio_processing = processing_width / processing_height
|
||||||
|
|
||||||
if ratio_crop_region > ratio_processing:
|
if ratio_crop_region > ratio_processing:
|
||||||
desired_height = (x2 - x1) * ratio_processing
|
desired_height = (x2 - x1) / ratio_processing
|
||||||
desired_height_diff = int(desired_height - (y2-y1))
|
desired_height_diff = int(desired_height - (y2-y1))
|
||||||
y1 -= desired_height_diff//2
|
y1 -= desired_height_diff//2
|
||||||
y2 += desired_height_diff - desired_height_diff//2
|
y2 += desired_height_diff - desired_height_diff//2
|
||||||
|
@ -71,10 +71,13 @@ class MemUsageMonitor(threading.Thread):
|
|||||||
def read(self):
|
def read(self):
|
||||||
if not self.disabled:
|
if not self.disabled:
|
||||||
free, total = torch.cuda.mem_get_info()
|
free, total = torch.cuda.mem_get_info()
|
||||||
|
self.data["free"] = free
|
||||||
self.data["total"] = total
|
self.data["total"] = total
|
||||||
|
|
||||||
torch_stats = torch.cuda.memory_stats(self.device)
|
torch_stats = torch.cuda.memory_stats(self.device)
|
||||||
|
self.data["active"] = torch_stats["active.all.current"]
|
||||||
self.data["active_peak"] = torch_stats["active_bytes.all.peak"]
|
self.data["active_peak"] = torch_stats["active_bytes.all.peak"]
|
||||||
|
self.data["reserved"] = torch_stats["reserved_bytes.all.current"]
|
||||||
self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"]
|
self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"]
|
||||||
self.data["system_peak"] = total - self.data["min_free"]
|
self.data["system_peak"] = total - self.data["min_free"]
|
||||||
|
|
||||||
|
@ -10,7 +10,7 @@ from modules.upscaler import Upscaler
|
|||||||
from modules.paths import script_path, models_path
|
from modules.paths import script_path, models_path
|
||||||
|
|
||||||
|
|
||||||
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None) -> list:
|
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
|
||||||
"""
|
"""
|
||||||
A one-and done loader to try finding the desired models in specified directories.
|
A one-and done loader to try finding the desired models in specified directories.
|
||||||
|
|
||||||
@ -45,6 +45,8 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
|
|||||||
full_path = file
|
full_path = file
|
||||||
if os.path.isdir(full_path):
|
if os.path.isdir(full_path):
|
||||||
continue
|
continue
|
||||||
|
if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]):
|
||||||
|
continue
|
||||||
if len(ext_filter) != 0:
|
if len(ext_filter) != 0:
|
||||||
model_name, extension = os.path.splitext(file)
|
model_name, extension = os.path.splitext(file)
|
||||||
if extension not in ext_filter:
|
if extension not in ext_filter:
|
||||||
@ -82,9 +84,13 @@ def cleanup_models():
|
|||||||
src_path = models_path
|
src_path = models_path
|
||||||
dest_path = os.path.join(models_path, "Stable-diffusion")
|
dest_path = os.path.join(models_path, "Stable-diffusion")
|
||||||
move_files(src_path, dest_path, ".ckpt")
|
move_files(src_path, dest_path, ".ckpt")
|
||||||
|
move_files(src_path, dest_path, ".safetensors")
|
||||||
src_path = os.path.join(root_path, "ESRGAN")
|
src_path = os.path.join(root_path, "ESRGAN")
|
||||||
dest_path = os.path.join(models_path, "ESRGAN")
|
dest_path = os.path.join(models_path, "ESRGAN")
|
||||||
move_files(src_path, dest_path)
|
move_files(src_path, dest_path)
|
||||||
|
src_path = os.path.join(models_path, "BSRGAN")
|
||||||
|
dest_path = os.path.join(models_path, "ESRGAN")
|
||||||
|
move_files(src_path, dest_path, ".pth")
|
||||||
src_path = os.path.join(root_path, "gfpgan")
|
src_path = os.path.join(root_path, "gfpgan")
|
||||||
dest_path = os.path.join(models_path, "GFPGAN")
|
dest_path = os.path.join(models_path, "GFPGAN")
|
||||||
move_files(src_path, dest_path)
|
move_files(src_path, dest_path)
|
||||||
@ -119,11 +125,27 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
builtin_upscaler_classes = []
|
||||||
|
forbidden_upscaler_classes = set()
|
||||||
|
|
||||||
|
|
||||||
|
def list_builtin_upscalers():
|
||||||
|
load_upscalers()
|
||||||
|
|
||||||
|
builtin_upscaler_classes.clear()
|
||||||
|
builtin_upscaler_classes.extend(Upscaler.__subclasses__())
|
||||||
|
|
||||||
|
|
||||||
|
def forbid_loaded_nonbuiltin_upscalers():
|
||||||
|
for cls in Upscaler.__subclasses__():
|
||||||
|
if cls not in builtin_upscaler_classes:
|
||||||
|
forbidden_upscaler_classes.add(cls)
|
||||||
|
|
||||||
|
|
||||||
def load_upscalers():
|
def load_upscalers():
|
||||||
sd = shared.script_path
|
|
||||||
# We can only do this 'magic' method to dynamically load upscalers if they are referenced,
|
# We can only do this 'magic' method to dynamically load upscalers if they are referenced,
|
||||||
# so we'll try to import any _model.py files before looking in __subclasses__
|
# so we'll try to import any _model.py files before looking in __subclasses__
|
||||||
modules_dir = os.path.join(sd, "modules")
|
modules_dir = os.path.join(shared.script_path, "modules")
|
||||||
for file in os.listdir(modules_dir):
|
for file in os.listdir(modules_dir):
|
||||||
if "_model.py" in file:
|
if "_model.py" in file:
|
||||||
model_name = file.replace("_model.py", "")
|
model_name = file.replace("_model.py", "")
|
||||||
@ -132,22 +154,16 @@ def load_upscalers():
|
|||||||
importlib.import_module(full_model)
|
importlib.import_module(full_model)
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
datas = []
|
datas = []
|
||||||
c_o = vars(shared.cmd_opts)
|
commandline_options = vars(shared.cmd_opts)
|
||||||
for cls in Upscaler.__subclasses__():
|
for cls in Upscaler.__subclasses__():
|
||||||
|
if cls in forbidden_upscaler_classes:
|
||||||
|
continue
|
||||||
|
|
||||||
name = cls.__name__
|
name = cls.__name__
|
||||||
module_name = cls.__module__
|
|
||||||
module = importlib.import_module(module_name)
|
|
||||||
class_ = getattr(module, name)
|
|
||||||
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
|
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
|
||||||
opt_string = None
|
scaler = cls(commandline_options.get(cmd_name, None))
|
||||||
try:
|
datas += scaler.scalers
|
||||||
if cmd_name in c_o:
|
|
||||||
opt_string = c_o[cmd_name]
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
scaler = class_(opt_string)
|
|
||||||
for child in scaler.scalers:
|
|
||||||
datas.append(child)
|
|
||||||
|
|
||||||
shared.sd_upscalers = datas
|
shared.sd_upscalers = datas
|
||||||
|
@ -1,14 +1,23 @@
|
|||||||
from pyngrok import ngrok, conf, exception
|
from pyngrok import ngrok, conf, exception
|
||||||
|
|
||||||
|
|
||||||
def connect(token, port, region):
|
def connect(token, port, region):
|
||||||
if token == None:
|
account = None
|
||||||
|
if token is None:
|
||||||
token = 'None'
|
token = 'None'
|
||||||
|
else:
|
||||||
|
if ':' in token:
|
||||||
|
# token = authtoken:username:password
|
||||||
|
account = token.split(':')[1] + ':' + token.split(':')[-1]
|
||||||
|
token = token.split(':')[0]
|
||||||
|
|
||||||
config = conf.PyngrokConfig(
|
config = conf.PyngrokConfig(
|
||||||
auth_token=token, region=region
|
auth_token=token, region=region
|
||||||
)
|
)
|
||||||
try:
|
try:
|
||||||
public_url = ngrok.connect(port, pyngrok_config=config).public_url
|
if account is None:
|
||||||
|
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url
|
||||||
|
else:
|
||||||
|
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True, auth=account).public_url
|
||||||
except exception.PyngrokNgrokError:
|
except exception.PyngrokNgrokError:
|
||||||
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
|
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
|
||||||
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
|
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
|
||||||
|
@ -9,7 +9,7 @@ sys.path.insert(0, script_path)
|
|||||||
|
|
||||||
# search for directory of stable diffusion in following places
|
# search for directory of stable diffusion in following places
|
||||||
sd_path = None
|
sd_path = None
|
||||||
possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion'), '.', os.path.dirname(script_path)]
|
possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion-stability-ai'), '.', os.path.dirname(script_path)]
|
||||||
for possible_sd_path in possible_sd_paths:
|
for possible_sd_path in possible_sd_paths:
|
||||||
if os.path.exists(os.path.join(possible_sd_path, 'ldm/models/diffusion/ddpm.py')):
|
if os.path.exists(os.path.join(possible_sd_path, 'ldm/models/diffusion/ddpm.py')):
|
||||||
sd_path = os.path.abspath(possible_sd_path)
|
sd_path = os.path.abspath(possible_sd_path)
|
||||||
|
@ -2,6 +2,7 @@ import json
|
|||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
import warnings
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -12,15 +13,21 @@ from skimage import exposure
|
|||||||
from typing import Any, Dict, List, Optional
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
import modules.sd_hijack
|
import modules.sd_hijack
|
||||||
from modules import devices, prompt_parser, masking, sd_samplers, lowvram
|
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks
|
||||||
from modules.sd_hijack import model_hijack
|
from modules.sd_hijack import model_hijack
|
||||||
from modules.shared import opts, cmd_opts, state
|
from modules.shared import opts, cmd_opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
import modules.face_restoration
|
import modules.face_restoration
|
||||||
import modules.images as images
|
import modules.images as images
|
||||||
import modules.styles
|
import modules.styles
|
||||||
|
import modules.sd_models as sd_models
|
||||||
|
import modules.sd_vae as sd_vae
|
||||||
import logging
|
import logging
|
||||||
|
from ldm.data.util import AddMiDaS
|
||||||
|
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
|
||||||
|
|
||||||
|
from einops import repeat, rearrange
|
||||||
|
from blendmodes.blend import blendLayers, BlendType
|
||||||
|
|
||||||
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
||||||
opt_C = 4
|
opt_C = 4
|
||||||
@ -33,34 +40,68 @@ def setup_color_correction(image):
|
|||||||
return correction_target
|
return correction_target
|
||||||
|
|
||||||
|
|
||||||
def apply_color_correction(correction, image):
|
def apply_color_correction(correction, original_image):
|
||||||
logging.info("Applying color correction.")
|
logging.info("Applying color correction.")
|
||||||
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
||||||
cv2.cvtColor(
|
cv2.cvtColor(
|
||||||
np.asarray(image),
|
np.asarray(original_image),
|
||||||
cv2.COLOR_RGB2LAB
|
cv2.COLOR_RGB2LAB
|
||||||
),
|
),
|
||||||
correction,
|
correction,
|
||||||
channel_axis=2
|
channel_axis=2
|
||||||
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
||||||
|
|
||||||
|
image = blendLayers(image, original_image, BlendType.LUMINOSITY)
|
||||||
|
|
||||||
return image
|
return image
|
||||||
|
|
||||||
|
|
||||||
def get_correct_sampler(p):
|
def apply_overlay(image, paste_loc, index, overlays):
|
||||||
if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
|
if overlays is None or index >= len(overlays):
|
||||||
return sd_samplers.samplers
|
return image
|
||||||
elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
|
|
||||||
return sd_samplers.samplers_for_img2img
|
overlay = overlays[index]
|
||||||
elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
|
|
||||||
return sd_samplers.samplers
|
if paste_loc is not None:
|
||||||
|
x, y, w, h = paste_loc
|
||||||
|
base_image = Image.new('RGBA', (overlay.width, overlay.height))
|
||||||
|
image = images.resize_image(1, image, w, h)
|
||||||
|
base_image.paste(image, (x, y))
|
||||||
|
image = base_image
|
||||||
|
|
||||||
|
image = image.convert('RGBA')
|
||||||
|
image.alpha_composite(overlay)
|
||||||
|
image = image.convert('RGB')
|
||||||
|
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
def txt2img_image_conditioning(sd_model, x, width, height):
|
||||||
|
if sd_model.model.conditioning_key not in {'hybrid', 'concat'}:
|
||||||
|
# Dummy zero conditioning if we're not using inpainting model.
|
||||||
|
# Still takes up a bit of memory, but no encoder call.
|
||||||
|
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
|
||||||
|
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
|
||||||
|
|
||||||
|
# The "masked-image" in this case will just be all zeros since the entire image is masked.
|
||||||
|
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
|
||||||
|
image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
|
||||||
|
|
||||||
|
# Add the fake full 1s mask to the first dimension.
|
||||||
|
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
|
||||||
|
image_conditioning = image_conditioning.to(x.dtype)
|
||||||
|
|
||||||
|
return image_conditioning
|
||||||
|
|
||||||
|
|
||||||
class StableDiffusionProcessing():
|
class StableDiffusionProcessing():
|
||||||
"""
|
"""
|
||||||
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str="", styles: List[str]=None, seed: int=-1, subseed: int=-1, subseed_strength: float=0, seed_resize_from_h: int=-1, seed_resize_from_w: int=-1, seed_enable_extras: bool=True, sampler_index: int=0, batch_size: int=1, n_iter: int=1, steps:int =50, cfg_scale:float=7.0, width:int=512, height:int=512, restore_faces:bool=False, tiling:bool=False, do_not_save_samples:bool=False, do_not_save_grid:bool=False, extra_generation_params: Dict[Any,Any]=None, overlay_images: Any=None, negative_prompt: str=None, eta: float =None, do_not_reload_embeddings: bool=False, denoising_strength: float = 0, ddim_discretize: str = "uniform", s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0):
|
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
|
||||||
|
if sampler_index is not None:
|
||||||
|
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
||||||
|
|
||||||
self.sd_model = sd_model
|
self.sd_model = sd_model
|
||||||
self.outpath_samples: str = outpath_samples
|
self.outpath_samples: str = outpath_samples
|
||||||
self.outpath_grids: str = outpath_grids
|
self.outpath_grids: str = outpath_grids
|
||||||
@ -73,7 +114,7 @@ class StableDiffusionProcessing():
|
|||||||
self.subseed_strength: float = subseed_strength
|
self.subseed_strength: float = subseed_strength
|
||||||
self.seed_resize_from_h: int = seed_resize_from_h
|
self.seed_resize_from_h: int = seed_resize_from_h
|
||||||
self.seed_resize_from_w: int = seed_resize_from_w
|
self.seed_resize_from_w: int = seed_resize_from_w
|
||||||
self.sampler_index: int = sampler_index
|
self.sampler_name: str = sampler_name
|
||||||
self.batch_size: int = batch_size
|
self.batch_size: int = batch_size
|
||||||
self.n_iter: int = n_iter
|
self.n_iter: int = n_iter
|
||||||
self.steps: int = steps
|
self.steps: int = steps
|
||||||
@ -90,13 +131,16 @@ class StableDiffusionProcessing():
|
|||||||
self.do_not_reload_embeddings = do_not_reload_embeddings
|
self.do_not_reload_embeddings = do_not_reload_embeddings
|
||||||
self.paste_to = None
|
self.paste_to = None
|
||||||
self.color_corrections = None
|
self.color_corrections = None
|
||||||
self.denoising_strength: float = 0
|
self.denoising_strength: float = denoising_strength
|
||||||
self.sampler_noise_scheduler_override = None
|
self.sampler_noise_scheduler_override = None
|
||||||
self.ddim_discretize = opts.ddim_discretize
|
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
|
||||||
self.s_churn = s_churn or opts.s_churn
|
self.s_churn = s_churn or opts.s_churn
|
||||||
self.s_tmin = s_tmin or opts.s_tmin
|
self.s_tmin = s_tmin or opts.s_tmin
|
||||||
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
|
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
|
||||||
self.s_noise = s_noise or opts.s_noise
|
self.s_noise = s_noise or opts.s_noise
|
||||||
|
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
|
||||||
|
self.override_settings_restore_afterwards = override_settings_restore_afterwards
|
||||||
|
self.is_using_inpainting_conditioning = False
|
||||||
|
|
||||||
if not seed_enable_extras:
|
if not seed_enable_extras:
|
||||||
self.subseed = -1
|
self.subseed = -1
|
||||||
@ -104,16 +148,100 @@ class StableDiffusionProcessing():
|
|||||||
self.seed_resize_from_h = 0
|
self.seed_resize_from_h = 0
|
||||||
self.seed_resize_from_w = 0
|
self.seed_resize_from_w = 0
|
||||||
|
|
||||||
|
self.scripts = None
|
||||||
|
self.script_args = script_args
|
||||||
|
self.all_prompts = None
|
||||||
|
self.all_negative_prompts = None
|
||||||
|
self.all_seeds = None
|
||||||
|
self.all_subseeds = None
|
||||||
|
self.iteration = 0
|
||||||
|
|
||||||
|
def txt2img_image_conditioning(self, x, width=None, height=None):
|
||||||
|
self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
|
||||||
|
|
||||||
|
return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
|
||||||
|
|
||||||
|
def depth2img_image_conditioning(self, source_image):
|
||||||
|
# Use the AddMiDaS helper to Format our source image to suit the MiDaS model
|
||||||
|
transformer = AddMiDaS(model_type="dpt_hybrid")
|
||||||
|
transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
|
||||||
|
midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
|
||||||
|
midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
|
||||||
|
|
||||||
|
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
|
||||||
|
conditioning = torch.nn.functional.interpolate(
|
||||||
|
self.sd_model.depth_model(midas_in),
|
||||||
|
size=conditioning_image.shape[2:],
|
||||||
|
mode="bicubic",
|
||||||
|
align_corners=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
(depth_min, depth_max) = torch.aminmax(conditioning)
|
||||||
|
conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
|
||||||
|
return conditioning
|
||||||
|
|
||||||
|
def inpainting_image_conditioning(self, source_image, latent_image, image_mask = None):
|
||||||
|
self.is_using_inpainting_conditioning = True
|
||||||
|
|
||||||
|
# Handle the different mask inputs
|
||||||
|
if image_mask is not None:
|
||||||
|
if torch.is_tensor(image_mask):
|
||||||
|
conditioning_mask = image_mask
|
||||||
|
else:
|
||||||
|
conditioning_mask = np.array(image_mask.convert("L"))
|
||||||
|
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
|
||||||
|
conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
|
||||||
|
|
||||||
|
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
|
||||||
|
conditioning_mask = torch.round(conditioning_mask)
|
||||||
|
else:
|
||||||
|
conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
|
||||||
|
|
||||||
|
# Create another latent image, this time with a masked version of the original input.
|
||||||
|
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
|
||||||
|
conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype)
|
||||||
|
conditioning_image = torch.lerp(
|
||||||
|
source_image,
|
||||||
|
source_image * (1.0 - conditioning_mask),
|
||||||
|
getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Encode the new masked image using first stage of network.
|
||||||
|
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
|
||||||
|
|
||||||
|
# Create the concatenated conditioning tensor to be fed to `c_concat`
|
||||||
|
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
|
||||||
|
conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
|
||||||
|
image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
|
||||||
|
image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
|
||||||
|
|
||||||
|
return image_conditioning
|
||||||
|
|
||||||
|
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
|
||||||
|
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
|
||||||
|
# identify itself with a field common to all models. The conditioning_key is also hybrid.
|
||||||
|
if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
|
||||||
|
return self.depth2img_image_conditioning(source_image)
|
||||||
|
|
||||||
|
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
|
||||||
|
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
|
||||||
|
|
||||||
|
# Dummy zero conditioning if we're not using inpainting or depth model.
|
||||||
|
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
|
||||||
|
|
||||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.sd_model = None
|
||||||
|
self.sampler = None
|
||||||
|
|
||||||
|
|
||||||
class Processed:
|
class Processed:
|
||||||
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
|
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
|
||||||
self.images = images_list
|
self.images = images_list
|
||||||
self.prompt = p.prompt
|
self.prompt = p.prompt
|
||||||
self.negative_prompt = p.negative_prompt
|
self.negative_prompt = p.negative_prompt
|
||||||
@ -121,10 +249,10 @@ class Processed:
|
|||||||
self.subseed = subseed
|
self.subseed = subseed
|
||||||
self.subseed_strength = p.subseed_strength
|
self.subseed_strength = p.subseed_strength
|
||||||
self.info = info
|
self.info = info
|
||||||
|
self.comments = comments
|
||||||
self.width = p.width
|
self.width = p.width
|
||||||
self.height = p.height
|
self.height = p.height
|
||||||
self.sampler_index = p.sampler_index
|
self.sampler_name = p.sampler_name
|
||||||
self.sampler = sd_samplers.samplers[p.sampler_index].name
|
|
||||||
self.cfg_scale = p.cfg_scale
|
self.cfg_scale = p.cfg_scale
|
||||||
self.steps = p.steps
|
self.steps = p.steps
|
||||||
self.batch_size = p.batch_size
|
self.batch_size = p.batch_size
|
||||||
@ -151,17 +279,20 @@ class Processed:
|
|||||||
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
|
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
|
||||||
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
|
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
|
||||||
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
|
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
|
||||||
|
self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
|
||||||
|
|
||||||
self.all_prompts = all_prompts or [self.prompt]
|
self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
|
||||||
self.all_seeds = all_seeds or [self.seed]
|
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
|
||||||
self.all_subseeds = all_subseeds or [self.subseed]
|
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
|
||||||
|
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
|
||||||
self.infotexts = infotexts or [info]
|
self.infotexts = infotexts or [info]
|
||||||
|
|
||||||
def js(self):
|
def js(self):
|
||||||
obj = {
|
obj = {
|
||||||
"prompt": self.prompt,
|
"prompt": self.all_prompts[0],
|
||||||
"all_prompts": self.all_prompts,
|
"all_prompts": self.all_prompts,
|
||||||
"negative_prompt": self.negative_prompt,
|
"negative_prompt": self.all_negative_prompts[0],
|
||||||
|
"all_negative_prompts": self.all_negative_prompts,
|
||||||
"seed": self.seed,
|
"seed": self.seed,
|
||||||
"all_seeds": self.all_seeds,
|
"all_seeds": self.all_seeds,
|
||||||
"subseed": self.subseed,
|
"subseed": self.subseed,
|
||||||
@ -169,8 +300,7 @@ class Processed:
|
|||||||
"subseed_strength": self.subseed_strength,
|
"subseed_strength": self.subseed_strength,
|
||||||
"width": self.width,
|
"width": self.width,
|
||||||
"height": self.height,
|
"height": self.height,
|
||||||
"sampler_index": self.sampler_index,
|
"sampler_name": self.sampler_name,
|
||||||
"sampler": self.sampler,
|
|
||||||
"cfg_scale": self.cfg_scale,
|
"cfg_scale": self.cfg_scale,
|
||||||
"steps": self.steps,
|
"steps": self.steps,
|
||||||
"batch_size": self.batch_size,
|
"batch_size": self.batch_size,
|
||||||
@ -186,11 +316,12 @@ class Processed:
|
|||||||
"styles": self.styles,
|
"styles": self.styles,
|
||||||
"job_timestamp": self.job_timestamp,
|
"job_timestamp": self.job_timestamp,
|
||||||
"clip_skip": self.clip_skip,
|
"clip_skip": self.clip_skip,
|
||||||
|
"is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
|
||||||
}
|
}
|
||||||
|
|
||||||
return json.dumps(obj)
|
return json.dumps(obj)
|
||||||
|
|
||||||
def infotext(self, p: StableDiffusionProcessing, index):
|
def infotext(self, p: StableDiffusionProcessing, index):
|
||||||
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
|
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
|
||||||
|
|
||||||
|
|
||||||
@ -210,13 +341,14 @@ def slerp(val, low, high):
|
|||||||
|
|
||||||
|
|
||||||
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
|
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
|
||||||
|
eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
|
||||||
xs = []
|
xs = []
|
||||||
|
|
||||||
# if we have multiple seeds, this means we are working with batch size>1; this then
|
# if we have multiple seeds, this means we are working with batch size>1; this then
|
||||||
# enables the generation of additional tensors with noise that the sampler will use during its processing.
|
# enables the generation of additional tensors with noise that the sampler will use during its processing.
|
||||||
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
|
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
|
||||||
# produce the same images as with two batches [100], [101].
|
# produce the same images as with two batches [100], [101].
|
||||||
if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0):
|
if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
|
||||||
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
|
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
|
||||||
else:
|
else:
|
||||||
sampler_noises = None
|
sampler_noises = None
|
||||||
@ -256,8 +388,8 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
|||||||
if sampler_noises is not None:
|
if sampler_noises is not None:
|
||||||
cnt = p.sampler.number_of_needed_noises(p)
|
cnt = p.sampler.number_of_needed_noises(p)
|
||||||
|
|
||||||
if opts.eta_noise_seed_delta > 0:
|
if eta_noise_seed_delta > 0:
|
||||||
torch.manual_seed(seed + opts.eta_noise_seed_delta)
|
torch.manual_seed(seed + eta_noise_seed_delta)
|
||||||
|
|
||||||
for j in range(cnt):
|
for j in range(cnt):
|
||||||
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
|
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
|
||||||
@ -290,27 +422,30 @@ def fix_seed(p):
|
|||||||
p.subseed = get_fixed_seed(p.subseed)
|
p.subseed = get_fixed_seed(p.subseed)
|
||||||
|
|
||||||
|
|
||||||
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
|
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
|
||||||
index = position_in_batch + iteration * p.batch_size
|
index = position_in_batch + iteration * p.batch_size
|
||||||
|
|
||||||
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
|
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
|
||||||
|
|
||||||
generation_params = {
|
generation_params = {
|
||||||
"Steps": p.steps,
|
"Steps": p.steps,
|
||||||
"Sampler": get_correct_sampler(p)[p.sampler_index].name,
|
"Sampler": p.sampler_name,
|
||||||
"CFG scale": p.cfg_scale,
|
"CFG scale": p.cfg_scale,
|
||||||
"Seed": all_seeds[index],
|
"Seed": all_seeds[index],
|
||||||
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
||||||
"Size": f"{p.width}x{p.height}",
|
"Size": f"{p.width}x{p.height}",
|
||||||
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
||||||
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
|
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
|
||||||
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.filename.split('\\')[-1].split('.')[0]),
|
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
|
||||||
|
"Hypernet hash": (None if shared.loaded_hypernetwork is None else sd_models.model_hash(shared.loaded_hypernetwork.filename)),
|
||||||
|
"Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength),
|
||||||
"Batch size": (None if p.batch_size < 2 else p.batch_size),
|
"Batch size": (None if p.batch_size < 2 else p.batch_size),
|
||||||
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
|
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
|
||||||
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
||||||
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
||||||
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
||||||
"Denoising strength": getattr(p, 'denoising_strength', None),
|
"Denoising strength": getattr(p, 'denoising_strength', None),
|
||||||
|
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
|
||||||
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
||||||
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
||||||
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
|
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
|
||||||
@ -318,14 +453,44 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
|
|||||||
|
|
||||||
generation_params.update(p.extra_generation_params)
|
generation_params.update(p.extra_generation_params)
|
||||||
|
|
||||||
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
|
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
|
||||||
|
|
||||||
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
|
negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else ""
|
||||||
|
|
||||||
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
|
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
|
||||||
|
|
||||||
|
|
||||||
def process_images(p: StableDiffusionProcessing) -> Processed:
|
def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
|
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
|
||||||
|
|
||||||
|
try:
|
||||||
|
for k, v in p.override_settings.items():
|
||||||
|
setattr(opts, k, v)
|
||||||
|
if k == 'sd_hypernetwork':
|
||||||
|
shared.reload_hypernetworks() # make onchange call for changing hypernet
|
||||||
|
|
||||||
|
if k == 'sd_model_checkpoint':
|
||||||
|
sd_models.reload_model_weights() # make onchange call for changing SD model
|
||||||
|
p.sd_model = shared.sd_model
|
||||||
|
|
||||||
|
if k == 'sd_vae':
|
||||||
|
sd_vae.reload_vae_weights() # make onchange call for changing VAE
|
||||||
|
|
||||||
|
res = process_images_inner(p)
|
||||||
|
|
||||||
|
finally:
|
||||||
|
# restore opts to original state
|
||||||
|
if p.override_settings_restore_afterwards:
|
||||||
|
for k, v in stored_opts.items():
|
||||||
|
setattr(opts, k, v)
|
||||||
|
if k == 'sd_hypernetwork': shared.reload_hypernetworks()
|
||||||
|
if k == 'sd_model_checkpoint': sd_models.reload_model_weights()
|
||||||
|
if k == 'sd_vae': sd_vae.reload_vae_weights()
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||||
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||||
|
|
||||||
if type(p.prompt) == list:
|
if type(p.prompt) == list:
|
||||||
@ -333,10 +498,6 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
else:
|
else:
|
||||||
assert p.prompt is not None
|
assert p.prompt is not None
|
||||||
|
|
||||||
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
|
|
||||||
processed = Processed(p, [], p.seed, "")
|
|
||||||
file.write(processed.infotext(p, 0))
|
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
seed = get_fixed_seed(p.seed)
|
seed = get_fixed_seed(p.seed)
|
||||||
@ -347,58 +508,94 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
|
|
||||||
comments = {}
|
comments = {}
|
||||||
|
|
||||||
shared.prompt_styles.apply_styles(p)
|
|
||||||
|
|
||||||
if type(p.prompt) == list:
|
if type(p.prompt) == list:
|
||||||
all_prompts = p.prompt
|
p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
|
||||||
else:
|
else:
|
||||||
all_prompts = p.batch_size * p.n_iter * [p.prompt]
|
p.all_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]
|
||||||
|
|
||||||
|
if type(p.negative_prompt) == list:
|
||||||
|
p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
|
||||||
|
else:
|
||||||
|
p.all_negative_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]
|
||||||
|
|
||||||
if type(seed) == list:
|
if type(seed) == list:
|
||||||
all_seeds = seed
|
p.all_seeds = seed
|
||||||
else:
|
else:
|
||||||
all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))]
|
p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
|
||||||
|
|
||||||
if type(subseed) == list:
|
if type(subseed) == list:
|
||||||
all_subseeds = subseed
|
p.all_subseeds = subseed
|
||||||
else:
|
else:
|
||||||
all_subseeds = [int(subseed) + x for x in range(len(all_prompts))]
|
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
|
||||||
|
|
||||||
def infotext(iteration=0, position_in_batch=0):
|
def infotext(iteration=0, position_in_batch=0):
|
||||||
return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch)
|
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
|
||||||
|
|
||||||
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
||||||
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||||
|
|
||||||
|
if p.scripts is not None:
|
||||||
|
p.scripts.process(p)
|
||||||
|
|
||||||
|
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
|
||||||
|
processed = Processed(p, [], p.seed, "")
|
||||||
|
file.write(processed.infotext(p, 0))
|
||||||
|
|
||||||
infotexts = []
|
infotexts = []
|
||||||
output_images = []
|
output_images = []
|
||||||
|
|
||||||
|
cached_uc = [None, None]
|
||||||
|
cached_c = [None, None]
|
||||||
|
|
||||||
|
def get_conds_with_caching(function, required_prompts, steps, cache):
|
||||||
|
"""
|
||||||
|
Returns the result of calling function(shared.sd_model, required_prompts, steps)
|
||||||
|
using a cache to store the result if the same arguments have been used before.
|
||||||
|
|
||||||
|
cache is an array containing two elements. The first element is a tuple
|
||||||
|
representing the previously used arguments, or None if no arguments
|
||||||
|
have been used before. The second element is where the previously
|
||||||
|
computed result is stored.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if cache[0] is not None and (required_prompts, steps) == cache[0]:
|
||||||
|
return cache[1]
|
||||||
|
|
||||||
|
with devices.autocast():
|
||||||
|
cache[1] = function(shared.sd_model, required_prompts, steps)
|
||||||
|
|
||||||
|
cache[0] = (required_prompts, steps)
|
||||||
|
return cache[1]
|
||||||
|
|
||||||
with torch.no_grad(), p.sd_model.ema_scope():
|
with torch.no_grad(), p.sd_model.ema_scope():
|
||||||
with devices.autocast():
|
with devices.autocast():
|
||||||
p.init(all_prompts, all_seeds, all_subseeds)
|
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
|
||||||
|
|
||||||
if state.job_count == -1:
|
if state.job_count == -1:
|
||||||
state.job_count = p.n_iter
|
state.job_count = p.n_iter
|
||||||
|
|
||||||
for n in range(p.n_iter):
|
for n in range(p.n_iter):
|
||||||
|
p.iteration = n
|
||||||
|
|
||||||
if state.skipped:
|
if state.skipped:
|
||||||
state.skipped = False
|
state.skipped = False
|
||||||
|
|
||||||
if state.interrupted:
|
if state.interrupted:
|
||||||
break
|
break
|
||||||
|
|
||||||
prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
|
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
|
|
||||||
if (len(prompts) == 0):
|
if len(prompts) == 0:
|
||||||
break
|
break
|
||||||
|
|
||||||
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
if p.scripts is not None:
|
||||||
#c = p.sd_model.get_learned_conditioning(prompts)
|
p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
|
||||||
with devices.autocast():
|
|
||||||
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
|
uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc)
|
||||||
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
|
c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c)
|
||||||
|
|
||||||
if len(model_hijack.comments) > 0:
|
if len(model_hijack.comments) > 0:
|
||||||
for comment in model_hijack.comments:
|
for comment in model_hijack.comments:
|
||||||
@ -408,10 +605,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
||||||
|
|
||||||
with devices.autocast():
|
with devices.autocast():
|
||||||
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
|
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
|
||||||
|
|
||||||
samples_ddim = samples_ddim.to(devices.dtype_vae)
|
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
|
||||||
x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim)
|
x_samples_ddim = torch.stack(x_samples_ddim).float()
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
del samples_ddim
|
del samples_ddim
|
||||||
@ -421,9 +618,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
if opts.filter_nsfw:
|
if p.scripts is not None:
|
||||||
import modules.safety as safety
|
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
|
||||||
x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
|
|
||||||
|
|
||||||
for i, x_sample in enumerate(x_samples_ddim):
|
for i, x_sample in enumerate(x_samples_ddim):
|
||||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||||
@ -442,22 +638,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
|
|
||||||
if p.color_corrections is not None and i < len(p.color_corrections):
|
if p.color_corrections is not None and i < len(p.color_corrections):
|
||||||
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
|
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
|
||||||
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
|
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||||
|
images.save_image(image_without_cc, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
|
||||||
image = apply_color_correction(p.color_corrections[i], image)
|
image = apply_color_correction(p.color_corrections[i], image)
|
||||||
|
|
||||||
if p.overlay_images is not None and i < len(p.overlay_images):
|
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||||
overlay = p.overlay_images[i]
|
|
||||||
|
|
||||||
if p.paste_to is not None:
|
|
||||||
x, y, w, h = p.paste_to
|
|
||||||
base_image = Image.new('RGBA', (overlay.width, overlay.height))
|
|
||||||
image = images.resize_image(1, image, w, h)
|
|
||||||
base_image.paste(image, (x, y))
|
|
||||||
image = base_image
|
|
||||||
|
|
||||||
image = image.convert('RGBA')
|
|
||||||
image.alpha_composite(overlay)
|
|
||||||
image = image.convert('RGB')
|
|
||||||
|
|
||||||
if opts.samples_save and not p.do_not_save_samples:
|
if opts.samples_save and not p.do_not_save_samples:
|
||||||
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
||||||
@ -468,7 +653,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
image.info["parameters"] = text
|
image.info["parameters"] = text
|
||||||
output_images.append(image)
|
output_images.append(image)
|
||||||
|
|
||||||
del x_samples_ddim
|
del x_samples_ddim
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
@ -490,73 +675,157 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
index_of_first_image = 1
|
index_of_first_image = 1
|
||||||
|
|
||||||
if opts.grid_save:
|
if opts.grid_save:
|
||||||
images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
|
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
|
|
||||||
|
res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
|
||||||
|
|
||||||
|
if p.scripts is not None:
|
||||||
|
p.scripts.postprocess(p, res)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def old_hires_fix_first_pass_dimensions(width, height):
|
||||||
|
"""old algorithm for auto-calculating first pass size"""
|
||||||
|
|
||||||
|
desired_pixel_count = 512 * 512
|
||||||
|
actual_pixel_count = width * height
|
||||||
|
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
||||||
|
width = math.ceil(scale * width / 64) * 64
|
||||||
|
height = math.ceil(scale * height / 64) * 64
|
||||||
|
|
||||||
|
return width, height
|
||||||
|
|
||||||
|
|
||||||
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||||
sampler = None
|
sampler = None
|
||||||
|
|
||||||
def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs):
|
def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
self.enable_hr = enable_hr
|
self.enable_hr = enable_hr
|
||||||
self.denoising_strength = denoising_strength
|
self.denoising_strength = denoising_strength
|
||||||
self.firstphase_width = firstphase_width
|
self.hr_scale = hr_scale
|
||||||
self.firstphase_height = firstphase_height
|
self.hr_upscaler = hr_upscaler
|
||||||
|
self.hr_second_pass_steps = hr_second_pass_steps
|
||||||
|
self.hr_resize_x = hr_resize_x
|
||||||
|
self.hr_resize_y = hr_resize_y
|
||||||
|
self.hr_upscale_to_x = hr_resize_x
|
||||||
|
self.hr_upscale_to_y = hr_resize_y
|
||||||
|
|
||||||
|
if firstphase_width != 0 or firstphase_height != 0:
|
||||||
|
self.hr_upscale_to_x = self.width
|
||||||
|
self.hr_upscale_to_y = self.height
|
||||||
|
self.width = firstphase_width
|
||||||
|
self.height = firstphase_height
|
||||||
|
|
||||||
self.truncate_x = 0
|
self.truncate_x = 0
|
||||||
self.truncate_y = 0
|
self.truncate_y = 0
|
||||||
|
self.applied_old_hires_behavior_to = None
|
||||||
|
|
||||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||||
if self.enable_hr:
|
if self.enable_hr:
|
||||||
if state.job_count == -1:
|
if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
|
||||||
state.job_count = self.n_iter * 2
|
self.hr_resize_x = self.width
|
||||||
|
self.hr_resize_y = self.height
|
||||||
|
self.hr_upscale_to_x = self.width
|
||||||
|
self.hr_upscale_to_y = self.height
|
||||||
|
|
||||||
|
self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
|
||||||
|
self.applied_old_hires_behavior_to = (self.width, self.height)
|
||||||
|
|
||||||
|
if self.hr_resize_x == 0 and self.hr_resize_y == 0:
|
||||||
|
self.extra_generation_params["Hires upscale"] = self.hr_scale
|
||||||
|
self.hr_upscale_to_x = int(self.width * self.hr_scale)
|
||||||
|
self.hr_upscale_to_y = int(self.height * self.hr_scale)
|
||||||
else:
|
else:
|
||||||
state.job_count = state.job_count * 2
|
self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
|
||||||
|
|
||||||
if self.firstphase_width == 0 or self.firstphase_height == 0:
|
if self.hr_resize_y == 0:
|
||||||
desired_pixel_count = 512 * 512
|
self.hr_upscale_to_x = self.hr_resize_x
|
||||||
actual_pixel_count = self.width * self.height
|
self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
|
||||||
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
elif self.hr_resize_x == 0:
|
||||||
self.firstphase_width = math.ceil(scale * self.width / 64) * 64
|
self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
|
||||||
self.firstphase_height = math.ceil(scale * self.height / 64) * 64
|
self.hr_upscale_to_y = self.hr_resize_y
|
||||||
firstphase_width_truncated = int(scale * self.width)
|
|
||||||
firstphase_height_truncated = int(scale * self.height)
|
|
||||||
|
|
||||||
else:
|
|
||||||
|
|
||||||
width_ratio = self.width / self.firstphase_width
|
|
||||||
height_ratio = self.height / self.firstphase_height
|
|
||||||
|
|
||||||
if width_ratio > height_ratio:
|
|
||||||
firstphase_width_truncated = self.firstphase_width
|
|
||||||
firstphase_height_truncated = self.firstphase_width * self.height / self.width
|
|
||||||
else:
|
else:
|
||||||
firstphase_width_truncated = self.firstphase_height * self.width / self.height
|
target_w = self.hr_resize_x
|
||||||
firstphase_height_truncated = self.firstphase_height
|
target_h = self.hr_resize_y
|
||||||
|
src_ratio = self.width / self.height
|
||||||
|
dst_ratio = self.hr_resize_x / self.hr_resize_y
|
||||||
|
|
||||||
self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
|
if src_ratio < dst_ratio:
|
||||||
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
|
self.hr_upscale_to_x = self.hr_resize_x
|
||||||
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
|
self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
|
||||||
|
else:
|
||||||
|
self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
|
||||||
|
self.hr_upscale_to_y = self.hr_resize_y
|
||||||
|
|
||||||
|
self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
|
||||||
|
self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
|
||||||
|
|
||||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
# special case: the user has chosen to do nothing
|
||||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height:
|
||||||
|
self.enable_hr = False
|
||||||
|
self.denoising_strength = None
|
||||||
|
self.extra_generation_params.pop("Hires upscale", None)
|
||||||
|
self.extra_generation_params.pop("Hires resize", None)
|
||||||
|
return
|
||||||
|
|
||||||
|
if not state.processing_has_refined_job_count:
|
||||||
|
if state.job_count == -1:
|
||||||
|
state.job_count = self.n_iter
|
||||||
|
|
||||||
|
shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
|
||||||
|
state.job_count = state.job_count * 2
|
||||||
|
state.processing_has_refined_job_count = True
|
||||||
|
|
||||||
|
if self.hr_second_pass_steps:
|
||||||
|
self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
|
||||||
|
|
||||||
|
if self.hr_upscaler is not None:
|
||||||
|
self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
|
||||||
|
|
||||||
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||||
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||||
|
|
||||||
|
latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
|
||||||
|
if self.enable_hr and latent_scale_mode is None:
|
||||||
|
assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
|
||||||
|
|
||||||
|
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||||
|
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
|
||||||
|
|
||||||
if not self.enable_hr:
|
if not self.enable_hr:
|
||||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
|
||||||
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
target_width = self.hr_upscale_to_x
|
||||||
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
|
target_height = self.hr_upscale_to_y
|
||||||
|
|
||||||
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
|
def save_intermediate(image, index):
|
||||||
|
"""saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
|
||||||
|
|
||||||
if opts.use_scale_latent_for_hires_fix:
|
if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
|
||||||
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
return
|
||||||
|
|
||||||
|
if not isinstance(image, Image.Image):
|
||||||
|
image = sd_samplers.sample_to_image(image, index, approximation=0)
|
||||||
|
|
||||||
|
info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
|
||||||
|
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
|
||||||
|
|
||||||
|
if latent_scale_mode is not None:
|
||||||
|
for i in range(samples.shape[0]):
|
||||||
|
save_intermediate(samples, i)
|
||||||
|
|
||||||
|
samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
|
||||||
|
|
||||||
|
# Avoid making the inpainting conditioning unless necessary as
|
||||||
|
# this does need some extra compute to decode / encode the image again.
|
||||||
|
if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
|
||||||
|
image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
|
||||||
|
else:
|
||||||
|
image_conditioning = self.txt2img_image_conditioning(samples)
|
||||||
else:
|
else:
|
||||||
decoded_samples = decode_first_stage(self.sd_model, samples)
|
decoded_samples = decode_first_stage(self.sd_model, samples)
|
||||||
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
@ -566,7 +835,10 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||||
x_sample = x_sample.astype(np.uint8)
|
x_sample = x_sample.astype(np.uint8)
|
||||||
image = Image.fromarray(x_sample)
|
image = Image.fromarray(x_sample)
|
||||||
image = images.resize_image(0, image, self.width, self.height)
|
|
||||||
|
save_intermediate(image, i)
|
||||||
|
|
||||||
|
image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
|
||||||
image = np.array(image).astype(np.float32) / 255.0
|
image = np.array(image).astype(np.float32) / 255.0
|
||||||
image = np.moveaxis(image, 2, 0)
|
image = np.moveaxis(image, 2, 0)
|
||||||
batch_images.append(image)
|
batch_images.append(image)
|
||||||
@ -577,17 +849,21 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||||||
|
|
||||||
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
||||||
|
|
||||||
|
image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
|
||||||
|
|
||||||
shared.state.nextjob()
|
shared.state.nextjob()
|
||||||
|
|
||||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||||
|
|
||||||
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
|
||||||
|
|
||||||
|
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
|
||||||
|
|
||||||
# GC now before running the next img2img to prevent running out of memory
|
# GC now before running the next img2img to prevent running out of memory
|
||||||
x = None
|
x = None
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
|
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
|
||||||
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
@ -595,7 +871,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||||||
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
sampler = None
|
sampler = None
|
||||||
|
|
||||||
def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs):
|
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
|
|
||||||
self.init_images = init_images
|
self.init_images = init_images
|
||||||
@ -603,7 +879,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
self.denoising_strength: float = denoising_strength
|
self.denoising_strength: float = denoising_strength
|
||||||
self.init_latent = None
|
self.init_latent = None
|
||||||
self.image_mask = mask
|
self.image_mask = mask
|
||||||
#self.image_unblurred_mask = None
|
|
||||||
self.latent_mask = None
|
self.latent_mask = None
|
||||||
self.mask_for_overlay = None
|
self.mask_for_overlay = None
|
||||||
self.mask_blur = mask_blur
|
self.mask_blur = mask_blur
|
||||||
@ -611,65 +886,68 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
self.inpaint_full_res = inpaint_full_res
|
self.inpaint_full_res = inpaint_full_res
|
||||||
self.inpaint_full_res_padding = inpaint_full_res_padding
|
self.inpaint_full_res_padding = inpaint_full_res_padding
|
||||||
self.inpainting_mask_invert = inpainting_mask_invert
|
self.inpainting_mask_invert = inpainting_mask_invert
|
||||||
|
self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
|
||||||
self.mask = None
|
self.mask = None
|
||||||
self.nmask = None
|
self.nmask = None
|
||||||
|
self.image_conditioning = None
|
||||||
|
|
||||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||||
crop_region = None
|
crop_region = None
|
||||||
|
|
||||||
if self.image_mask is not None:
|
image_mask = self.image_mask
|
||||||
self.image_mask = self.image_mask.convert('L')
|
|
||||||
|
if image_mask is not None:
|
||||||
|
image_mask = image_mask.convert('L')
|
||||||
|
|
||||||
if self.inpainting_mask_invert:
|
if self.inpainting_mask_invert:
|
||||||
self.image_mask = ImageOps.invert(self.image_mask)
|
image_mask = ImageOps.invert(image_mask)
|
||||||
|
|
||||||
#self.image_unblurred_mask = self.image_mask
|
|
||||||
|
|
||||||
if self.mask_blur > 0:
|
if self.mask_blur > 0:
|
||||||
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
||||||
|
|
||||||
if self.inpaint_full_res:
|
if self.inpaint_full_res:
|
||||||
self.mask_for_overlay = self.image_mask
|
self.mask_for_overlay = image_mask
|
||||||
mask = self.image_mask.convert('L')
|
mask = image_mask.convert('L')
|
||||||
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
|
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
|
||||||
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
||||||
x1, y1, x2, y2 = crop_region
|
x1, y1, x2, y2 = crop_region
|
||||||
|
|
||||||
mask = mask.crop(crop_region)
|
mask = mask.crop(crop_region)
|
||||||
self.image_mask = images.resize_image(2, mask, self.width, self.height)
|
image_mask = images.resize_image(2, mask, self.width, self.height)
|
||||||
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
||||||
else:
|
else:
|
||||||
self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
|
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
|
||||||
np_mask = np.array(self.image_mask)
|
np_mask = np.array(image_mask)
|
||||||
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
||||||
self.mask_for_overlay = Image.fromarray(np_mask)
|
self.mask_for_overlay = Image.fromarray(np_mask)
|
||||||
|
|
||||||
self.overlay_images = []
|
self.overlay_images = []
|
||||||
|
|
||||||
latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
|
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
|
||||||
|
|
||||||
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
|
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
|
||||||
if add_color_corrections:
|
if add_color_corrections:
|
||||||
self.color_corrections = []
|
self.color_corrections = []
|
||||||
imgs = []
|
imgs = []
|
||||||
for img in self.init_images:
|
for img in self.init_images:
|
||||||
image = img.convert("RGB")
|
image = images.flatten(img, opts.img2img_background_color)
|
||||||
|
|
||||||
if crop_region is None:
|
if crop_region is None and self.resize_mode != 3:
|
||||||
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
||||||
|
|
||||||
if self.image_mask is not None:
|
if image_mask is not None:
|
||||||
image_masked = Image.new('RGBa', (image.width, image.height))
|
image_masked = Image.new('RGBa', (image.width, image.height))
|
||||||
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
||||||
|
|
||||||
self.overlay_images.append(image_masked.convert('RGBA'))
|
self.overlay_images.append(image_masked.convert('RGBA'))
|
||||||
|
|
||||||
|
# crop_region is not None if we are doing inpaint full res
|
||||||
if crop_region is not None:
|
if crop_region is not None:
|
||||||
image = image.crop(crop_region)
|
image = image.crop(crop_region)
|
||||||
image = images.resize_image(2, image, self.width, self.height)
|
image = images.resize_image(2, image, self.width, self.height)
|
||||||
|
|
||||||
if self.image_mask is not None:
|
if image_mask is not None:
|
||||||
if self.inpainting_fill != 1:
|
if self.inpainting_fill != 1:
|
||||||
image = masking.fill(image, latent_mask)
|
image = masking.fill(image, latent_mask)
|
||||||
|
|
||||||
@ -685,6 +963,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
|
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
|
||||||
if self.overlay_images is not None:
|
if self.overlay_images is not None:
|
||||||
self.overlay_images = self.overlay_images * self.batch_size
|
self.overlay_images = self.overlay_images * self.batch_size
|
||||||
|
|
||||||
|
if self.color_corrections is not None and len(self.color_corrections) == 1:
|
||||||
|
self.color_corrections = self.color_corrections * self.batch_size
|
||||||
|
|
||||||
elif len(imgs) <= self.batch_size:
|
elif len(imgs) <= self.batch_size:
|
||||||
self.batch_size = len(imgs)
|
self.batch_size = len(imgs)
|
||||||
batch_images = np.array(imgs)
|
batch_images = np.array(imgs)
|
||||||
@ -697,7 +979,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
|
|
||||||
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
||||||
|
|
||||||
if self.image_mask is not None:
|
if self.resize_mode == 3:
|
||||||
|
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||||
|
|
||||||
|
if image_mask is not None:
|
||||||
init_mask = latent_mask
|
init_mask = latent_mask
|
||||||
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
||||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
||||||
@ -714,10 +999,16 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
elif self.inpainting_fill == 3:
|
elif self.inpainting_fill == 3:
|
||||||
self.init_latent = self.init_latent * self.mask
|
self.init_latent = self.init_latent * self.mask
|
||||||
|
|
||||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
|
||||||
|
|
||||||
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||||
|
|
||||||
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
|
if self.initial_noise_multiplier != 1.0:
|
||||||
|
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
|
||||||
|
x *= self.initial_noise_multiplier
|
||||||
|
|
||||||
|
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
|
||||||
|
|
||||||
if self.mask is not None:
|
if self.mask is not None:
|
||||||
samples = samples * self.nmask + self.init_latent * self.mask
|
samples = samples * self.nmask + self.init_latent * self.mask
|
||||||
@ -725,4 +1016,4 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
del x
|
del x
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
return samples
|
return samples
|
||||||
|
@ -49,6 +49,8 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
|
|||||||
[[5, 'a c'], [10, 'a {b|d{ c']]
|
[[5, 'a c'], [10, 'a {b|d{ c']]
|
||||||
>>> g("((a][:b:c [d:3]")
|
>>> g("((a][:b:c [d:3]")
|
||||||
[[3, '((a][:b:c '], [10, '((a][:b:c d']]
|
[[3, '((a][:b:c '], [10, '((a][:b:c d']]
|
||||||
|
>>> g("[a|(b:1.1)]")
|
||||||
|
[[1, 'a'], [2, '(b:1.1)'], [3, 'a'], [4, '(b:1.1)'], [5, 'a'], [6, '(b:1.1)'], [7, 'a'], [8, '(b:1.1)'], [9, 'a'], [10, '(b:1.1)']]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def collect_steps(steps, tree):
|
def collect_steps(steps, tree):
|
||||||
@ -84,7 +86,7 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
|
|||||||
yield args[0].value
|
yield args[0].value
|
||||||
def __default__(self, data, children, meta):
|
def __default__(self, data, children, meta):
|
||||||
for child in children:
|
for child in children:
|
||||||
yield from child
|
yield child
|
||||||
return AtStep().transform(tree)
|
return AtStep().transform(tree)
|
||||||
|
|
||||||
def get_schedule(prompt):
|
def get_schedule(prompt):
|
||||||
|
113
modules/safe.py
113
modules/safe.py
@ -23,23 +23,30 @@ def encode(*args):
|
|||||||
|
|
||||||
|
|
||||||
class RestrictedUnpickler(pickle.Unpickler):
|
class RestrictedUnpickler(pickle.Unpickler):
|
||||||
|
extra_handler = None
|
||||||
|
|
||||||
def persistent_load(self, saved_id):
|
def persistent_load(self, saved_id):
|
||||||
assert saved_id[0] == 'storage'
|
assert saved_id[0] == 'storage'
|
||||||
return TypedStorage()
|
return TypedStorage()
|
||||||
|
|
||||||
def find_class(self, module, name):
|
def find_class(self, module, name):
|
||||||
|
if self.extra_handler is not None:
|
||||||
|
res = self.extra_handler(module, name)
|
||||||
|
if res is not None:
|
||||||
|
return res
|
||||||
|
|
||||||
if module == 'collections' and name == 'OrderedDict':
|
if module == 'collections' and name == 'OrderedDict':
|
||||||
return getattr(collections, name)
|
return getattr(collections, name)
|
||||||
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter']:
|
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter', '_rebuild_device_tensor_from_numpy']:
|
||||||
return getattr(torch._utils, name)
|
return getattr(torch._utils, name)
|
||||||
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage']:
|
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32']:
|
||||||
return getattr(torch, name)
|
return getattr(torch, name)
|
||||||
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
|
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
|
||||||
return getattr(torch.nn.modules.container, name)
|
return getattr(torch.nn.modules.container, name)
|
||||||
if module == 'numpy.core.multiarray' and name == 'scalar':
|
if module == 'numpy.core.multiarray' and name in ['scalar', '_reconstruct']:
|
||||||
return numpy.core.multiarray.scalar
|
return getattr(numpy.core.multiarray, name)
|
||||||
if module == 'numpy' and name == 'dtype':
|
if module == 'numpy' and name in ['dtype', 'ndarray']:
|
||||||
return numpy.dtype
|
return getattr(numpy, name)
|
||||||
if module == '_codecs' and name == 'encode':
|
if module == '_codecs' and name == 'encode':
|
||||||
return encode
|
return encode
|
||||||
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
|
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
|
||||||
@ -52,32 +59,37 @@ class RestrictedUnpickler(pickle.Unpickler):
|
|||||||
return set
|
return set
|
||||||
|
|
||||||
# Forbid everything else.
|
# Forbid everything else.
|
||||||
raise pickle.UnpicklingError(f"global '{module}/{name}' is forbidden")
|
raise Exception(f"global '{module}/{name}' is forbidden")
|
||||||
|
|
||||||
|
|
||||||
allowed_zip_names = ["archive/data.pkl", "archive/version"]
|
# Regular expression that accepts 'dirname/version', 'dirname/data.pkl', and 'dirname/data/<number>'
|
||||||
allowed_zip_names_re = re.compile(r"^archive/data/\d+$")
|
allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|(data\.pkl))$")
|
||||||
|
data_pkl_re = re.compile(r"^([^/]+)/data\.pkl$")
|
||||||
|
|
||||||
def check_zip_filenames(filename, names):
|
def check_zip_filenames(filename, names):
|
||||||
for name in names:
|
for name in names:
|
||||||
if name in allowed_zip_names:
|
|
||||||
continue
|
|
||||||
if allowed_zip_names_re.match(name):
|
if allowed_zip_names_re.match(name):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
raise Exception(f"bad file inside {filename}: {name}")
|
raise Exception(f"bad file inside {filename}: {name}")
|
||||||
|
|
||||||
|
|
||||||
def check_pt(filename):
|
def check_pt(filename, extra_handler):
|
||||||
try:
|
try:
|
||||||
|
|
||||||
# new pytorch format is a zip file
|
# new pytorch format is a zip file
|
||||||
with zipfile.ZipFile(filename) as z:
|
with zipfile.ZipFile(filename) as z:
|
||||||
check_zip_filenames(filename, z.namelist())
|
check_zip_filenames(filename, z.namelist())
|
||||||
|
|
||||||
with z.open('archive/data.pkl') as file:
|
# find filename of data.pkl in zip file: '<directory name>/data.pkl'
|
||||||
|
data_pkl_filenames = [f for f in z.namelist() if data_pkl_re.match(f)]
|
||||||
|
if len(data_pkl_filenames) == 0:
|
||||||
|
raise Exception(f"data.pkl not found in {filename}")
|
||||||
|
if len(data_pkl_filenames) > 1:
|
||||||
|
raise Exception(f"Multiple data.pkl found in {filename}")
|
||||||
|
with z.open(data_pkl_filenames[0]) as file:
|
||||||
unpickler = RestrictedUnpickler(file)
|
unpickler = RestrictedUnpickler(file)
|
||||||
|
unpickler.extra_handler = extra_handler
|
||||||
unpickler.load()
|
unpickler.load()
|
||||||
|
|
||||||
except zipfile.BadZipfile:
|
except zipfile.BadZipfile:
|
||||||
@ -85,33 +97,96 @@ def check_pt(filename):
|
|||||||
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
|
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
|
||||||
with open(filename, "rb") as file:
|
with open(filename, "rb") as file:
|
||||||
unpickler = RestrictedUnpickler(file)
|
unpickler = RestrictedUnpickler(file)
|
||||||
|
unpickler.extra_handler = extra_handler
|
||||||
for i in range(5):
|
for i in range(5):
|
||||||
unpickler.load()
|
unpickler.load()
|
||||||
|
|
||||||
|
|
||||||
def load(filename, *args, **kwargs):
|
def load(filename, *args, **kwargs):
|
||||||
|
return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
this function is intended to be used by extensions that want to load models with
|
||||||
|
some extra classes in them that the usual unpickler would find suspicious.
|
||||||
|
|
||||||
|
Use the extra_handler argument to specify a function that takes module and field name as text,
|
||||||
|
and returns that field's value:
|
||||||
|
|
||||||
|
```python
|
||||||
|
def extra(module, name):
|
||||||
|
if module == 'collections' and name == 'OrderedDict':
|
||||||
|
return collections.OrderedDict
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
safe.load_with_extra('model.pt', extra_handler=extra)
|
||||||
|
```
|
||||||
|
|
||||||
|
The alternative to this is just to use safe.unsafe_torch_load('model.pt'), which as the name implies is
|
||||||
|
definitely unsafe.
|
||||||
|
"""
|
||||||
|
|
||||||
from modules import shared
|
from modules import shared
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if not shared.cmd_opts.disable_safe_unpickle:
|
if not shared.cmd_opts.disable_safe_unpickle:
|
||||||
check_pt(filename)
|
check_pt(filename, extra_handler)
|
||||||
|
|
||||||
except pickle.UnpicklingError:
|
except pickle.UnpicklingError:
|
||||||
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
print(f"-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
|
print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
|
||||||
print(f"You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
|
print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
|
||||||
return None
|
return None
|
||||||
|
|
||||||
except Exception:
|
except Exception:
|
||||||
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
print(f"\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
|
print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
|
||||||
print(f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
|
print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
|
||||||
return None
|
return None
|
||||||
|
|
||||||
return unsafe_torch_load(filename, *args, **kwargs)
|
return unsafe_torch_load(filename, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
class Extra:
|
||||||
|
"""
|
||||||
|
A class for temporarily setting the global handler for when you can't explicitly call load_with_extra
|
||||||
|
(because it's not your code making the torch.load call). The intended use is like this:
|
||||||
|
|
||||||
|
```
|
||||||
|
import torch
|
||||||
|
from modules import safe
|
||||||
|
|
||||||
|
def handler(module, name):
|
||||||
|
if module == 'torch' and name in ['float64', 'float16']:
|
||||||
|
return getattr(torch, name)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
with safe.Extra(handler):
|
||||||
|
x = torch.load('model.pt')
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, handler):
|
||||||
|
self.handler = handler
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
global global_extra_handler
|
||||||
|
|
||||||
|
assert global_extra_handler is None, 'already inside an Extra() block'
|
||||||
|
global_extra_handler = self.handler
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
|
global global_extra_handler
|
||||||
|
|
||||||
|
global_extra_handler = None
|
||||||
|
|
||||||
|
|
||||||
unsafe_torch_load = torch.load
|
unsafe_torch_load = torch.load
|
||||||
torch.load = load
|
torch.load = load
|
||||||
|
global_extra_handler = None
|
||||||
|
|
||||||
|
@ -1,42 +0,0 @@
|
|||||||
import torch
|
|
||||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
||||||
from transformers import AutoFeatureExtractor
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
import modules.shared as shared
|
|
||||||
|
|
||||||
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
|
||||||
safety_feature_extractor = None
|
|
||||||
safety_checker = None
|
|
||||||
|
|
||||||
def numpy_to_pil(images):
|
|
||||||
"""
|
|
||||||
Convert a numpy image or a batch of images to a PIL image.
|
|
||||||
"""
|
|
||||||
if images.ndim == 3:
|
|
||||||
images = images[None, ...]
|
|
||||||
images = (images * 255).round().astype("uint8")
|
|
||||||
pil_images = [Image.fromarray(image) for image in images]
|
|
||||||
|
|
||||||
return pil_images
|
|
||||||
|
|
||||||
# check and replace nsfw content
|
|
||||||
def check_safety(x_image):
|
|
||||||
global safety_feature_extractor, safety_checker
|
|
||||||
|
|
||||||
if safety_feature_extractor is None:
|
|
||||||
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
|
|
||||||
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
|
|
||||||
|
|
||||||
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
|
|
||||||
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
|
|
||||||
|
|
||||||
return x_checked_image, has_nsfw_concept
|
|
||||||
|
|
||||||
|
|
||||||
def censor_batch(x):
|
|
||||||
x_samples_ddim_numpy = x.cpu().permute(0, 2, 3, 1).numpy()
|
|
||||||
x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim_numpy)
|
|
||||||
x = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
|
|
||||||
|
|
||||||
return x
|
|
315
modules/script_callbacks.py
Normal file
315
modules/script_callbacks.py
Normal file
@ -0,0 +1,315 @@
|
|||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
from collections import namedtuple
|
||||||
|
import inspect
|
||||||
|
from typing import Optional, Dict, Any
|
||||||
|
|
||||||
|
from fastapi import FastAPI
|
||||||
|
from gradio import Blocks
|
||||||
|
|
||||||
|
|
||||||
|
def report_exception(c, job):
|
||||||
|
print(f"Error executing callback {job} for {c.script}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
|
||||||
|
class ImageSaveParams:
|
||||||
|
def __init__(self, image, p, filename, pnginfo):
|
||||||
|
self.image = image
|
||||||
|
"""the PIL image itself"""
|
||||||
|
|
||||||
|
self.p = p
|
||||||
|
"""p object with processing parameters; either StableDiffusionProcessing or an object with same fields"""
|
||||||
|
|
||||||
|
self.filename = filename
|
||||||
|
"""name of file that the image would be saved to"""
|
||||||
|
|
||||||
|
self.pnginfo = pnginfo
|
||||||
|
"""dictionary with parameters for image's PNG info data; infotext will have the key 'parameters'"""
|
||||||
|
|
||||||
|
|
||||||
|
class CFGDenoiserParams:
|
||||||
|
def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps):
|
||||||
|
self.x = x
|
||||||
|
"""Latent image representation in the process of being denoised"""
|
||||||
|
|
||||||
|
self.image_cond = image_cond
|
||||||
|
"""Conditioning image"""
|
||||||
|
|
||||||
|
self.sigma = sigma
|
||||||
|
"""Current sigma noise step value"""
|
||||||
|
|
||||||
|
self.sampling_step = sampling_step
|
||||||
|
"""Current Sampling step number"""
|
||||||
|
|
||||||
|
self.total_sampling_steps = total_sampling_steps
|
||||||
|
"""Total number of sampling steps planned"""
|
||||||
|
|
||||||
|
|
||||||
|
class UiTrainTabParams:
|
||||||
|
def __init__(self, txt2img_preview_params):
|
||||||
|
self.txt2img_preview_params = txt2img_preview_params
|
||||||
|
|
||||||
|
|
||||||
|
class ImageGridLoopParams:
|
||||||
|
def __init__(self, imgs, cols, rows):
|
||||||
|
self.imgs = imgs
|
||||||
|
self.cols = cols
|
||||||
|
self.rows = rows
|
||||||
|
|
||||||
|
|
||||||
|
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
|
||||||
|
callback_map = dict(
|
||||||
|
callbacks_app_started=[],
|
||||||
|
callbacks_model_loaded=[],
|
||||||
|
callbacks_ui_tabs=[],
|
||||||
|
callbacks_ui_train_tabs=[],
|
||||||
|
callbacks_ui_settings=[],
|
||||||
|
callbacks_before_image_saved=[],
|
||||||
|
callbacks_image_saved=[],
|
||||||
|
callbacks_cfg_denoiser=[],
|
||||||
|
callbacks_before_component=[],
|
||||||
|
callbacks_after_component=[],
|
||||||
|
callbacks_image_grid=[],
|
||||||
|
callbacks_infotext_pasted=[],
|
||||||
|
callbacks_script_unloaded=[],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def clear_callbacks():
|
||||||
|
for callback_list in callback_map.values():
|
||||||
|
callback_list.clear()
|
||||||
|
|
||||||
|
|
||||||
|
def app_started_callback(demo: Optional[Blocks], app: FastAPI):
|
||||||
|
for c in callback_map['callbacks_app_started']:
|
||||||
|
try:
|
||||||
|
c.callback(demo, app)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'app_started_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def model_loaded_callback(sd_model):
|
||||||
|
for c in callback_map['callbacks_model_loaded']:
|
||||||
|
try:
|
||||||
|
c.callback(sd_model)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'model_loaded_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def ui_tabs_callback():
|
||||||
|
res = []
|
||||||
|
|
||||||
|
for c in callback_map['callbacks_ui_tabs']:
|
||||||
|
try:
|
||||||
|
res += c.callback() or []
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'ui_tabs_callback')
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def ui_train_tabs_callback(params: UiTrainTabParams):
|
||||||
|
for c in callback_map['callbacks_ui_train_tabs']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'callbacks_ui_train_tabs')
|
||||||
|
|
||||||
|
|
||||||
|
def ui_settings_callback():
|
||||||
|
for c in callback_map['callbacks_ui_settings']:
|
||||||
|
try:
|
||||||
|
c.callback()
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'ui_settings_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def before_image_saved_callback(params: ImageSaveParams):
|
||||||
|
for c in callback_map['callbacks_before_image_saved']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'before_image_saved_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def image_saved_callback(params: ImageSaveParams):
|
||||||
|
for c in callback_map['callbacks_image_saved']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'image_saved_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def cfg_denoiser_callback(params: CFGDenoiserParams):
|
||||||
|
for c in callback_map['callbacks_cfg_denoiser']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'cfg_denoiser_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def before_component_callback(component, **kwargs):
|
||||||
|
for c in callback_map['callbacks_before_component']:
|
||||||
|
try:
|
||||||
|
c.callback(component, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'before_component_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def after_component_callback(component, **kwargs):
|
||||||
|
for c in callback_map['callbacks_after_component']:
|
||||||
|
try:
|
||||||
|
c.callback(component, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'after_component_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def image_grid_callback(params: ImageGridLoopParams):
|
||||||
|
for c in callback_map['callbacks_image_grid']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'image_grid')
|
||||||
|
|
||||||
|
|
||||||
|
def infotext_pasted_callback(infotext: str, params: Dict[str, Any]):
|
||||||
|
for c in callback_map['callbacks_infotext_pasted']:
|
||||||
|
try:
|
||||||
|
c.callback(infotext, params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'infotext_pasted')
|
||||||
|
|
||||||
|
|
||||||
|
def script_unloaded_callback():
|
||||||
|
for c in reversed(callback_map['callbacks_script_unloaded']):
|
||||||
|
try:
|
||||||
|
c.callback()
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'script_unloaded')
|
||||||
|
|
||||||
|
|
||||||
|
def add_callback(callbacks, fun):
|
||||||
|
stack = [x for x in inspect.stack() if x.filename != __file__]
|
||||||
|
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
|
||||||
|
|
||||||
|
callbacks.append(ScriptCallback(filename, fun))
|
||||||
|
|
||||||
|
|
||||||
|
def remove_current_script_callbacks():
|
||||||
|
stack = [x for x in inspect.stack() if x.filename != __file__]
|
||||||
|
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
|
||||||
|
if filename == 'unknown file':
|
||||||
|
return
|
||||||
|
for callback_list in callback_map.values():
|
||||||
|
for callback_to_remove in [cb for cb in callback_list if cb.script == filename]:
|
||||||
|
callback_list.remove(callback_to_remove)
|
||||||
|
|
||||||
|
|
||||||
|
def remove_callbacks_for_function(callback_func):
|
||||||
|
for callback_list in callback_map.values():
|
||||||
|
for callback_to_remove in [cb for cb in callback_list if cb.callback == callback_func]:
|
||||||
|
callback_list.remove(callback_to_remove)
|
||||||
|
|
||||||
|
|
||||||
|
def on_app_started(callback):
|
||||||
|
"""register a function to be called when the webui started, the gradio `Block` component and
|
||||||
|
fastapi `FastAPI` object are passed as the arguments"""
|
||||||
|
add_callback(callback_map['callbacks_app_started'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_model_loaded(callback):
|
||||||
|
"""register a function to be called when the stable diffusion model is created; the model is
|
||||||
|
passed as an argument; this function is also called when the script is reloaded. """
|
||||||
|
add_callback(callback_map['callbacks_model_loaded'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_ui_tabs(callback):
|
||||||
|
"""register a function to be called when the UI is creating new tabs.
|
||||||
|
The function must either return a None, which means no new tabs to be added, or a list, where
|
||||||
|
each element is a tuple:
|
||||||
|
(gradio_component, title, elem_id)
|
||||||
|
|
||||||
|
gradio_component is a gradio component to be used for contents of the tab (usually gr.Blocks)
|
||||||
|
title is tab text displayed to user in the UI
|
||||||
|
elem_id is HTML id for the tab
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_ui_tabs'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_ui_train_tabs(callback):
|
||||||
|
"""register a function to be called when the UI is creating new tabs for the train tab.
|
||||||
|
Create your new tabs with gr.Tab.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_ui_train_tabs'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_ui_settings(callback):
|
||||||
|
"""register a function to be called before UI settings are populated; add your settings
|
||||||
|
by using shared.opts.add_option(shared.OptionInfo(...)) """
|
||||||
|
add_callback(callback_map['callbacks_ui_settings'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_before_image_saved(callback):
|
||||||
|
"""register a function to be called before an image is saved to a file.
|
||||||
|
The callback is called with one argument:
|
||||||
|
- params: ImageSaveParams - parameters the image is to be saved with. You can change fields in this object.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_before_image_saved'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_image_saved(callback):
|
||||||
|
"""register a function to be called after an image is saved to a file.
|
||||||
|
The callback is called with one argument:
|
||||||
|
- params: ImageSaveParams - parameters the image was saved with. Changing fields in this object does nothing.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_image_saved'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_cfg_denoiser(callback):
|
||||||
|
"""register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
|
||||||
|
The callback is called with one argument:
|
||||||
|
- params: CFGDenoiserParams - parameters to be passed to the inner model and sampling state details.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_before_component(callback):
|
||||||
|
"""register a function to be called before a component is created.
|
||||||
|
The callback is called with arguments:
|
||||||
|
- component - gradio component that is about to be created.
|
||||||
|
- **kwargs - args to gradio.components.IOComponent.__init__ function
|
||||||
|
|
||||||
|
Use elem_id/label fields of kwargs to figure out which component it is.
|
||||||
|
This can be useful to inject your own components somewhere in the middle of vanilla UI.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_before_component'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_after_component(callback):
|
||||||
|
"""register a function to be called after a component is created. See on_before_component for more."""
|
||||||
|
add_callback(callback_map['callbacks_after_component'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_image_grid(callback):
|
||||||
|
"""register a function to be called before making an image grid.
|
||||||
|
The callback is called with one argument:
|
||||||
|
- params: ImageGridLoopParams - parameters to be used for grid creation. Can be modified.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_image_grid'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_infotext_pasted(callback):
|
||||||
|
"""register a function to be called before applying an infotext.
|
||||||
|
The callback is called with two arguments:
|
||||||
|
- infotext: str - raw infotext.
|
||||||
|
- result: Dict[str, any] - parsed infotext parameters.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_infotext_pasted'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_script_unloaded(callback):
|
||||||
|
"""register a function to be called before the script is unloaded. Any hooks/hijacks/monkeying about that
|
||||||
|
the script did should be reverted here"""
|
||||||
|
|
||||||
|
add_callback(callback_map['callbacks_script_unloaded'], callback)
|
34
modules/script_loading.py
Normal file
34
modules/script_loading.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
from types import ModuleType
|
||||||
|
|
||||||
|
|
||||||
|
def load_module(path):
|
||||||
|
with open(path, "r", encoding="utf8") as file:
|
||||||
|
text = file.read()
|
||||||
|
|
||||||
|
compiled = compile(text, path, 'exec')
|
||||||
|
module = ModuleType(os.path.basename(path))
|
||||||
|
exec(compiled, module.__dict__)
|
||||||
|
|
||||||
|
return module
|
||||||
|
|
||||||
|
|
||||||
|
def preload_extensions(extensions_dir, parser):
|
||||||
|
if not os.path.isdir(extensions_dir):
|
||||||
|
return
|
||||||
|
|
||||||
|
for dirname in sorted(os.listdir(extensions_dir)):
|
||||||
|
preload_script = os.path.join(extensions_dir, dirname, "preload.py")
|
||||||
|
if not os.path.isfile(preload_script):
|
||||||
|
continue
|
||||||
|
|
||||||
|
try:
|
||||||
|
module = load_module(preload_script)
|
||||||
|
if hasattr(module, 'preload'):
|
||||||
|
module.preload(parser)
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running preload() for {preload_script}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
@ -1,86 +1,221 @@
|
|||||||
import os
|
import os
|
||||||
|
import re
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
|
from collections import namedtuple
|
||||||
|
|
||||||
import modules.ui as ui
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
from modules.processing import StableDiffusionProcessing
|
from modules.processing import StableDiffusionProcessing
|
||||||
from modules import shared
|
from modules import shared, paths, script_callbacks, extensions, script_loading
|
||||||
|
|
||||||
|
AlwaysVisible = object()
|
||||||
|
|
||||||
|
|
||||||
class Script:
|
class Script:
|
||||||
filename = None
|
filename = None
|
||||||
args_from = None
|
args_from = None
|
||||||
args_to = None
|
args_to = None
|
||||||
|
alwayson = False
|
||||||
|
|
||||||
|
is_txt2img = False
|
||||||
|
is_img2img = False
|
||||||
|
|
||||||
|
"""A gr.Group component that has all script's UI inside it"""
|
||||||
|
group = None
|
||||||
|
|
||||||
|
infotext_fields = None
|
||||||
|
"""if set in ui(), this is a list of pairs of gradio component + text; the text will be used when
|
||||||
|
parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
|
||||||
|
"""
|
||||||
|
|
||||||
# The title of the script. This is what will be displayed in the dropdown menu.
|
|
||||||
def title(self):
|
def title(self):
|
||||||
|
"""this function should return the title of the script. This is what will be displayed in the dropdown menu."""
|
||||||
|
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
# How the script is displayed in the UI. See https://gradio.app/docs/#components
|
|
||||||
# for the different UI components you can use and how to create them.
|
|
||||||
# Most UI components can return a value, such as a boolean for a checkbox.
|
|
||||||
# The returned values are passed to the run method as parameters.
|
|
||||||
def ui(self, is_img2img):
|
def ui(self, is_img2img):
|
||||||
|
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
|
||||||
|
The return value should be an array of all components that are used in processing.
|
||||||
|
Values of those returned components will be passed to run() and process() functions.
|
||||||
|
"""
|
||||||
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
# Determines when the script should be shown in the dropdown menu via the
|
|
||||||
# returned value. As an example:
|
|
||||||
# is_img2img is True if the current tab is img2img, and False if it is txt2img.
|
|
||||||
# Thus, return is_img2img to only show the script on the img2img tab.
|
|
||||||
def show(self, is_img2img):
|
def show(self, is_img2img):
|
||||||
|
"""
|
||||||
|
is_img2img is True if this function is called for the img2img interface, and Fasle otherwise
|
||||||
|
|
||||||
|
This function should return:
|
||||||
|
- False if the script should not be shown in UI at all
|
||||||
|
- True if the script should be shown in UI if it's selected in the scripts dropdown
|
||||||
|
- script.AlwaysVisible if the script should be shown in UI at all times
|
||||||
|
"""
|
||||||
|
|
||||||
return True
|
return True
|
||||||
|
|
||||||
# This is where the additional processing is implemented. The parameters include
|
def run(self, p, *args):
|
||||||
# self, the model object "p" (a StableDiffusionProcessing class, see
|
"""
|
||||||
# processing.py), and the parameters returned by the ui method.
|
This function is called if the script has been selected in the script dropdown.
|
||||||
# Custom functions can be defined here, and additional libraries can be imported
|
It must do all processing and return the Processed object with results, same as
|
||||||
# to be used in processing. The return value should be a Processed object, which is
|
one returned by processing.process_images.
|
||||||
# what is returned by the process_images method.
|
|
||||||
def run(self, *args):
|
Usually the processing is done by calling the processing.process_images function.
|
||||||
|
|
||||||
|
args contains all values returned by components from ui()
|
||||||
|
"""
|
||||||
|
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
# The description method is currently unused.
|
def process(self, p, *args):
|
||||||
# To add a description that appears when hovering over the title, amend the "titles"
|
"""
|
||||||
# dict in script.js to include the script title (returned by title) as a key, and
|
This function is called before processing begins for AlwaysVisible scripts.
|
||||||
# your description as the value.
|
You can modify the processing object (p) here, inject hooks, etc.
|
||||||
|
args contains all values returned by components from ui()
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def process_batch(self, p, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Same as process(), but called for every batch.
|
||||||
|
|
||||||
|
**kwargs will have those items:
|
||||||
|
- batch_number - index of current batch, from 0 to number of batches-1
|
||||||
|
- prompts - list of prompts for current batch; you can change contents of this list but changing the number of entries will likely break things
|
||||||
|
- seeds - list of seeds for current batch
|
||||||
|
- subseeds - list of subseeds for current batch
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def postprocess_batch(self, p, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Same as process_batch(), but called for every batch after it has been generated.
|
||||||
|
|
||||||
|
**kwargs will have same items as process_batch, and also:
|
||||||
|
- batch_number - index of current batch, from 0 to number of batches-1
|
||||||
|
- images - torch tensor with all generated images, with values ranging from 0 to 1;
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def postprocess(self, p, processed, *args):
|
||||||
|
"""
|
||||||
|
This function is called after processing ends for AlwaysVisible scripts.
|
||||||
|
args contains all values returned by components from ui()
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def before_component(self, component, **kwargs):
|
||||||
|
"""
|
||||||
|
Called before a component is created.
|
||||||
|
Use elem_id/label fields of kwargs to figure out which component it is.
|
||||||
|
This can be useful to inject your own components somewhere in the middle of vanilla UI.
|
||||||
|
You can return created components in the ui() function to add them to the list of arguments for your processing functions
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def after_component(self, component, **kwargs):
|
||||||
|
"""
|
||||||
|
Called after a component is created. Same as above.
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
def describe(self):
|
def describe(self):
|
||||||
|
"""unused"""
|
||||||
return ""
|
return ""
|
||||||
|
|
||||||
|
def elem_id(self, item_id):
|
||||||
|
"""helper function to generate id for a HTML element, constructs final id out of script name, tab and user-supplied item_id"""
|
||||||
|
|
||||||
|
need_tabname = self.show(True) == self.show(False)
|
||||||
|
tabname = ('img2img' if self.is_img2img else 'txt2txt') + "_" if need_tabname else ""
|
||||||
|
title = re.sub(r'[^a-z_0-9]', '', re.sub(r'\s', '_', self.title().lower()))
|
||||||
|
|
||||||
|
return f'script_{tabname}{title}_{item_id}'
|
||||||
|
|
||||||
|
|
||||||
|
current_basedir = paths.script_path
|
||||||
|
|
||||||
|
|
||||||
|
def basedir():
|
||||||
|
"""returns the base directory for the current script. For scripts in the main scripts directory,
|
||||||
|
this is the main directory (where webui.py resides), and for scripts in extensions directory
|
||||||
|
(ie extensions/aesthetic/script/aesthetic.py), this is extension's directory (extensions/aesthetic)
|
||||||
|
"""
|
||||||
|
return current_basedir
|
||||||
|
|
||||||
|
|
||||||
scripts_data = []
|
scripts_data = []
|
||||||
|
ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
|
||||||
|
ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir", "module"])
|
||||||
|
|
||||||
|
|
||||||
def load_scripts(basedir):
|
def list_scripts(scriptdirname, extension):
|
||||||
if not os.path.exists(basedir):
|
scripts_list = []
|
||||||
return
|
|
||||||
|
|
||||||
for filename in sorted(os.listdir(basedir)):
|
basedir = os.path.join(paths.script_path, scriptdirname)
|
||||||
path = os.path.join(basedir, filename)
|
if os.path.exists(basedir):
|
||||||
|
for filename in sorted(os.listdir(basedir)):
|
||||||
|
scripts_list.append(ScriptFile(paths.script_path, filename, os.path.join(basedir, filename)))
|
||||||
|
|
||||||
if os.path.splitext(path)[1].lower() != '.py':
|
for ext in extensions.active():
|
||||||
|
scripts_list += ext.list_files(scriptdirname, extension)
|
||||||
|
|
||||||
|
scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
|
||||||
|
|
||||||
|
return scripts_list
|
||||||
|
|
||||||
|
|
||||||
|
def list_files_with_name(filename):
|
||||||
|
res = []
|
||||||
|
|
||||||
|
dirs = [paths.script_path] + [ext.path for ext in extensions.active()]
|
||||||
|
|
||||||
|
for dirpath in dirs:
|
||||||
|
if not os.path.isdir(dirpath):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if not os.path.isfile(path):
|
path = os.path.join(dirpath, filename)
|
||||||
continue
|
if os.path.isfile(path):
|
||||||
|
res.append(path)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def load_scripts():
|
||||||
|
global current_basedir
|
||||||
|
scripts_data.clear()
|
||||||
|
script_callbacks.clear_callbacks()
|
||||||
|
|
||||||
|
scripts_list = list_scripts("scripts", ".py")
|
||||||
|
|
||||||
|
syspath = sys.path
|
||||||
|
|
||||||
|
for scriptfile in sorted(scripts_list):
|
||||||
try:
|
try:
|
||||||
with open(path, "r", encoding="utf8") as file:
|
if scriptfile.basedir != paths.script_path:
|
||||||
text = file.read()
|
sys.path = [scriptfile.basedir] + sys.path
|
||||||
|
current_basedir = scriptfile.basedir
|
||||||
|
|
||||||
from types import ModuleType
|
module = script_loading.load_module(scriptfile.path)
|
||||||
compiled = compile(text, path, 'exec')
|
|
||||||
module = ModuleType(filename)
|
|
||||||
exec(compiled, module.__dict__)
|
|
||||||
|
|
||||||
for key, script_class in module.__dict__.items():
|
for key, script_class in module.__dict__.items():
|
||||||
if type(script_class) == type and issubclass(script_class, Script):
|
if type(script_class) == type and issubclass(script_class, Script):
|
||||||
scripts_data.append((script_class, path))
|
scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
|
||||||
|
|
||||||
except Exception:
|
except Exception:
|
||||||
print(f"Error loading script: {filename}", file=sys.stderr)
|
print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
finally:
|
||||||
|
sys.path = syspath
|
||||||
|
current_basedir = paths.script_path
|
||||||
|
|
||||||
|
|
||||||
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
|
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
|
||||||
try:
|
try:
|
||||||
@ -96,64 +231,93 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
|
|||||||
class ScriptRunner:
|
class ScriptRunner:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.scripts = []
|
self.scripts = []
|
||||||
|
self.selectable_scripts = []
|
||||||
|
self.alwayson_scripts = []
|
||||||
self.titles = []
|
self.titles = []
|
||||||
|
self.infotext_fields = []
|
||||||
|
|
||||||
def setup_ui(self, is_img2img):
|
def initialize_scripts(self, is_img2img):
|
||||||
for script_class, path in scripts_data:
|
self.scripts.clear()
|
||||||
|
self.alwayson_scripts.clear()
|
||||||
|
self.selectable_scripts.clear()
|
||||||
|
|
||||||
|
for script_class, path, basedir, script_module in scripts_data:
|
||||||
script = script_class()
|
script = script_class()
|
||||||
script.filename = path
|
script.filename = path
|
||||||
|
script.is_txt2img = not is_img2img
|
||||||
|
script.is_img2img = is_img2img
|
||||||
|
|
||||||
if not script.show(is_img2img):
|
visibility = script.show(script.is_img2img)
|
||||||
continue
|
|
||||||
|
|
||||||
self.scripts.append(script)
|
if visibility == AlwaysVisible:
|
||||||
|
self.scripts.append(script)
|
||||||
|
self.alwayson_scripts.append(script)
|
||||||
|
script.alwayson = True
|
||||||
|
|
||||||
self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts]
|
elif visibility:
|
||||||
|
self.scripts.append(script)
|
||||||
|
self.selectable_scripts.append(script)
|
||||||
|
|
||||||
dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index")
|
def setup_ui(self):
|
||||||
dropdown.save_to_config = True
|
self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
|
||||||
inputs = [dropdown]
|
|
||||||
|
|
||||||
for script in self.scripts:
|
inputs = [None]
|
||||||
|
inputs_alwayson = [True]
|
||||||
|
|
||||||
|
def create_script_ui(script, inputs, inputs_alwayson):
|
||||||
script.args_from = len(inputs)
|
script.args_from = len(inputs)
|
||||||
script.args_to = len(inputs)
|
script.args_to = len(inputs)
|
||||||
|
|
||||||
controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
|
controls = wrap_call(script.ui, script.filename, "ui", script.is_img2img)
|
||||||
|
|
||||||
if controls is None:
|
if controls is None:
|
||||||
continue
|
return
|
||||||
|
|
||||||
for control in controls:
|
for control in controls:
|
||||||
control.custom_script_source = os.path.basename(script.filename)
|
control.custom_script_source = os.path.basename(script.filename)
|
||||||
control.visible = False
|
|
||||||
|
if script.infotext_fields is not None:
|
||||||
|
self.infotext_fields += script.infotext_fields
|
||||||
|
|
||||||
inputs += controls
|
inputs += controls
|
||||||
|
inputs_alwayson += [script.alwayson for _ in controls]
|
||||||
script.args_to = len(inputs)
|
script.args_to = len(inputs)
|
||||||
|
|
||||||
def select_script(script_index):
|
for script in self.alwayson_scripts:
|
||||||
if 0 < script_index <= len(self.scripts):
|
with gr.Group() as group:
|
||||||
script = self.scripts[script_index-1]
|
create_script_ui(script, inputs, inputs_alwayson)
|
||||||
args_from = script.args_from
|
|
||||||
args_to = script.args_to
|
|
||||||
else:
|
|
||||||
args_from = 0
|
|
||||||
args_to = 0
|
|
||||||
|
|
||||||
return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))]
|
script.group = group
|
||||||
|
|
||||||
|
dropdown = gr.Dropdown(label="Script", elem_id="script_list", choices=["None"] + self.titles, value="None", type="index")
|
||||||
|
inputs[0] = dropdown
|
||||||
|
|
||||||
|
for script in self.selectable_scripts:
|
||||||
|
with gr.Group(visible=False) as group:
|
||||||
|
create_script_ui(script, inputs, inputs_alwayson)
|
||||||
|
|
||||||
|
script.group = group
|
||||||
|
|
||||||
|
def select_script(script_index):
|
||||||
|
selected_script = self.selectable_scripts[script_index - 1] if script_index>0 else None
|
||||||
|
|
||||||
|
return [gr.update(visible=selected_script == s) for s in self.selectable_scripts]
|
||||||
|
|
||||||
def init_field(title):
|
def init_field(title):
|
||||||
|
"""called when an initial value is set from ui-config.json to show script's UI components"""
|
||||||
|
|
||||||
if title == 'None':
|
if title == 'None':
|
||||||
return
|
return
|
||||||
|
|
||||||
script_index = self.titles.index(title)
|
script_index = self.titles.index(title)
|
||||||
script = self.scripts[script_index]
|
self.selectable_scripts[script_index].group.visible = True
|
||||||
for i in range(script.args_from, script.args_to):
|
|
||||||
inputs[i].visible = True
|
|
||||||
|
|
||||||
dropdown.init_field = init_field
|
dropdown.init_field = init_field
|
||||||
|
|
||||||
dropdown.change(
|
dropdown.change(
|
||||||
fn=select_script,
|
fn=select_script,
|
||||||
inputs=[dropdown],
|
inputs=[dropdown],
|
||||||
outputs=inputs
|
outputs=[script.group for script in self.selectable_scripts]
|
||||||
)
|
)
|
||||||
|
|
||||||
return inputs
|
return inputs
|
||||||
@ -164,7 +328,7 @@ class ScriptRunner:
|
|||||||
if script_index == 0:
|
if script_index == 0:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
script = self.scripts[script_index-1]
|
script = self.selectable_scripts[script_index-1]
|
||||||
|
|
||||||
if script is None:
|
if script is None:
|
||||||
return None
|
return None
|
||||||
@ -176,40 +340,112 @@ class ScriptRunner:
|
|||||||
|
|
||||||
return processed
|
return processed
|
||||||
|
|
||||||
def reload_sources(self):
|
def process(self, p):
|
||||||
|
for script in self.alwayson_scripts:
|
||||||
|
try:
|
||||||
|
script_args = p.script_args[script.args_from:script.args_to]
|
||||||
|
script.process(p, *script_args)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running process: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def process_batch(self, p, **kwargs):
|
||||||
|
for script in self.alwayson_scripts:
|
||||||
|
try:
|
||||||
|
script_args = p.script_args[script.args_from:script.args_to]
|
||||||
|
script.process_batch(p, *script_args, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running process_batch: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def postprocess(self, p, processed):
|
||||||
|
for script in self.alwayson_scripts:
|
||||||
|
try:
|
||||||
|
script_args = p.script_args[script.args_from:script.args_to]
|
||||||
|
script.postprocess(p, processed, *script_args)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running postprocess: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def postprocess_batch(self, p, images, **kwargs):
|
||||||
|
for script in self.alwayson_scripts:
|
||||||
|
try:
|
||||||
|
script_args = p.script_args[script.args_from:script.args_to]
|
||||||
|
script.postprocess_batch(p, *script_args, images=images, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def before_component(self, component, **kwargs):
|
||||||
|
for script in self.scripts:
|
||||||
|
try:
|
||||||
|
script.before_component(component, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running before_component: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def after_component(self, component, **kwargs):
|
||||||
|
for script in self.scripts:
|
||||||
|
try:
|
||||||
|
script.after_component(component, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running after_component: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def reload_sources(self, cache):
|
||||||
for si, script in list(enumerate(self.scripts)):
|
for si, script in list(enumerate(self.scripts)):
|
||||||
with open(script.filename, "r", encoding="utf8") as file:
|
args_from = script.args_from
|
||||||
args_from = script.args_from
|
args_to = script.args_to
|
||||||
args_to = script.args_to
|
filename = script.filename
|
||||||
filename = script.filename
|
|
||||||
text = file.read()
|
|
||||||
|
|
||||||
from types import ModuleType
|
module = cache.get(filename, None)
|
||||||
|
if module is None:
|
||||||
|
module = script_loading.load_module(script.filename)
|
||||||
|
cache[filename] = module
|
||||||
|
|
||||||
compiled = compile(text, filename, 'exec')
|
for key, script_class in module.__dict__.items():
|
||||||
module = ModuleType(script.filename)
|
if type(script_class) == type and issubclass(script_class, Script):
|
||||||
exec(compiled, module.__dict__)
|
self.scripts[si] = script_class()
|
||||||
|
self.scripts[si].filename = filename
|
||||||
|
self.scripts[si].args_from = args_from
|
||||||
|
self.scripts[si].args_to = args_to
|
||||||
|
|
||||||
for key, script_class in module.__dict__.items():
|
|
||||||
if type(script_class) == type and issubclass(script_class, Script):
|
|
||||||
self.scripts[si] = script_class()
|
|
||||||
self.scripts[si].filename = filename
|
|
||||||
self.scripts[si].args_from = args_from
|
|
||||||
self.scripts[si].args_to = args_to
|
|
||||||
|
|
||||||
scripts_txt2img = ScriptRunner()
|
scripts_txt2img = ScriptRunner()
|
||||||
scripts_img2img = ScriptRunner()
|
scripts_img2img = ScriptRunner()
|
||||||
|
scripts_current: ScriptRunner = None
|
||||||
|
|
||||||
|
|
||||||
def reload_script_body_only():
|
def reload_script_body_only():
|
||||||
scripts_txt2img.reload_sources()
|
cache = {}
|
||||||
scripts_img2img.reload_sources()
|
scripts_txt2img.reload_sources(cache)
|
||||||
|
scripts_img2img.reload_sources(cache)
|
||||||
|
|
||||||
|
|
||||||
def reload_scripts(basedir):
|
def reload_scripts():
|
||||||
global scripts_txt2img, scripts_img2img
|
global scripts_txt2img, scripts_img2img
|
||||||
|
|
||||||
scripts_data.clear()
|
load_scripts()
|
||||||
load_scripts(basedir)
|
|
||||||
|
|
||||||
scripts_txt2img = ScriptRunner()
|
scripts_txt2img = ScriptRunner()
|
||||||
scripts_img2img = ScriptRunner()
|
scripts_img2img = ScriptRunner()
|
||||||
|
|
||||||
|
|
||||||
|
def IOComponent_init(self, *args, **kwargs):
|
||||||
|
if scripts_current is not None:
|
||||||
|
scripts_current.before_component(self, **kwargs)
|
||||||
|
|
||||||
|
script_callbacks.before_component_callback(self, **kwargs)
|
||||||
|
|
||||||
|
res = original_IOComponent_init(self, *args, **kwargs)
|
||||||
|
|
||||||
|
script_callbacks.after_component_callback(self, **kwargs)
|
||||||
|
|
||||||
|
if scripts_current is not None:
|
||||||
|
scripts_current.after_component(self, **kwargs)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
original_IOComponent_init = gr.components.IOComponent.__init__
|
||||||
|
gr.components.IOComponent.__init__ = IOComponent_init
|
||||||
|
88
modules/sd_disable_initialization.py
Normal file
88
modules/sd_disable_initialization.py
Normal file
@ -0,0 +1,88 @@
|
|||||||
|
import ldm.modules.encoders.modules
|
||||||
|
import open_clip
|
||||||
|
import torch
|
||||||
|
import transformers.utils.hub
|
||||||
|
|
||||||
|
|
||||||
|
class DisableInitialization:
|
||||||
|
"""
|
||||||
|
When an object of this class enters a `with` block, it starts:
|
||||||
|
- preventing torch's layer initialization functions from working
|
||||||
|
- changes CLIP and OpenCLIP to not download model weights
|
||||||
|
- changes CLIP to not make requests to check if there is a new version of a file you already have
|
||||||
|
|
||||||
|
When it leaves the block, it reverts everything to how it was before.
|
||||||
|
|
||||||
|
Use it like this:
|
||||||
|
```
|
||||||
|
with DisableInitialization():
|
||||||
|
do_things()
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.replaced = []
|
||||||
|
|
||||||
|
def replace(self, obj, field, func):
|
||||||
|
original = getattr(obj, field, None)
|
||||||
|
if original is None:
|
||||||
|
return None
|
||||||
|
|
||||||
|
self.replaced.append((obj, field, original))
|
||||||
|
setattr(obj, field, func)
|
||||||
|
|
||||||
|
return original
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
def do_nothing(*args, **kwargs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def create_model_and_transforms_without_pretrained(*args, pretrained=None, **kwargs):
|
||||||
|
return self.create_model_and_transforms(*args, pretrained=None, **kwargs)
|
||||||
|
|
||||||
|
def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
|
||||||
|
return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
|
||||||
|
|
||||||
|
def transformers_modeling_utils_load_pretrained_model(*args, **kwargs):
|
||||||
|
args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug
|
||||||
|
return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs)
|
||||||
|
|
||||||
|
def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
|
||||||
|
|
||||||
|
# this file is always 404, prevent making request
|
||||||
|
if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json':
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
res = original(url, *args, local_files_only=True, **kwargs)
|
||||||
|
if res is None:
|
||||||
|
res = original(url, *args, local_files_only=False, **kwargs)
|
||||||
|
return res
|
||||||
|
except Exception as e:
|
||||||
|
return original(url, *args, local_files_only=False, **kwargs)
|
||||||
|
|
||||||
|
def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
|
||||||
|
return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs)
|
||||||
|
|
||||||
|
def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs):
|
||||||
|
return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs)
|
||||||
|
|
||||||
|
def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs):
|
||||||
|
return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs)
|
||||||
|
|
||||||
|
self.replace(torch.nn.init, 'kaiming_uniform_', do_nothing)
|
||||||
|
self.replace(torch.nn.init, '_no_grad_normal_', do_nothing)
|
||||||
|
self.replace(torch.nn.init, '_no_grad_uniform_', do_nothing)
|
||||||
|
self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained)
|
||||||
|
self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained)
|
||||||
|
self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model)
|
||||||
|
self.transformers_tokenization_utils_base_cached_file = self.replace(transformers.tokenization_utils_base, 'cached_file', transformers_tokenization_utils_base_cached_file)
|
||||||
|
self.transformers_configuration_utils_cached_file = self.replace(transformers.configuration_utils, 'cached_file', transformers_configuration_utils_cached_file)
|
||||||
|
self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
|
for obj, field, original in self.replaced:
|
||||||
|
setattr(obj, field, original)
|
||||||
|
|
||||||
|
self.replaced.clear()
|
||||||
|
|
@ -1,60 +1,78 @@
|
|||||||
import math
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
import traceback
|
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
|
||||||
from torch import einsum
|
|
||||||
from torch.nn.functional import silu
|
from torch.nn.functional import silu
|
||||||
|
|
||||||
import modules.textual_inversion.textual_inversion
|
import modules.textual_inversion.textual_inversion
|
||||||
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
|
from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
|
||||||
from modules.shared import opts, device, cmd_opts
|
from modules.hypernetworks import hypernetwork
|
||||||
from modules.sd_hijack_optimizations import invokeAI_mps_available
|
from modules.shared import cmd_opts
|
||||||
|
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
|
||||||
|
|
||||||
import ldm.modules.attention
|
import ldm.modules.attention
|
||||||
import ldm.modules.diffusionmodules.model
|
import ldm.modules.diffusionmodules.model
|
||||||
|
import ldm.modules.diffusionmodules.openaimodel
|
||||||
|
import ldm.models.diffusion.ddim
|
||||||
|
import ldm.models.diffusion.plms
|
||||||
|
import ldm.modules.encoders.modules
|
||||||
|
|
||||||
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
|
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
|
||||||
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
|
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
|
||||||
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
|
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
|
||||||
|
|
||||||
|
# new memory efficient cross attention blocks do not support hypernets and we already
|
||||||
|
# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
|
||||||
|
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
|
||||||
|
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
|
||||||
|
|
||||||
|
# silence new console spam from SD2
|
||||||
|
ldm.modules.attention.print = lambda *args: None
|
||||||
|
ldm.modules.diffusionmodules.model.print = lambda *args: None
|
||||||
|
|
||||||
|
|
||||||
def apply_optimizations():
|
def apply_optimizations():
|
||||||
undo_optimizations()
|
undo_optimizations()
|
||||||
|
|
||||||
ldm.modules.diffusionmodules.model.nonlinearity = silu
|
ldm.modules.diffusionmodules.model.nonlinearity = silu
|
||||||
|
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
|
||||||
|
|
||||||
|
optimization_method = None
|
||||||
|
|
||||||
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
|
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
|
||||||
print("Applying xformers cross attention optimization.")
|
print("Applying xformers cross attention optimization.")
|
||||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
|
||||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
|
||||||
|
optimization_method = 'xformers'
|
||||||
|
elif cmd_opts.opt_sub_quad_attention:
|
||||||
|
print("Applying sub-quadratic cross attention optimization.")
|
||||||
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward
|
||||||
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sub_quad_attnblock_forward
|
||||||
|
optimization_method = 'sub-quadratic'
|
||||||
elif cmd_opts.opt_split_attention_v1:
|
elif cmd_opts.opt_split_attention_v1:
|
||||||
print("Applying v1 cross attention optimization.")
|
print("Applying v1 cross attention optimization.")
|
||||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
|
||||||
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
|
optimization_method = 'V1'
|
||||||
if not invokeAI_mps_available and shared.device.type == 'mps':
|
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not cmd_opts.opt_split_attention and not torch.cuda.is_available()):
|
||||||
print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
|
print("Applying cross attention optimization (InvokeAI).")
|
||||||
print("Applying v1 cross attention optimization.")
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
|
||||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
|
optimization_method = 'InvokeAI'
|
||||||
else:
|
|
||||||
print("Applying cross attention optimization (InvokeAI).")
|
|
||||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
|
|
||||||
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
|
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
|
||||||
print("Applying cross attention optimization (Doggettx).")
|
print("Applying cross attention optimization (Doggettx).")
|
||||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
|
||||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
|
||||||
|
optimization_method = 'Doggettx'
|
||||||
|
|
||||||
|
return optimization_method
|
||||||
|
|
||||||
|
|
||||||
def undo_optimizations():
|
def undo_optimizations():
|
||||||
from modules.hypernetworks import hypernetwork
|
|
||||||
|
|
||||||
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
|
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
|
||||||
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
|
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
|
||||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
|
||||||
|
|
||||||
|
|
||||||
def get_target_prompt_token_count(token_count):
|
def fix_checkpoint():
|
||||||
return math.ceil(max(token_count, 1) / 75) * 75
|
ldm.modules.attention.BasicTransformerBlock.forward = sd_hijack_checkpoint.BasicTransformerBlock_forward
|
||||||
|
ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward
|
||||||
|
ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward
|
||||||
|
|
||||||
|
|
||||||
class StableDiffusionModelHijack:
|
class StableDiffusionModelHijack:
|
||||||
@ -63,18 +81,33 @@ class StableDiffusionModelHijack:
|
|||||||
layers = None
|
layers = None
|
||||||
circular_enabled = False
|
circular_enabled = False
|
||||||
clip = None
|
clip = None
|
||||||
|
optimization_method = None
|
||||||
|
|
||||||
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
|
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
|
||||||
|
|
||||||
def hijack(self, m):
|
def hijack(self, m):
|
||||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||||
|
model_embeddings = m.cond_stage_model.roberta.embeddings
|
||||||
|
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
|
||||||
|
m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self)
|
||||||
|
|
||||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
|
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
|
||||||
m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||||
|
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
|
||||||
|
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||||
|
|
||||||
|
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder:
|
||||||
|
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
|
||||||
|
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||||
|
|
||||||
|
self.optimization_method = apply_optimizations()
|
||||||
|
|
||||||
self.clip = m.cond_stage_model
|
self.clip = m.cond_stage_model
|
||||||
|
|
||||||
apply_optimizations()
|
fix_checkpoint()
|
||||||
|
|
||||||
def flatten(el):
|
def flatten(el):
|
||||||
flattened = [flatten(children) for children in el.children()]
|
flattened = [flatten(children) for children in el.children()]
|
||||||
@ -86,12 +119,22 @@ class StableDiffusionModelHijack:
|
|||||||
self.layers = flatten(m)
|
self.layers = flatten(m)
|
||||||
|
|
||||||
def undo_hijack(self, m):
|
def undo_hijack(self, m):
|
||||||
if type(m.cond_stage_model) == FrozenCLIPEmbedderWithCustomWords:
|
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||||
|
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||||
|
|
||||||
|
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
|
||||||
m.cond_stage_model = m.cond_stage_model.wrapped
|
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||||
|
|
||||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||||
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
|
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
|
||||||
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
|
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
|
||||||
|
elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords:
|
||||||
|
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
|
||||||
|
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||||
|
|
||||||
|
self.apply_circular(False)
|
||||||
|
self.layers = None
|
||||||
|
self.clip = None
|
||||||
|
|
||||||
def apply_circular(self, enable):
|
def apply_circular(self, enable):
|
||||||
if self.circular_enabled == enable:
|
if self.circular_enabled == enable:
|
||||||
@ -105,265 +148,10 @@ class StableDiffusionModelHijack:
|
|||||||
def clear_comments(self):
|
def clear_comments(self):
|
||||||
self.comments = []
|
self.comments = []
|
||||||
|
|
||||||
def tokenize(self, text):
|
def get_prompt_lengths(self, text):
|
||||||
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
|
_, token_count = self.clip.process_texts([text])
|
||||||
return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count)
|
|
||||||
|
|
||||||
|
return token_count, self.clip.get_target_prompt_token_count(token_count)
|
||||||
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|
||||||
def __init__(self, wrapped, hijack):
|
|
||||||
super().__init__()
|
|
||||||
self.wrapped = wrapped
|
|
||||||
self.hijack: StableDiffusionModelHijack = hijack
|
|
||||||
self.tokenizer = wrapped.tokenizer
|
|
||||||
self.token_mults = {}
|
|
||||||
|
|
||||||
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
|
|
||||||
|
|
||||||
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
|
||||||
for text, ident in tokens_with_parens:
|
|
||||||
mult = 1.0
|
|
||||||
for c in text:
|
|
||||||
if c == '[':
|
|
||||||
mult /= 1.1
|
|
||||||
if c == ']':
|
|
||||||
mult *= 1.1
|
|
||||||
if c == '(':
|
|
||||||
mult *= 1.1
|
|
||||||
if c == ')':
|
|
||||||
mult /= 1.1
|
|
||||||
|
|
||||||
if mult != 1.0:
|
|
||||||
self.token_mults[ident] = mult
|
|
||||||
|
|
||||||
def tokenize_line(self, line, used_custom_terms, hijack_comments):
|
|
||||||
id_end = self.wrapped.tokenizer.eos_token_id
|
|
||||||
|
|
||||||
if opts.enable_emphasis:
|
|
||||||
parsed = prompt_parser.parse_prompt_attention(line)
|
|
||||||
else:
|
|
||||||
parsed = [[line, 1.0]]
|
|
||||||
|
|
||||||
tokenized = self.wrapped.tokenizer([text for text, _ in parsed], truncation=False, add_special_tokens=False)["input_ids"]
|
|
||||||
|
|
||||||
fixes = []
|
|
||||||
remade_tokens = []
|
|
||||||
multipliers = []
|
|
||||||
last_comma = -1
|
|
||||||
|
|
||||||
for tokens, (text, weight) in zip(tokenized, parsed):
|
|
||||||
i = 0
|
|
||||||
while i < len(tokens):
|
|
||||||
token = tokens[i]
|
|
||||||
|
|
||||||
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
|
||||||
|
|
||||||
if token == self.comma_token:
|
|
||||||
last_comma = len(remade_tokens)
|
|
||||||
elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
|
|
||||||
last_comma += 1
|
|
||||||
reloc_tokens = remade_tokens[last_comma:]
|
|
||||||
reloc_mults = multipliers[last_comma:]
|
|
||||||
|
|
||||||
remade_tokens = remade_tokens[:last_comma]
|
|
||||||
length = len(remade_tokens)
|
|
||||||
|
|
||||||
rem = int(math.ceil(length / 75)) * 75 - length
|
|
||||||
remade_tokens += [id_end] * rem + reloc_tokens
|
|
||||||
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
|
|
||||||
|
|
||||||
if embedding is None:
|
|
||||||
remade_tokens.append(token)
|
|
||||||
multipliers.append(weight)
|
|
||||||
i += 1
|
|
||||||
else:
|
|
||||||
emb_len = int(embedding.vec.shape[0])
|
|
||||||
iteration = len(remade_tokens) // 75
|
|
||||||
if (len(remade_tokens) + emb_len) // 75 != iteration:
|
|
||||||
rem = (75 * (iteration + 1) - len(remade_tokens))
|
|
||||||
remade_tokens += [id_end] * rem
|
|
||||||
multipliers += [1.0] * rem
|
|
||||||
iteration += 1
|
|
||||||
fixes.append((iteration, (len(remade_tokens) % 75, embedding)))
|
|
||||||
remade_tokens += [0] * emb_len
|
|
||||||
multipliers += [weight] * emb_len
|
|
||||||
used_custom_terms.append((embedding.name, embedding.checksum()))
|
|
||||||
i += embedding_length_in_tokens
|
|
||||||
|
|
||||||
token_count = len(remade_tokens)
|
|
||||||
prompt_target_length = get_target_prompt_token_count(token_count)
|
|
||||||
tokens_to_add = prompt_target_length - len(remade_tokens)
|
|
||||||
|
|
||||||
remade_tokens = remade_tokens + [id_end] * tokens_to_add
|
|
||||||
multipliers = multipliers + [1.0] * tokens_to_add
|
|
||||||
|
|
||||||
return remade_tokens, fixes, multipliers, token_count
|
|
||||||
|
|
||||||
def process_text(self, texts):
|
|
||||||
used_custom_terms = []
|
|
||||||
remade_batch_tokens = []
|
|
||||||
hijack_comments = []
|
|
||||||
hijack_fixes = []
|
|
||||||
token_count = 0
|
|
||||||
|
|
||||||
cache = {}
|
|
||||||
batch_multipliers = []
|
|
||||||
for line in texts:
|
|
||||||
if line in cache:
|
|
||||||
remade_tokens, fixes, multipliers = cache[line]
|
|
||||||
else:
|
|
||||||
remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
|
|
||||||
token_count = max(current_token_count, token_count)
|
|
||||||
|
|
||||||
cache[line] = (remade_tokens, fixes, multipliers)
|
|
||||||
|
|
||||||
remade_batch_tokens.append(remade_tokens)
|
|
||||||
hijack_fixes.append(fixes)
|
|
||||||
batch_multipliers.append(multipliers)
|
|
||||||
|
|
||||||
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
|
||||||
|
|
||||||
|
|
||||||
def process_text_old(self, text):
|
|
||||||
id_start = self.wrapped.tokenizer.bos_token_id
|
|
||||||
id_end = self.wrapped.tokenizer.eos_token_id
|
|
||||||
maxlen = self.wrapped.max_length # you get to stay at 77
|
|
||||||
used_custom_terms = []
|
|
||||||
remade_batch_tokens = []
|
|
||||||
overflowing_words = []
|
|
||||||
hijack_comments = []
|
|
||||||
hijack_fixes = []
|
|
||||||
token_count = 0
|
|
||||||
|
|
||||||
cache = {}
|
|
||||||
batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"]
|
|
||||||
batch_multipliers = []
|
|
||||||
for tokens in batch_tokens:
|
|
||||||
tuple_tokens = tuple(tokens)
|
|
||||||
|
|
||||||
if tuple_tokens in cache:
|
|
||||||
remade_tokens, fixes, multipliers = cache[tuple_tokens]
|
|
||||||
else:
|
|
||||||
fixes = []
|
|
||||||
remade_tokens = []
|
|
||||||
multipliers = []
|
|
||||||
mult = 1.0
|
|
||||||
|
|
||||||
i = 0
|
|
||||||
while i < len(tokens):
|
|
||||||
token = tokens[i]
|
|
||||||
|
|
||||||
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
|
||||||
|
|
||||||
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
|
|
||||||
if mult_change is not None:
|
|
||||||
mult *= mult_change
|
|
||||||
i += 1
|
|
||||||
elif embedding is None:
|
|
||||||
remade_tokens.append(token)
|
|
||||||
multipliers.append(mult)
|
|
||||||
i += 1
|
|
||||||
else:
|
|
||||||
emb_len = int(embedding.vec.shape[0])
|
|
||||||
fixes.append((len(remade_tokens), embedding))
|
|
||||||
remade_tokens += [0] * emb_len
|
|
||||||
multipliers += [mult] * emb_len
|
|
||||||
used_custom_terms.append((embedding.name, embedding.checksum()))
|
|
||||||
i += embedding_length_in_tokens
|
|
||||||
|
|
||||||
if len(remade_tokens) > maxlen - 2:
|
|
||||||
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
|
|
||||||
ovf = remade_tokens[maxlen - 2:]
|
|
||||||
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
|
||||||
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
|
||||||
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
|
||||||
|
|
||||||
token_count = len(remade_tokens)
|
|
||||||
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
|
|
||||||
remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
|
|
||||||
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
|
|
||||||
|
|
||||||
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
|
|
||||||
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
|
|
||||||
|
|
||||||
remade_batch_tokens.append(remade_tokens)
|
|
||||||
hijack_fixes.append(fixes)
|
|
||||||
batch_multipliers.append(multipliers)
|
|
||||||
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
|
||||||
|
|
||||||
def forward(self, text):
|
|
||||||
use_old = opts.use_old_emphasis_implementation
|
|
||||||
if use_old:
|
|
||||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
|
|
||||||
else:
|
|
||||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
|
|
||||||
|
|
||||||
self.hijack.comments += hijack_comments
|
|
||||||
|
|
||||||
if len(used_custom_terms) > 0:
|
|
||||||
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
|
|
||||||
|
|
||||||
if use_old:
|
|
||||||
self.hijack.fixes = hijack_fixes
|
|
||||||
return self.process_tokens(remade_batch_tokens, batch_multipliers)
|
|
||||||
|
|
||||||
z = None
|
|
||||||
i = 0
|
|
||||||
while max(map(len, remade_batch_tokens)) != 0:
|
|
||||||
rem_tokens = [x[75:] for x in remade_batch_tokens]
|
|
||||||
rem_multipliers = [x[75:] for x in batch_multipliers]
|
|
||||||
|
|
||||||
self.hijack.fixes = []
|
|
||||||
for unfiltered in hijack_fixes:
|
|
||||||
fixes = []
|
|
||||||
for fix in unfiltered:
|
|
||||||
if fix[0] == i:
|
|
||||||
fixes.append(fix[1])
|
|
||||||
self.hijack.fixes.append(fixes)
|
|
||||||
|
|
||||||
tokens = []
|
|
||||||
multipliers = []
|
|
||||||
for j in range(len(remade_batch_tokens)):
|
|
||||||
if len(remade_batch_tokens[j]) > 0:
|
|
||||||
tokens.append(remade_batch_tokens[j][:75])
|
|
||||||
multipliers.append(batch_multipliers[j][:75])
|
|
||||||
else:
|
|
||||||
tokens.append([self.wrapped.tokenizer.eos_token_id] * 75)
|
|
||||||
multipliers.append([1.0] * 75)
|
|
||||||
|
|
||||||
z1 = self.process_tokens(tokens, multipliers)
|
|
||||||
z = z1 if z is None else torch.cat((z, z1), axis=-2)
|
|
||||||
|
|
||||||
remade_batch_tokens = rem_tokens
|
|
||||||
batch_multipliers = rem_multipliers
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
return z
|
|
||||||
|
|
||||||
|
|
||||||
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
|
||||||
if not opts.use_old_emphasis_implementation:
|
|
||||||
remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
|
|
||||||
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
|
|
||||||
|
|
||||||
tokens = torch.asarray(remade_batch_tokens).to(device)
|
|
||||||
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
|
|
||||||
|
|
||||||
if opts.CLIP_stop_at_last_layers > 1:
|
|
||||||
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
|
|
||||||
z = self.wrapped.transformer.text_model.final_layer_norm(z)
|
|
||||||
else:
|
|
||||||
z = outputs.last_hidden_state
|
|
||||||
|
|
||||||
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
|
||||||
batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
|
|
||||||
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(device)
|
|
||||||
original_mean = z.mean()
|
|
||||||
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
|
||||||
new_mean = z.mean()
|
|
||||||
z *= original_mean / new_mean
|
|
||||||
|
|
||||||
return z
|
|
||||||
|
|
||||||
|
|
||||||
class EmbeddingsWithFixes(torch.nn.Module):
|
class EmbeddingsWithFixes(torch.nn.Module):
|
||||||
@ -385,8 +173,8 @@ class EmbeddingsWithFixes(torch.nn.Module):
|
|||||||
for fixes, tensor in zip(batch_fixes, inputs_embeds):
|
for fixes, tensor in zip(batch_fixes, inputs_embeds):
|
||||||
for offset, embedding in fixes:
|
for offset, embedding in fixes:
|
||||||
emb = embedding.vec
|
emb = embedding.vec
|
||||||
emb_len = min(tensor.shape[0]-offset-1, emb.shape[0])
|
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
|
||||||
tensor = torch.cat([tensor[0:offset+1], emb[0:emb_len], tensor[offset+1+emb_len:]])
|
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
|
||||||
|
|
||||||
vecs.append(tensor)
|
vecs.append(tensor)
|
||||||
|
|
||||||
@ -403,3 +191,19 @@ def add_circular_option_to_conv_2d():
|
|||||||
|
|
||||||
|
|
||||||
model_hijack = StableDiffusionModelHijack()
|
model_hijack = StableDiffusionModelHijack()
|
||||||
|
|
||||||
|
|
||||||
|
def register_buffer(self, name, attr):
|
||||||
|
"""
|
||||||
|
Fix register buffer bug for Mac OS.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if type(attr) == torch.Tensor:
|
||||||
|
if attr.device != devices.device:
|
||||||
|
attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))
|
||||||
|
|
||||||
|
setattr(self, name, attr)
|
||||||
|
|
||||||
|
|
||||||
|
ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
|
||||||
|
ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer
|
||||||
|
10
modules/sd_hijack_checkpoint.py
Normal file
10
modules/sd_hijack_checkpoint.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
from torch.utils.checkpoint import checkpoint
|
||||||
|
|
||||||
|
def BasicTransformerBlock_forward(self, x, context=None):
|
||||||
|
return checkpoint(self._forward, x, context)
|
||||||
|
|
||||||
|
def AttentionBlock_forward(self, x):
|
||||||
|
return checkpoint(self._forward, x)
|
||||||
|
|
||||||
|
def ResBlock_forward(self, x, emb):
|
||||||
|
return checkpoint(self._forward, x, emb)
|
308
modules/sd_hijack_clip.py
Normal file
308
modules/sd_hijack_clip.py
Normal file
@ -0,0 +1,308 @@
|
|||||||
|
import math
|
||||||
|
from collections import namedtuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from modules import prompt_parser, devices, sd_hijack
|
||||||
|
from modules.shared import opts
|
||||||
|
|
||||||
|
|
||||||
|
class PromptChunk:
|
||||||
|
"""
|
||||||
|
This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt.
|
||||||
|
If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary.
|
||||||
|
Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token,
|
||||||
|
so just 75 tokens from prompt.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.tokens = []
|
||||||
|
self.multipliers = []
|
||||||
|
self.fixes = []
|
||||||
|
|
||||||
|
|
||||||
|
PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding'])
|
||||||
|
"""An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt
|
||||||
|
chunk. Thos objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally
|
||||||
|
are applied by sd_hijack.EmbeddingsWithFixes's forward function."""
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||||
|
"""A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
|
||||||
|
have unlimited prompt length and assign weights to tokens in prompt.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, wrapped, hijack):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.wrapped = wrapped
|
||||||
|
"""Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
|
||||||
|
depending on model."""
|
||||||
|
|
||||||
|
self.hijack: sd_hijack.StableDiffusionModelHijack = hijack
|
||||||
|
self.chunk_length = 75
|
||||||
|
|
||||||
|
def empty_chunk(self):
|
||||||
|
"""creates an empty PromptChunk and returns it"""
|
||||||
|
|
||||||
|
chunk = PromptChunk()
|
||||||
|
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
|
||||||
|
chunk.multipliers = [1.0] * (self.chunk_length + 2)
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
def get_target_prompt_token_count(self, token_count):
|
||||||
|
"""returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented"""
|
||||||
|
|
||||||
|
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
|
||||||
|
|
||||||
|
def tokenize(self, texts):
|
||||||
|
"""Converts a batch of texts into a batch of token ids"""
|
||||||
|
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def encode_with_transformers(self, tokens):
|
||||||
|
"""
|
||||||
|
converts a batch of token ids (in python lists) into a single tensor with numeric respresentation of those tokens;
|
||||||
|
All python lists with tokens are assumed to have same length, usually 77.
|
||||||
|
if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on
|
||||||
|
model - can be 768 and 1024.
|
||||||
|
Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None).
|
||||||
|
"""
|
||||||
|
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def encode_embedding_init_text(self, init_text, nvpt):
|
||||||
|
"""Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through
|
||||||
|
transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned."""
|
||||||
|
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def tokenize_line(self, line):
|
||||||
|
"""
|
||||||
|
this transforms a single prompt into a list of PromptChunk objects - as many as needed to
|
||||||
|
represent the prompt.
|
||||||
|
Returns the list and the total number of tokens in the prompt.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if opts.enable_emphasis:
|
||||||
|
parsed = prompt_parser.parse_prompt_attention(line)
|
||||||
|
else:
|
||||||
|
parsed = [[line, 1.0]]
|
||||||
|
|
||||||
|
tokenized = self.tokenize([text for text, _ in parsed])
|
||||||
|
|
||||||
|
chunks = []
|
||||||
|
chunk = PromptChunk()
|
||||||
|
token_count = 0
|
||||||
|
last_comma = -1
|
||||||
|
|
||||||
|
def next_chunk():
|
||||||
|
"""puts current chunk into the list of results and produces the next one - empty"""
|
||||||
|
nonlocal token_count
|
||||||
|
nonlocal last_comma
|
||||||
|
nonlocal chunk
|
||||||
|
|
||||||
|
token_count += len(chunk.tokens)
|
||||||
|
to_add = self.chunk_length - len(chunk.tokens)
|
||||||
|
if to_add > 0:
|
||||||
|
chunk.tokens += [self.id_end] * to_add
|
||||||
|
chunk.multipliers += [1.0] * to_add
|
||||||
|
|
||||||
|
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
|
||||||
|
chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
|
||||||
|
|
||||||
|
last_comma = -1
|
||||||
|
chunks.append(chunk)
|
||||||
|
chunk = PromptChunk()
|
||||||
|
|
||||||
|
for tokens, (text, weight) in zip(tokenized, parsed):
|
||||||
|
position = 0
|
||||||
|
while position < len(tokens):
|
||||||
|
token = tokens[position]
|
||||||
|
|
||||||
|
if token == self.comma_token:
|
||||||
|
last_comma = len(chunk.tokens)
|
||||||
|
|
||||||
|
# this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
|
||||||
|
# is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next.
|
||||||
|
elif opts.comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= opts.comma_padding_backtrack:
|
||||||
|
break_location = last_comma + 1
|
||||||
|
|
||||||
|
reloc_tokens = chunk.tokens[break_location:]
|
||||||
|
reloc_mults = chunk.multipliers[break_location:]
|
||||||
|
|
||||||
|
chunk.tokens = chunk.tokens[:break_location]
|
||||||
|
chunk.multipliers = chunk.multipliers[:break_location]
|
||||||
|
|
||||||
|
next_chunk()
|
||||||
|
chunk.tokens = reloc_tokens
|
||||||
|
chunk.multipliers = reloc_mults
|
||||||
|
|
||||||
|
if len(chunk.tokens) == self.chunk_length:
|
||||||
|
next_chunk()
|
||||||
|
|
||||||
|
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, position)
|
||||||
|
if embedding is None:
|
||||||
|
chunk.tokens.append(token)
|
||||||
|
chunk.multipliers.append(weight)
|
||||||
|
position += 1
|
||||||
|
continue
|
||||||
|
|
||||||
|
emb_len = int(embedding.vec.shape[0])
|
||||||
|
if len(chunk.tokens) + emb_len > self.chunk_length:
|
||||||
|
next_chunk()
|
||||||
|
|
||||||
|
chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding))
|
||||||
|
|
||||||
|
chunk.tokens += [0] * emb_len
|
||||||
|
chunk.multipliers += [weight] * emb_len
|
||||||
|
position += embedding_length_in_tokens
|
||||||
|
|
||||||
|
if len(chunk.tokens) > 0 or len(chunks) == 0:
|
||||||
|
next_chunk()
|
||||||
|
|
||||||
|
return chunks, token_count
|
||||||
|
|
||||||
|
def process_texts(self, texts):
|
||||||
|
"""
|
||||||
|
Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum
|
||||||
|
length, in tokens, of all texts.
|
||||||
|
"""
|
||||||
|
|
||||||
|
token_count = 0
|
||||||
|
|
||||||
|
cache = {}
|
||||||
|
batch_chunks = []
|
||||||
|
for line in texts:
|
||||||
|
if line in cache:
|
||||||
|
chunks = cache[line]
|
||||||
|
else:
|
||||||
|
chunks, current_token_count = self.tokenize_line(line)
|
||||||
|
token_count = max(current_token_count, token_count)
|
||||||
|
|
||||||
|
cache[line] = chunks
|
||||||
|
|
||||||
|
batch_chunks.append(chunks)
|
||||||
|
|
||||||
|
return batch_chunks, token_count
|
||||||
|
|
||||||
|
def forward(self, texts):
|
||||||
|
"""
|
||||||
|
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
|
||||||
|
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
|
||||||
|
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024.
|
||||||
|
An example shape returned by this function can be: (2, 77, 768).
|
||||||
|
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet
|
||||||
|
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
|
||||||
|
"""
|
||||||
|
|
||||||
|
if opts.use_old_emphasis_implementation:
|
||||||
|
import modules.sd_hijack_clip_old
|
||||||
|
return modules.sd_hijack_clip_old.forward_old(self, texts)
|
||||||
|
|
||||||
|
batch_chunks, token_count = self.process_texts(texts)
|
||||||
|
|
||||||
|
used_embeddings = {}
|
||||||
|
chunk_count = max([len(x) for x in batch_chunks])
|
||||||
|
|
||||||
|
zs = []
|
||||||
|
for i in range(chunk_count):
|
||||||
|
batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks]
|
||||||
|
|
||||||
|
tokens = [x.tokens for x in batch_chunk]
|
||||||
|
multipliers = [x.multipliers for x in batch_chunk]
|
||||||
|
self.hijack.fixes = [x.fixes for x in batch_chunk]
|
||||||
|
|
||||||
|
for fixes in self.hijack.fixes:
|
||||||
|
for position, embedding in fixes:
|
||||||
|
used_embeddings[embedding.name] = embedding
|
||||||
|
|
||||||
|
z = self.process_tokens(tokens, multipliers)
|
||||||
|
zs.append(z)
|
||||||
|
|
||||||
|
if len(used_embeddings) > 0:
|
||||||
|
embeddings_list = ", ".join([f'{name} [{embedding.checksum()}]' for name, embedding in used_embeddings.items()])
|
||||||
|
self.hijack.comments.append(f"Used embeddings: {embeddings_list}")
|
||||||
|
|
||||||
|
return torch.hstack(zs)
|
||||||
|
|
||||||
|
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
||||||
|
"""
|
||||||
|
sends one single prompt chunk to be encoded by transformers neural network.
|
||||||
|
remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually
|
||||||
|
there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens.
|
||||||
|
Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier
|
||||||
|
corresponds to one token.
|
||||||
|
"""
|
||||||
|
tokens = torch.asarray(remade_batch_tokens).to(devices.device)
|
||||||
|
|
||||||
|
# this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones.
|
||||||
|
if self.id_end != self.id_pad:
|
||||||
|
for batch_pos in range(len(remade_batch_tokens)):
|
||||||
|
index = remade_batch_tokens[batch_pos].index(self.id_end)
|
||||||
|
tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad
|
||||||
|
|
||||||
|
z = self.encode_with_transformers(tokens)
|
||||||
|
|
||||||
|
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
||||||
|
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device)
|
||||||
|
original_mean = z.mean()
|
||||||
|
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
||||||
|
new_mean = z.mean()
|
||||||
|
z = z * (original_mean / new_mean)
|
||||||
|
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
|
||||||
|
def __init__(self, wrapped, hijack):
|
||||||
|
super().__init__(wrapped, hijack)
|
||||||
|
self.tokenizer = wrapped.tokenizer
|
||||||
|
|
||||||
|
vocab = self.tokenizer.get_vocab()
|
||||||
|
|
||||||
|
self.comma_token = vocab.get(',</w>', None)
|
||||||
|
|
||||||
|
self.token_mults = {}
|
||||||
|
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
||||||
|
for text, ident in tokens_with_parens:
|
||||||
|
mult = 1.0
|
||||||
|
for c in text:
|
||||||
|
if c == '[':
|
||||||
|
mult /= 1.1
|
||||||
|
if c == ']':
|
||||||
|
mult *= 1.1
|
||||||
|
if c == '(':
|
||||||
|
mult *= 1.1
|
||||||
|
if c == ')':
|
||||||
|
mult /= 1.1
|
||||||
|
|
||||||
|
if mult != 1.0:
|
||||||
|
self.token_mults[ident] = mult
|
||||||
|
|
||||||
|
self.id_start = self.wrapped.tokenizer.bos_token_id
|
||||||
|
self.id_end = self.wrapped.tokenizer.eos_token_id
|
||||||
|
self.id_pad = self.id_end
|
||||||
|
|
||||||
|
def tokenize(self, texts):
|
||||||
|
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
|
||||||
|
|
||||||
|
return tokenized
|
||||||
|
|
||||||
|
def encode_with_transformers(self, tokens):
|
||||||
|
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
|
||||||
|
|
||||||
|
if opts.CLIP_stop_at_last_layers > 1:
|
||||||
|
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
|
||||||
|
z = self.wrapped.transformer.text_model.final_layer_norm(z)
|
||||||
|
else:
|
||||||
|
z = outputs.last_hidden_state
|
||||||
|
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode_embedding_init_text(self, init_text, nvpt):
|
||||||
|
embedding_layer = self.wrapped.transformer.text_model.embeddings
|
||||||
|
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
||||||
|
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
|
||||||
|
|
||||||
|
return embedded
|
81
modules/sd_hijack_clip_old.py
Normal file
81
modules/sd_hijack_clip_old.py
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
from modules import sd_hijack_clip
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
|
||||||
|
def process_text_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, texts):
|
||||||
|
id_start = self.id_start
|
||||||
|
id_end = self.id_end
|
||||||
|
maxlen = self.wrapped.max_length # you get to stay at 77
|
||||||
|
used_custom_terms = []
|
||||||
|
remade_batch_tokens = []
|
||||||
|
hijack_comments = []
|
||||||
|
hijack_fixes = []
|
||||||
|
token_count = 0
|
||||||
|
|
||||||
|
cache = {}
|
||||||
|
batch_tokens = self.tokenize(texts)
|
||||||
|
batch_multipliers = []
|
||||||
|
for tokens in batch_tokens:
|
||||||
|
tuple_tokens = tuple(tokens)
|
||||||
|
|
||||||
|
if tuple_tokens in cache:
|
||||||
|
remade_tokens, fixes, multipliers = cache[tuple_tokens]
|
||||||
|
else:
|
||||||
|
fixes = []
|
||||||
|
remade_tokens = []
|
||||||
|
multipliers = []
|
||||||
|
mult = 1.0
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
while i < len(tokens):
|
||||||
|
token = tokens[i]
|
||||||
|
|
||||||
|
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
||||||
|
|
||||||
|
mult_change = self.token_mults.get(token) if shared.opts.enable_emphasis else None
|
||||||
|
if mult_change is not None:
|
||||||
|
mult *= mult_change
|
||||||
|
i += 1
|
||||||
|
elif embedding is None:
|
||||||
|
remade_tokens.append(token)
|
||||||
|
multipliers.append(mult)
|
||||||
|
i += 1
|
||||||
|
else:
|
||||||
|
emb_len = int(embedding.vec.shape[0])
|
||||||
|
fixes.append((len(remade_tokens), embedding))
|
||||||
|
remade_tokens += [0] * emb_len
|
||||||
|
multipliers += [mult] * emb_len
|
||||||
|
used_custom_terms.append((embedding.name, embedding.checksum()))
|
||||||
|
i += embedding_length_in_tokens
|
||||||
|
|
||||||
|
if len(remade_tokens) > maxlen - 2:
|
||||||
|
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
|
||||||
|
ovf = remade_tokens[maxlen - 2:]
|
||||||
|
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
||||||
|
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
||||||
|
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||||
|
|
||||||
|
token_count = len(remade_tokens)
|
||||||
|
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
|
||||||
|
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
|
||||||
|
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
|
||||||
|
|
||||||
|
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
|
||||||
|
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
|
||||||
|
|
||||||
|
remade_batch_tokens.append(remade_tokens)
|
||||||
|
hijack_fixes.append(fixes)
|
||||||
|
batch_multipliers.append(multipliers)
|
||||||
|
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
||||||
|
|
||||||
|
|
||||||
|
def forward_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, texts):
|
||||||
|
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = process_text_old(self, texts)
|
||||||
|
|
||||||
|
self.hijack.comments += hijack_comments
|
||||||
|
|
||||||
|
if len(used_custom_terms) > 0:
|
||||||
|
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
|
||||||
|
|
||||||
|
self.hijack.fixes = hijack_fixes
|
||||||
|
return self.process_tokens(remade_batch_tokens, batch_multipliers)
|
111
modules/sd_hijack_inpainting.py
Normal file
111
modules/sd_hijack_inpainting.py
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
import os
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from einops import repeat
|
||||||
|
from omegaconf import ListConfig
|
||||||
|
|
||||||
|
import ldm.models.diffusion.ddpm
|
||||||
|
import ldm.models.diffusion.ddim
|
||||||
|
import ldm.models.diffusion.plms
|
||||||
|
|
||||||
|
from ldm.models.diffusion.ddpm import LatentDiffusion
|
||||||
|
from ldm.models.diffusion.plms import PLMSSampler
|
||||||
|
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||||
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||||
|
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, dynamic_threshold=None):
|
||||||
|
b, *_, device = *x.shape, x.device
|
||||||
|
|
||||||
|
def get_model_output(x, t):
|
||||||
|
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||||
|
e_t = self.model.apply_model(x, t, c)
|
||||||
|
else:
|
||||||
|
x_in = torch.cat([x] * 2)
|
||||||
|
t_in = torch.cat([t] * 2)
|
||||||
|
|
||||||
|
if isinstance(c, dict):
|
||||||
|
assert isinstance(unconditional_conditioning, dict)
|
||||||
|
c_in = dict()
|
||||||
|
for k in c:
|
||||||
|
if isinstance(c[k], list):
|
||||||
|
c_in[k] = [
|
||||||
|
torch.cat([unconditional_conditioning[k][i], c[k][i]])
|
||||||
|
for i in range(len(c[k]))
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
|
||||||
|
else:
|
||||||
|
c_in = torch.cat([unconditional_conditioning, c])
|
||||||
|
|
||||||
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||||
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||||
|
|
||||||
|
if score_corrector is not None:
|
||||||
|
assert self.model.parameterization == "eps"
|
||||||
|
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||||
|
|
||||||
|
return e_t
|
||||||
|
|
||||||
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||||
|
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||||
|
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||||
|
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||||
|
|
||||||
|
def get_x_prev_and_pred_x0(e_t, index):
|
||||||
|
# select parameters corresponding to the currently considered timestep
|
||||||
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||||
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||||
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||||
|
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||||
|
|
||||||
|
# current prediction for x_0
|
||||||
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||||
|
if quantize_denoised:
|
||||||
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||||
|
if dynamic_threshold is not None:
|
||||||
|
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
||||||
|
# direction pointing to x_t
|
||||||
|
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||||
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||||
|
if noise_dropout > 0.:
|
||||||
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||||
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||||
|
return x_prev, pred_x0
|
||||||
|
|
||||||
|
e_t = get_model_output(x, t)
|
||||||
|
if len(old_eps) == 0:
|
||||||
|
# Pseudo Improved Euler (2nd order)
|
||||||
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
||||||
|
e_t_next = get_model_output(x_prev, t_next)
|
||||||
|
e_t_prime = (e_t + e_t_next) / 2
|
||||||
|
elif len(old_eps) == 1:
|
||||||
|
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||||
|
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
||||||
|
elif len(old_eps) == 2:
|
||||||
|
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||||
|
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||||
|
elif len(old_eps) >= 3:
|
||||||
|
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||||
|
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
||||||
|
|
||||||
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||||
|
|
||||||
|
return x_prev, pred_x0, e_t
|
||||||
|
|
||||||
|
|
||||||
|
def should_hijack_inpainting(checkpoint_info):
|
||||||
|
from modules import sd_models
|
||||||
|
|
||||||
|
ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
|
||||||
|
cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower()
|
||||||
|
|
||||||
|
return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename
|
||||||
|
|
||||||
|
|
||||||
|
def do_inpainting_hijack():
|
||||||
|
# p_sample_plms is needed because PLMS can't work with dicts as conditionings
|
||||||
|
|
||||||
|
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
|
37
modules/sd_hijack_open_clip.py
Normal file
37
modules/sd_hijack_open_clip.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
import open_clip.tokenizer
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from modules import sd_hijack_clip, devices
|
||||||
|
from modules.shared import opts
|
||||||
|
|
||||||
|
tokenizer = open_clip.tokenizer._tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
|
||||||
|
def __init__(self, wrapped, hijack):
|
||||||
|
super().__init__(wrapped, hijack)
|
||||||
|
|
||||||
|
self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
|
||||||
|
self.id_start = tokenizer.encoder["<start_of_text>"]
|
||||||
|
self.id_end = tokenizer.encoder["<end_of_text>"]
|
||||||
|
self.id_pad = 0
|
||||||
|
|
||||||
|
def tokenize(self, texts):
|
||||||
|
assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
|
||||||
|
|
||||||
|
tokenized = [tokenizer.encode(text) for text in texts]
|
||||||
|
|
||||||
|
return tokenized
|
||||||
|
|
||||||
|
def encode_with_transformers(self, tokens):
|
||||||
|
# set self.wrapped.layer_idx here according to opts.CLIP_stop_at_last_layers
|
||||||
|
z = self.wrapped.encode_with_transformer(tokens)
|
||||||
|
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode_embedding_init_text(self, init_text, nvpt):
|
||||||
|
ids = tokenizer.encode(init_text)
|
||||||
|
ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
|
||||||
|
embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
|
||||||
|
|
||||||
|
return embedded
|
@ -1,7 +1,7 @@
|
|||||||
import math
|
import math
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
import importlib
|
import psutil
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch import einsum
|
from torch import einsum
|
||||||
@ -12,6 +12,8 @@ from einops import rearrange
|
|||||||
from modules import shared
|
from modules import shared
|
||||||
from modules.hypernetworks import hypernetwork
|
from modules.hypernetworks import hypernetwork
|
||||||
|
|
||||||
|
from .sub_quadratic_attention import efficient_dot_product_attention
|
||||||
|
|
||||||
|
|
||||||
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
|
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
|
||||||
try:
|
try:
|
||||||
@ -22,6 +24,19 @@ if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
|
|||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
|
||||||
|
def get_available_vram():
|
||||||
|
if shared.device.type == 'cuda':
|
||||||
|
stats = torch.cuda.memory_stats(shared.device)
|
||||||
|
mem_active = stats['active_bytes.all.current']
|
||||||
|
mem_reserved = stats['reserved_bytes.all.current']
|
||||||
|
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
||||||
|
mem_free_torch = mem_reserved - mem_active
|
||||||
|
mem_free_total = mem_free_cuda + mem_free_torch
|
||||||
|
return mem_free_total
|
||||||
|
else:
|
||||||
|
return psutil.virtual_memory().available
|
||||||
|
|
||||||
|
|
||||||
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
|
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
|
||||||
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
||||||
h = self.heads
|
h = self.heads
|
||||||
@ -76,12 +91,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
|
|||||||
|
|
||||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||||
|
|
||||||
stats = torch.cuda.memory_stats(q.device)
|
mem_free_total = get_available_vram()
|
||||||
mem_active = stats['active_bytes.all.current']
|
|
||||||
mem_reserved = stats['reserved_bytes.all.current']
|
|
||||||
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
|
||||||
mem_free_torch = mem_reserved - mem_active
|
|
||||||
mem_free_total = mem_free_cuda + mem_free_torch
|
|
||||||
|
|
||||||
gb = 1024 ** 3
|
gb = 1024 ** 3
|
||||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
|
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
|
||||||
@ -118,19 +128,8 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
|
|||||||
return self.to_out(r2)
|
return self.to_out(r2)
|
||||||
|
|
||||||
|
|
||||||
def check_for_psutil():
|
# -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
|
||||||
try:
|
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
|
||||||
spec = importlib.util.find_spec('psutil')
|
|
||||||
return spec is not None
|
|
||||||
except ModuleNotFoundError:
|
|
||||||
return False
|
|
||||||
|
|
||||||
invokeAI_mps_available = check_for_psutil()
|
|
||||||
|
|
||||||
# -- Taken from https://github.com/invoke-ai/InvokeAI --
|
|
||||||
if invokeAI_mps_available:
|
|
||||||
import psutil
|
|
||||||
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
|
|
||||||
|
|
||||||
def einsum_op_compvis(q, k, v):
|
def einsum_op_compvis(q, k, v):
|
||||||
s = einsum('b i d, b j d -> b i j', q, k)
|
s = einsum('b i d, b j d -> b i j', q, k)
|
||||||
@ -152,14 +151,16 @@ def einsum_op_slice_1(q, k, v, slice_size):
|
|||||||
return r
|
return r
|
||||||
|
|
||||||
def einsum_op_mps_v1(q, k, v):
|
def einsum_op_mps_v1(q, k, v):
|
||||||
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
|
||||||
return einsum_op_compvis(q, k, v)
|
return einsum_op_compvis(q, k, v)
|
||||||
else:
|
else:
|
||||||
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
||||||
|
if slice_size % 4096 == 0:
|
||||||
|
slice_size -= 1
|
||||||
return einsum_op_slice_1(q, k, v, slice_size)
|
return einsum_op_slice_1(q, k, v, slice_size)
|
||||||
|
|
||||||
def einsum_op_mps_v2(q, k, v):
|
def einsum_op_mps_v2(q, k, v):
|
||||||
if mem_total_gb > 8 and q.shape[1] <= 4096:
|
if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
|
||||||
return einsum_op_compvis(q, k, v)
|
return einsum_op_compvis(q, k, v)
|
||||||
else:
|
else:
|
||||||
return einsum_op_slice_0(q, k, v, 1)
|
return einsum_op_slice_0(q, k, v, 1)
|
||||||
@ -188,7 +189,7 @@ def einsum_op(q, k, v):
|
|||||||
return einsum_op_cuda(q, k, v)
|
return einsum_op_cuda(q, k, v)
|
||||||
|
|
||||||
if q.device.type == 'mps':
|
if q.device.type == 'mps':
|
||||||
if mem_total_gb >= 32:
|
if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18:
|
||||||
return einsum_op_mps_v1(q, k, v)
|
return einsum_op_mps_v1(q, k, v)
|
||||||
return einsum_op_mps_v2(q, k, v)
|
return einsum_op_mps_v2(q, k, v)
|
||||||
|
|
||||||
@ -213,6 +214,71 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
|
|||||||
|
|
||||||
# -- End of code from https://github.com/invoke-ai/InvokeAI --
|
# -- End of code from https://github.com/invoke-ai/InvokeAI --
|
||||||
|
|
||||||
|
|
||||||
|
# Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1
|
||||||
|
# The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface
|
||||||
|
def sub_quad_attention_forward(self, x, context=None, mask=None):
|
||||||
|
assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor."
|
||||||
|
|
||||||
|
h = self.heads
|
||||||
|
|
||||||
|
q = self.to_q(x)
|
||||||
|
context = default(context, x)
|
||||||
|
|
||||||
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||||
|
k = self.to_k(context_k)
|
||||||
|
v = self.to_v(context_v)
|
||||||
|
del context, context_k, context_v, x
|
||||||
|
|
||||||
|
q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
|
||||||
|
k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
|
||||||
|
v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
|
||||||
|
|
||||||
|
x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
|
||||||
|
|
||||||
|
x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2)
|
||||||
|
|
||||||
|
out_proj, dropout = self.to_out
|
||||||
|
x = out_proj(x)
|
||||||
|
x = dropout(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True):
|
||||||
|
bytes_per_token = torch.finfo(q.dtype).bits//8
|
||||||
|
batch_x_heads, q_tokens, _ = q.shape
|
||||||
|
_, k_tokens, _ = k.shape
|
||||||
|
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
|
||||||
|
|
||||||
|
if chunk_threshold is None:
|
||||||
|
chunk_threshold_bytes = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7)
|
||||||
|
elif chunk_threshold == 0:
|
||||||
|
chunk_threshold_bytes = None
|
||||||
|
else:
|
||||||
|
chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram())
|
||||||
|
|
||||||
|
if kv_chunk_size_min is None and chunk_threshold_bytes is not None:
|
||||||
|
kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2]))
|
||||||
|
elif kv_chunk_size_min == 0:
|
||||||
|
kv_chunk_size_min = None
|
||||||
|
|
||||||
|
if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
|
||||||
|
# the big matmul fits into our memory limit; do everything in 1 chunk,
|
||||||
|
# i.e. send it down the unchunked fast-path
|
||||||
|
query_chunk_size = q_tokens
|
||||||
|
kv_chunk_size = k_tokens
|
||||||
|
|
||||||
|
return efficient_dot_product_attention(
|
||||||
|
q,
|
||||||
|
k,
|
||||||
|
v,
|
||||||
|
query_chunk_size=q_chunk_size,
|
||||||
|
kv_chunk_size=kv_chunk_size,
|
||||||
|
kv_chunk_size_min = kv_chunk_size_min,
|
||||||
|
use_checkpoint=use_checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def xformers_attention_forward(self, x, context=None, mask=None):
|
def xformers_attention_forward(self, x, context=None, mask=None):
|
||||||
h = self.heads
|
h = self.heads
|
||||||
q_in = self.to_q(x)
|
q_in = self.to_q(x)
|
||||||
@ -250,12 +316,7 @@ def cross_attention_attnblock_forward(self, x):
|
|||||||
|
|
||||||
h_ = torch.zeros_like(k, device=q.device)
|
h_ = torch.zeros_like(k, device=q.device)
|
||||||
|
|
||||||
stats = torch.cuda.memory_stats(q.device)
|
mem_free_total = get_available_vram()
|
||||||
mem_active = stats['active_bytes.all.current']
|
|
||||||
mem_reserved = stats['reserved_bytes.all.current']
|
|
||||||
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
|
||||||
mem_free_torch = mem_reserved - mem_active
|
|
||||||
mem_free_total = mem_free_cuda + mem_free_torch
|
|
||||||
|
|
||||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
||||||
mem_required = tensor_size * 2.5
|
mem_required = tensor_size * 2.5
|
||||||
@ -310,3 +371,19 @@ def xformers_attnblock_forward(self, x):
|
|||||||
return x + out
|
return x + out
|
||||||
except NotImplementedError:
|
except NotImplementedError:
|
||||||
return cross_attention_attnblock_forward(self, x)
|
return cross_attention_attnblock_forward(self, x)
|
||||||
|
|
||||||
|
def sub_quad_attnblock_forward(self, x):
|
||||||
|
h_ = x
|
||||||
|
h_ = self.norm(h_)
|
||||||
|
q = self.q(h_)
|
||||||
|
k = self.k(h_)
|
||||||
|
v = self.v(h_)
|
||||||
|
b, c, h, w = q.shape
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
|
||||||
|
q = q.contiguous()
|
||||||
|
k = k.contiguous()
|
||||||
|
v = v.contiguous()
|
||||||
|
out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
|
||||||
|
out = rearrange(out, 'b (h w) c -> b c h w', h=h)
|
||||||
|
out = self.proj_out(out)
|
||||||
|
return x + out
|
||||||
|
30
modules/sd_hijack_unet.py
Normal file
30
modules/sd_hijack_unet.py
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class TorchHijackForUnet:
|
||||||
|
"""
|
||||||
|
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
|
||||||
|
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __getattr__(self, item):
|
||||||
|
if item == 'cat':
|
||||||
|
return self.cat
|
||||||
|
|
||||||
|
if hasattr(torch, item):
|
||||||
|
return getattr(torch, item)
|
||||||
|
|
||||||
|
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
|
||||||
|
|
||||||
|
def cat(self, tensors, *args, **kwargs):
|
||||||
|
if len(tensors) == 2:
|
||||||
|
a, b = tensors
|
||||||
|
if a.shape[-2:] != b.shape[-2:]:
|
||||||
|
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
|
||||||
|
|
||||||
|
tensors = (a, b)
|
||||||
|
|
||||||
|
return torch.cat(tensors, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
th = TorchHijackForUnet()
|
34
modules/sd_hijack_xlmr.py
Normal file
34
modules/sd_hijack_xlmr.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
import open_clip.tokenizer
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from modules import sd_hijack_clip, devices
|
||||||
|
from modules.shared import opts
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords):
|
||||||
|
def __init__(self, wrapped, hijack):
|
||||||
|
super().__init__(wrapped, hijack)
|
||||||
|
|
||||||
|
self.id_start = wrapped.config.bos_token_id
|
||||||
|
self.id_end = wrapped.config.eos_token_id
|
||||||
|
self.id_pad = wrapped.config.pad_token_id
|
||||||
|
|
||||||
|
self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have </w> bits for comma
|
||||||
|
|
||||||
|
def encode_with_transformers(self, tokens):
|
||||||
|
# there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a
|
||||||
|
# trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer
|
||||||
|
# layer to work with - you have to use the last
|
||||||
|
|
||||||
|
attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64)
|
||||||
|
features = self.wrapped(input_ids=tokens, attention_mask=attention_mask)
|
||||||
|
z = features['projection_state']
|
||||||
|
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode_embedding_init_text(self, init_text, nvpt):
|
||||||
|
embedding_layer = self.wrapped.roberta.embeddings
|
||||||
|
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
||||||
|
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
|
||||||
|
|
||||||
|
return embedded
|
@ -1,26 +1,34 @@
|
|||||||
import collections
|
import collections
|
||||||
import os.path
|
import os.path
|
||||||
import sys
|
import sys
|
||||||
|
import gc
|
||||||
|
import time
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
import torch
|
import torch
|
||||||
|
import re
|
||||||
|
import safetensors.torch
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
|
from os import mkdir
|
||||||
|
from urllib import request
|
||||||
|
import ldm.modules.midas as midas
|
||||||
|
|
||||||
from ldm.util import instantiate_from_config
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
from modules import shared, modelloader, devices
|
from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors
|
||||||
from modules.paths import models_path
|
from modules.paths import models_path
|
||||||
|
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
|
||||||
|
|
||||||
model_dir = "Stable-diffusion"
|
model_dir = "Stable-diffusion"
|
||||||
model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
||||||
|
|
||||||
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
|
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
|
||||||
checkpoints_list = {}
|
checkpoints_list = {}
|
||||||
checkpoints_loaded = collections.OrderedDict()
|
checkpoints_loaded = collections.OrderedDict()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
||||||
|
|
||||||
from transformers import logging
|
from transformers import logging, CLIPModel
|
||||||
|
|
||||||
logging.set_verbosity_error()
|
logging.set_verbosity_error()
|
||||||
except Exception:
|
except Exception:
|
||||||
@ -32,15 +40,29 @@ def setup_model():
|
|||||||
os.makedirs(model_path)
|
os.makedirs(model_path)
|
||||||
|
|
||||||
list_models()
|
list_models()
|
||||||
|
enable_midas_autodownload()
|
||||||
|
|
||||||
|
|
||||||
def checkpoint_tiles():
|
def checkpoint_tiles():
|
||||||
return sorted([x.title for x in checkpoints_list.values()])
|
convert = lambda name: int(name) if name.isdigit() else name.lower()
|
||||||
|
alphanumeric_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
|
||||||
|
return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key)
|
||||||
|
|
||||||
|
|
||||||
|
def find_checkpoint_config(info):
|
||||||
|
if info is None:
|
||||||
|
return shared.cmd_opts.config
|
||||||
|
|
||||||
|
config = os.path.splitext(info.filename)[0] + ".yaml"
|
||||||
|
if os.path.exists(config):
|
||||||
|
return config
|
||||||
|
|
||||||
|
return shared.cmd_opts.config
|
||||||
|
|
||||||
|
|
||||||
def list_models():
|
def list_models():
|
||||||
checkpoints_list.clear()
|
checkpoints_list.clear()
|
||||||
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"])
|
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"])
|
||||||
|
|
||||||
def modeltitle(path, shorthash):
|
def modeltitle(path, shorthash):
|
||||||
abspath = os.path.abspath(path)
|
abspath = os.path.abspath(path)
|
||||||
@ -63,7 +85,7 @@ def list_models():
|
|||||||
if os.path.exists(cmd_ckpt):
|
if os.path.exists(cmd_ckpt):
|
||||||
h = model_hash(cmd_ckpt)
|
h = model_hash(cmd_ckpt)
|
||||||
title, short_model_name = modeltitle(cmd_ckpt, h)
|
title, short_model_name = modeltitle(cmd_ckpt, h)
|
||||||
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config)
|
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name)
|
||||||
shared.opts.data['sd_model_checkpoint'] = title
|
shared.opts.data['sd_model_checkpoint'] = title
|
||||||
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
|
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
|
||||||
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
|
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
|
||||||
@ -71,12 +93,7 @@ def list_models():
|
|||||||
h = model_hash(filename)
|
h = model_hash(filename)
|
||||||
title, short_model_name = modeltitle(filename, h)
|
title, short_model_name = modeltitle(filename, h)
|
||||||
|
|
||||||
basename, _ = os.path.splitext(filename)
|
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name)
|
||||||
config = basename + ".yaml"
|
|
||||||
if not os.path.exists(config):
|
|
||||||
config = shared.cmd_opts.config
|
|
||||||
|
|
||||||
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config)
|
|
||||||
|
|
||||||
|
|
||||||
def get_closet_checkpoint_match(searchString):
|
def get_closet_checkpoint_match(searchString):
|
||||||
@ -101,18 +118,19 @@ def model_hash(filename):
|
|||||||
|
|
||||||
def select_checkpoint():
|
def select_checkpoint():
|
||||||
model_checkpoint = shared.opts.sd_model_checkpoint
|
model_checkpoint = shared.opts.sd_model_checkpoint
|
||||||
|
|
||||||
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
|
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
|
||||||
if checkpoint_info is not None:
|
if checkpoint_info is not None:
|
||||||
return checkpoint_info
|
return checkpoint_info
|
||||||
|
|
||||||
if len(checkpoints_list) == 0:
|
if len(checkpoints_list) == 0:
|
||||||
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
|
print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
|
||||||
if shared.cmd_opts.ckpt is not None:
|
if shared.cmd_opts.ckpt is not None:
|
||||||
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
|
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
|
||||||
print(f" - directory {model_path}", file=sys.stderr)
|
print(f" - directory {model_path}", file=sys.stderr)
|
||||||
if shared.cmd_opts.ckpt_dir is not None:
|
if shared.cmd_opts.ckpt_dir is not None:
|
||||||
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
|
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
|
||||||
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
|
print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
|
||||||
exit(1)
|
exit(1)
|
||||||
|
|
||||||
checkpoint_info = next(iter(checkpoints_list.values()))
|
checkpoint_info = next(iter(checkpoints_list.values()))
|
||||||
@ -138,8 +156,8 @@ def transform_checkpoint_dict_key(k):
|
|||||||
|
|
||||||
|
|
||||||
def get_state_dict_from_checkpoint(pl_sd):
|
def get_state_dict_from_checkpoint(pl_sd):
|
||||||
if "state_dict" in pl_sd:
|
pl_sd = pl_sd.pop("state_dict", pl_sd)
|
||||||
pl_sd = pl_sd["state_dict"]
|
pl_sd.pop("state_dict", None)
|
||||||
|
|
||||||
sd = {}
|
sd = {}
|
||||||
for k, v in pl_sd.items():
|
for k, v in pl_sd.items():
|
||||||
@ -154,66 +172,185 @@ def get_state_dict_from_checkpoint(pl_sd):
|
|||||||
return pl_sd
|
return pl_sd
|
||||||
|
|
||||||
|
|
||||||
def load_model_weights(model, checkpoint_info):
|
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
|
||||||
|
_, extension = os.path.splitext(checkpoint_file)
|
||||||
|
if extension.lower() == ".safetensors":
|
||||||
|
device = map_location or shared.weight_load_location
|
||||||
|
if device is None:
|
||||||
|
device = devices.get_cuda_device_string() if torch.cuda.is_available() else "cpu"
|
||||||
|
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
|
||||||
|
else:
|
||||||
|
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
|
||||||
|
|
||||||
|
if print_global_state and "global_step" in pl_sd:
|
||||||
|
print(f"Global Step: {pl_sd['global_step']}")
|
||||||
|
|
||||||
|
sd = get_state_dict_from_checkpoint(pl_sd)
|
||||||
|
return sd
|
||||||
|
|
||||||
|
|
||||||
|
def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||||
checkpoint_file = checkpoint_info.filename
|
checkpoint_file = checkpoint_info.filename
|
||||||
sd_model_hash = checkpoint_info.hash
|
sd_model_hash = checkpoint_info.hash
|
||||||
|
|
||||||
if checkpoint_info not in checkpoints_loaded:
|
cache_enabled = shared.opts.sd_checkpoint_cache > 0
|
||||||
|
|
||||||
|
if cache_enabled and checkpoint_info in checkpoints_loaded:
|
||||||
|
# use checkpoint cache
|
||||||
|
print(f"Loading weights [{sd_model_hash}] from cache")
|
||||||
|
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
||||||
|
else:
|
||||||
|
# load from file
|
||||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||||
|
|
||||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
sd = read_state_dict(checkpoint_file)
|
||||||
if "global_step" in pl_sd:
|
model.load_state_dict(sd, strict=False)
|
||||||
print(f"Global Step: {pl_sd['global_step']}")
|
del sd
|
||||||
|
|
||||||
sd = get_state_dict_from_checkpoint(pl_sd)
|
if cache_enabled:
|
||||||
missing, extra = model.load_state_dict(sd, strict=False)
|
# cache newly loaded model
|
||||||
|
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
|
||||||
|
|
||||||
if shared.cmd_opts.opt_channelslast:
|
if shared.cmd_opts.opt_channelslast:
|
||||||
model.to(memory_format=torch.channels_last)
|
model.to(memory_format=torch.channels_last)
|
||||||
|
|
||||||
if not shared.cmd_opts.no_half:
|
if not shared.cmd_opts.no_half:
|
||||||
|
vae = model.first_stage_model
|
||||||
|
|
||||||
|
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
|
||||||
|
if shared.cmd_opts.no_half_vae:
|
||||||
|
model.first_stage_model = None
|
||||||
|
|
||||||
model.half()
|
model.half()
|
||||||
|
model.first_stage_model = vae
|
||||||
|
|
||||||
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
||||||
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
||||||
|
|
||||||
vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt"
|
|
||||||
|
|
||||||
if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None:
|
|
||||||
vae_file = shared.cmd_opts.vae_path
|
|
||||||
|
|
||||||
if os.path.exists(vae_file):
|
|
||||||
print(f"Loading VAE weights from: {vae_file}")
|
|
||||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
|
||||||
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"}
|
|
||||||
model.first_stage_model.load_state_dict(vae_dict)
|
|
||||||
|
|
||||||
model.first_stage_model.to(devices.dtype_vae)
|
model.first_stage_model.to(devices.dtype_vae)
|
||||||
|
|
||||||
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
|
# clean up cache if limit is reached
|
||||||
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
|
if cache_enabled:
|
||||||
|
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model
|
||||||
checkpoints_loaded.popitem(last=False) # LRU
|
checkpoints_loaded.popitem(last=False) # LRU
|
||||||
else:
|
|
||||||
print(f"Loading weights [{sd_model_hash}] from cache")
|
|
||||||
checkpoints_loaded.move_to_end(checkpoint_info)
|
|
||||||
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
|
||||||
|
|
||||||
model.sd_model_hash = sd_model_hash
|
model.sd_model_hash = sd_model_hash
|
||||||
model.sd_model_checkpoint = checkpoint_file
|
model.sd_model_checkpoint = checkpoint_file
|
||||||
model.sd_checkpoint_info = checkpoint_info
|
model.sd_checkpoint_info = checkpoint_info
|
||||||
|
|
||||||
|
model.logvar = model.logvar.to(devices.device) # fix for training
|
||||||
|
|
||||||
def load_model():
|
sd_vae.delete_base_vae()
|
||||||
|
sd_vae.clear_loaded_vae()
|
||||||
|
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||||
|
sd_vae.load_vae(model, vae_file)
|
||||||
|
|
||||||
|
|
||||||
|
def enable_midas_autodownload():
|
||||||
|
"""
|
||||||
|
Gives the ldm.modules.midas.api.load_model function automatic downloading.
|
||||||
|
|
||||||
|
When the 512-depth-ema model, and other future models like it, is loaded,
|
||||||
|
it calls midas.api.load_model to load the associated midas depth model.
|
||||||
|
This function applies a wrapper to download the model to the correct
|
||||||
|
location automatically.
|
||||||
|
"""
|
||||||
|
|
||||||
|
midas_path = os.path.join(models_path, 'midas')
|
||||||
|
|
||||||
|
# stable-diffusion-stability-ai hard-codes the midas model path to
|
||||||
|
# a location that differs from where other scripts using this model look.
|
||||||
|
# HACK: Overriding the path here.
|
||||||
|
for k, v in midas.api.ISL_PATHS.items():
|
||||||
|
file_name = os.path.basename(v)
|
||||||
|
midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
|
||||||
|
|
||||||
|
midas_urls = {
|
||||||
|
"dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
|
||||||
|
"dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
|
||||||
|
"midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
|
||||||
|
"midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
|
||||||
|
}
|
||||||
|
|
||||||
|
midas.api.load_model_inner = midas.api.load_model
|
||||||
|
|
||||||
|
def load_model_wrapper(model_type):
|
||||||
|
path = midas.api.ISL_PATHS[model_type]
|
||||||
|
if not os.path.exists(path):
|
||||||
|
if not os.path.exists(midas_path):
|
||||||
|
mkdir(midas_path)
|
||||||
|
|
||||||
|
print(f"Downloading midas model weights for {model_type} to {path}")
|
||||||
|
request.urlretrieve(midas_urls[model_type], path)
|
||||||
|
print(f"{model_type} downloaded")
|
||||||
|
|
||||||
|
return midas.api.load_model_inner(model_type)
|
||||||
|
|
||||||
|
midas.api.load_model = load_model_wrapper
|
||||||
|
|
||||||
|
|
||||||
|
class Timer:
|
||||||
|
def __init__(self):
|
||||||
|
self.start = time.time()
|
||||||
|
|
||||||
|
def elapsed(self):
|
||||||
|
end = time.time()
|
||||||
|
res = end - self.start
|
||||||
|
self.start = end
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(checkpoint_info=None):
|
||||||
from modules import lowvram, sd_hijack
|
from modules import lowvram, sd_hijack
|
||||||
checkpoint_info = select_checkpoint()
|
checkpoint_info = checkpoint_info or select_checkpoint()
|
||||||
|
checkpoint_config = find_checkpoint_config(checkpoint_info)
|
||||||
|
|
||||||
if checkpoint_info.config != shared.cmd_opts.config:
|
if checkpoint_config != shared.cmd_opts.config:
|
||||||
print(f"Loading config from: {checkpoint_info.config}")
|
print(f"Loading config from: {checkpoint_config}")
|
||||||
|
|
||||||
|
if shared.sd_model:
|
||||||
|
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
|
||||||
|
shared.sd_model = None
|
||||||
|
gc.collect()
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
|
sd_config = OmegaConf.load(checkpoint_config)
|
||||||
|
|
||||||
|
if should_hijack_inpainting(checkpoint_info):
|
||||||
|
# Hardcoded config for now...
|
||||||
|
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
|
||||||
|
sd_config.model.params.conditioning_key = "hybrid"
|
||||||
|
sd_config.model.params.unet_config.params.in_channels = 9
|
||||||
|
sd_config.model.params.finetune_keys = None
|
||||||
|
|
||||||
|
if not hasattr(sd_config.model.params, "use_ema"):
|
||||||
|
sd_config.model.params.use_ema = False
|
||||||
|
|
||||||
|
do_inpainting_hijack()
|
||||||
|
|
||||||
|
if shared.cmd_opts.no_half:
|
||||||
|
sd_config.model.params.unet_config.params.use_fp16 = False
|
||||||
|
|
||||||
|
timer = Timer()
|
||||||
|
|
||||||
|
sd_model = None
|
||||||
|
|
||||||
|
try:
|
||||||
|
with sd_disable_initialization.DisableInitialization():
|
||||||
|
sd_model = instantiate_from_config(sd_config.model)
|
||||||
|
except Exception as e:
|
||||||
|
pass
|
||||||
|
|
||||||
|
if sd_model is None:
|
||||||
|
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
|
||||||
|
sd_model = instantiate_from_config(sd_config.model)
|
||||||
|
|
||||||
|
elapsed_create = timer.elapsed()
|
||||||
|
|
||||||
sd_config = OmegaConf.load(checkpoint_info.config)
|
|
||||||
sd_model = instantiate_from_config(sd_config.model)
|
|
||||||
load_model_weights(sd_model, checkpoint_info)
|
load_model_weights(sd_model, checkpoint_info)
|
||||||
|
|
||||||
|
elapsed_load_weights = timer.elapsed()
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
||||||
else:
|
else:
|
||||||
@ -222,21 +359,38 @@ def load_model():
|
|||||||
sd_hijack.model_hijack.hijack(sd_model)
|
sd_hijack.model_hijack.hijack(sd_model)
|
||||||
|
|
||||||
sd_model.eval()
|
sd_model.eval()
|
||||||
|
shared.sd_model = sd_model
|
||||||
|
|
||||||
|
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
|
||||||
|
|
||||||
|
script_callbacks.model_loaded_callback(sd_model)
|
||||||
|
|
||||||
|
elapsed_the_rest = timer.elapsed()
|
||||||
|
|
||||||
|
print(f"Model loaded in {elapsed_create + elapsed_load_weights + elapsed_the_rest:.1f}s ({elapsed_create:.1f}s create model, {elapsed_load_weights:.1f}s load weights).")
|
||||||
|
|
||||||
print(f"Model loaded.")
|
|
||||||
return sd_model
|
return sd_model
|
||||||
|
|
||||||
|
|
||||||
def reload_model_weights(sd_model, info=None):
|
def reload_model_weights(sd_model=None, info=None):
|
||||||
from modules import lowvram, devices, sd_hijack
|
from modules import lowvram, devices, sd_hijack
|
||||||
checkpoint_info = info or select_checkpoint()
|
checkpoint_info = info or select_checkpoint()
|
||||||
|
|
||||||
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
|
if not sd_model:
|
||||||
return
|
sd_model = shared.sd_model
|
||||||
|
if sd_model is None: # previous model load failed
|
||||||
|
current_checkpoint_info = None
|
||||||
|
else:
|
||||||
|
current_checkpoint_info = sd_model.sd_checkpoint_info
|
||||||
|
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
|
||||||
|
return
|
||||||
|
|
||||||
if sd_model.sd_checkpoint_info.config != checkpoint_info.config:
|
checkpoint_config = find_checkpoint_config(current_checkpoint_info)
|
||||||
|
|
||||||
|
if current_checkpoint_info is None or checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
|
||||||
|
del sd_model
|
||||||
checkpoints_loaded.clear()
|
checkpoints_loaded.clear()
|
||||||
shared.sd_model = load_model()
|
load_model(checkpoint_info)
|
||||||
return shared.sd_model
|
return shared.sd_model
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
@ -246,12 +400,23 @@ def reload_model_weights(sd_model, info=None):
|
|||||||
|
|
||||||
sd_hijack.model_hijack.undo_hijack(sd_model)
|
sd_hijack.model_hijack.undo_hijack(sd_model)
|
||||||
|
|
||||||
load_model_weights(sd_model, checkpoint_info)
|
timer = Timer()
|
||||||
|
|
||||||
sd_hijack.model_hijack.hijack(sd_model)
|
try:
|
||||||
|
load_model_weights(sd_model, checkpoint_info)
|
||||||
|
except Exception as e:
|
||||||
|
print("Failed to load checkpoint, restoring previous")
|
||||||
|
load_model_weights(sd_model, current_checkpoint_info)
|
||||||
|
raise
|
||||||
|
finally:
|
||||||
|
sd_hijack.model_hijack.hijack(sd_model)
|
||||||
|
script_callbacks.model_loaded_callback(sd_model)
|
||||||
|
|
||||||
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
||||||
sd_model.to(devices.device)
|
sd_model.to(devices.device)
|
||||||
|
|
||||||
|
elapsed = timer.elapsed()
|
||||||
|
|
||||||
|
print(f"Weights loaded in {elapsed:.1f}s.")
|
||||||
|
|
||||||
print(f"Weights loaded.")
|
|
||||||
return sd_model
|
return sd_model
|
||||||
|
@ -1,32 +1,41 @@
|
|||||||
from collections import namedtuple
|
from collections import namedtuple, deque
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from math import floor
|
||||||
import torch
|
import torch
|
||||||
import tqdm
|
import tqdm
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import inspect
|
import inspect
|
||||||
import k_diffusion.sampling
|
import k_diffusion.sampling
|
||||||
|
import torchsde._brownian.brownian_interval
|
||||||
import ldm.models.diffusion.ddim
|
import ldm.models.diffusion.ddim
|
||||||
import ldm.models.diffusion.plms
|
import ldm.models.diffusion.plms
|
||||||
from modules import prompt_parser, devices, processing
|
from modules import prompt_parser, devices, processing, images, sd_vae_approx
|
||||||
|
|
||||||
from modules.shared import opts, cmd_opts, state
|
from modules.shared import opts, cmd_opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
|
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
|
||||||
|
|
||||||
|
|
||||||
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
|
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
|
||||||
|
|
||||||
samplers_k_diffusion = [
|
samplers_k_diffusion = [
|
||||||
('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
|
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
|
||||||
('Euler', 'sample_euler', ['k_euler'], {}),
|
('Euler', 'sample_euler', ['k_euler'], {}),
|
||||||
('LMS', 'sample_lms', ['k_lms'], {}),
|
('LMS', 'sample_lms', ['k_lms'], {}),
|
||||||
('Heun', 'sample_heun', ['k_heun'], {}),
|
('Heun', 'sample_heun', ['k_heun'], {}),
|
||||||
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
|
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
|
||||||
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
|
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}),
|
||||||
|
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
|
||||||
|
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
|
||||||
|
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
|
||||||
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
|
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
|
||||||
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
|
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
|
||||||
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
|
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
|
||||||
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
|
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
|
||||||
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
|
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
|
||||||
|
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
|
||||||
|
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
|
||||||
|
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
|
||||||
]
|
]
|
||||||
|
|
||||||
samplers_data_k_diffusion = [
|
samplers_data_k_diffusion = [
|
||||||
@ -40,16 +49,24 @@ all_samplers = [
|
|||||||
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
|
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
|
||||||
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
|
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
|
||||||
]
|
]
|
||||||
|
all_samplers_map = {x.name: x for x in all_samplers}
|
||||||
|
|
||||||
samplers = []
|
samplers = []
|
||||||
samplers_for_img2img = []
|
samplers_for_img2img = []
|
||||||
|
samplers_map = {}
|
||||||
|
|
||||||
|
|
||||||
def create_sampler_with_index(list_of_configs, index, model):
|
def create_sampler(name, model):
|
||||||
config = list_of_configs[index]
|
if name is not None:
|
||||||
|
config = all_samplers_map.get(name, None)
|
||||||
|
else:
|
||||||
|
config = all_samplers[0]
|
||||||
|
|
||||||
|
assert config is not None, f'bad sampler name: {name}'
|
||||||
|
|
||||||
sampler = config.constructor(model)
|
sampler = config.constructor(model)
|
||||||
sampler.config = config
|
sampler.config = config
|
||||||
|
|
||||||
return sampler
|
return sampler
|
||||||
|
|
||||||
|
|
||||||
@ -62,6 +79,12 @@ def set_samplers():
|
|||||||
samplers = [x for x in all_samplers if x.name not in hidden]
|
samplers = [x for x in all_samplers if x.name not in hidden]
|
||||||
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
|
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
|
||||||
|
|
||||||
|
samplers_map.clear()
|
||||||
|
for sampler in all_samplers:
|
||||||
|
samplers_map[sampler.name.lower()] = sampler.name
|
||||||
|
for alias in sampler.aliases:
|
||||||
|
samplers_map[alias.lower()] = sampler.name
|
||||||
|
|
||||||
|
|
||||||
set_samplers()
|
set_samplers()
|
||||||
|
|
||||||
@ -71,10 +94,12 @@ sampler_extra_params = {
|
|||||||
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def setup_img2img_steps(p, steps=None):
|
def setup_img2img_steps(p, steps=None):
|
||||||
if opts.img2img_fix_steps or steps is not None:
|
if opts.img2img_fix_steps or steps is not None:
|
||||||
steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
|
requested_steps = (steps or p.steps)
|
||||||
t_enc = p.steps - 1
|
steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
|
||||||
|
t_enc = requested_steps - 1
|
||||||
else:
|
else:
|
||||||
steps = p.steps
|
steps = p.steps
|
||||||
t_enc = int(min(p.denoising_strength, 0.999) * steps)
|
t_enc = int(min(p.denoising_strength, 0.999) * steps)
|
||||||
@ -82,14 +107,34 @@ def setup_img2img_steps(p, steps=None):
|
|||||||
return steps, t_enc
|
return steps, t_enc
|
||||||
|
|
||||||
|
|
||||||
def sample_to_image(samples):
|
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
|
||||||
x_sample = processing.decode_first_stage(shared.sd_model, samples[0:1])[0]
|
|
||||||
|
|
||||||
|
def single_sample_to_image(sample, approximation=None):
|
||||||
|
if approximation is None:
|
||||||
|
approximation = approximation_indexes.get(opts.show_progress_type, 0)
|
||||||
|
|
||||||
|
if approximation == 2:
|
||||||
|
x_sample = sd_vae_approx.cheap_approximation(sample)
|
||||||
|
elif approximation == 1:
|
||||||
|
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
|
||||||
|
else:
|
||||||
|
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
|
||||||
|
|
||||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||||
x_sample = x_sample.astype(np.uint8)
|
x_sample = x_sample.astype(np.uint8)
|
||||||
return Image.fromarray(x_sample)
|
return Image.fromarray(x_sample)
|
||||||
|
|
||||||
|
|
||||||
|
def sample_to_image(samples, index=0, approximation=None):
|
||||||
|
return single_sample_to_image(samples[index], approximation)
|
||||||
|
|
||||||
|
|
||||||
|
def samples_to_image_grid(samples, approximation=None):
|
||||||
|
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
|
||||||
|
|
||||||
|
|
||||||
def store_latent(decoded):
|
def store_latent(decoded):
|
||||||
state.current_latent = decoded
|
state.current_latent = decoded
|
||||||
|
|
||||||
@ -105,7 +150,8 @@ class InterruptedException(BaseException):
|
|||||||
class VanillaStableDiffusionSampler:
|
class VanillaStableDiffusionSampler:
|
||||||
def __init__(self, constructor, sd_model):
|
def __init__(self, constructor, sd_model):
|
||||||
self.sampler = constructor(sd_model)
|
self.sampler = constructor(sd_model)
|
||||||
self.orig_p_sample_ddim = self.sampler.p_sample_ddim if hasattr(self.sampler, 'p_sample_ddim') else self.sampler.p_sample_plms
|
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
|
||||||
|
self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
|
||||||
self.mask = None
|
self.mask = None
|
||||||
self.nmask = None
|
self.nmask = None
|
||||||
self.init_latent = None
|
self.init_latent = None
|
||||||
@ -117,6 +163,8 @@ class VanillaStableDiffusionSampler:
|
|||||||
self.config = None
|
self.config = None
|
||||||
self.last_latent = None
|
self.last_latent = None
|
||||||
|
|
||||||
|
self.conditioning_key = sd_model.model.conditioning_key
|
||||||
|
|
||||||
def number_of_needed_noises(self, p):
|
def number_of_needed_noises(self, p):
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
@ -136,6 +184,12 @@ class VanillaStableDiffusionSampler:
|
|||||||
if self.stop_at is not None and self.step > self.stop_at:
|
if self.stop_at is not None and self.step > self.stop_at:
|
||||||
raise InterruptedException
|
raise InterruptedException
|
||||||
|
|
||||||
|
# Have to unwrap the inpainting conditioning here to perform pre-processing
|
||||||
|
image_conditioning = None
|
||||||
|
if isinstance(cond, dict):
|
||||||
|
image_conditioning = cond["c_concat"][0]
|
||||||
|
cond = cond["c_crossattn"][0]
|
||||||
|
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
|
||||||
|
|
||||||
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
|
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
|
||||||
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
|
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
|
||||||
@ -157,6 +211,12 @@ class VanillaStableDiffusionSampler:
|
|||||||
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
|
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
|
||||||
x_dec = img_orig * self.mask + self.nmask * x_dec
|
x_dec = img_orig * self.mask + self.nmask * x_dec
|
||||||
|
|
||||||
|
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
|
||||||
|
# Note that they need to be lists because it just concatenates them later.
|
||||||
|
if image_conditioning is not None:
|
||||||
|
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
|
||||||
|
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
|
||||||
|
|
||||||
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
|
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
|
||||||
|
|
||||||
if self.mask is not None:
|
if self.mask is not None:
|
||||||
@ -182,39 +242,52 @@ class VanillaStableDiffusionSampler:
|
|||||||
self.mask = p.mask if hasattr(p, 'mask') else None
|
self.mask = p.mask if hasattr(p, 'mask') else None
|
||||||
self.nmask = p.nmask if hasattr(p, 'nmask') else None
|
self.nmask = p.nmask if hasattr(p, 'nmask') else None
|
||||||
|
|
||||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
|
def adjust_steps_if_invalid(self, p, num_steps):
|
||||||
steps, t_enc = setup_img2img_steps(p, steps)
|
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
|
||||||
|
valid_step = 999 / (1000 // num_steps)
|
||||||
|
if valid_step == floor(valid_step):
|
||||||
|
return int(valid_step) + 1
|
||||||
|
|
||||||
|
return num_steps
|
||||||
|
|
||||||
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
||||||
|
steps, t_enc = setup_img2img_steps(p, steps)
|
||||||
|
steps = self.adjust_steps_if_invalid(p, steps)
|
||||||
self.initialize(p)
|
self.initialize(p)
|
||||||
|
|
||||||
# existing code fails with certain step counts, like 9
|
self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
|
||||||
try:
|
|
||||||
self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
|
|
||||||
except Exception:
|
|
||||||
self.sampler.make_schedule(ddim_num_steps=steps+1, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
|
|
||||||
|
|
||||||
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
|
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
|
||||||
|
|
||||||
self.init_latent = x
|
self.init_latent = x
|
||||||
|
self.last_latent = x
|
||||||
self.step = 0
|
self.step = 0
|
||||||
|
|
||||||
samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
|
# Wrap the conditioning models with additional image conditioning for inpainting model
|
||||||
|
if image_conditioning is not None:
|
||||||
|
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
|
||||||
|
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
|
||||||
|
|
||||||
|
|
||||||
|
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
|
||||||
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
|
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
||||||
self.initialize(p)
|
self.initialize(p)
|
||||||
|
|
||||||
self.init_latent = None
|
self.init_latent = None
|
||||||
|
self.last_latent = x
|
||||||
self.step = 0
|
self.step = 0
|
||||||
|
|
||||||
steps = steps or p.steps
|
steps = self.adjust_steps_if_invalid(p, steps or p.steps)
|
||||||
|
|
||||||
# existing code fails with certain step counts, like 9
|
# Wrap the conditioning models with additional image conditioning for inpainting model
|
||||||
try:
|
# dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
|
||||||
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
|
if image_conditioning is not None:
|
||||||
except Exception:
|
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
|
||||||
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
|
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
|
||||||
|
|
||||||
|
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
|
||||||
|
|
||||||
return samples_ddim
|
return samples_ddim
|
||||||
|
|
||||||
@ -228,7 +301,17 @@ class CFGDenoiser(torch.nn.Module):
|
|||||||
self.init_latent = None
|
self.init_latent = None
|
||||||
self.step = 0
|
self.step = 0
|
||||||
|
|
||||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
|
||||||
|
denoised_uncond = x_out[-uncond.shape[0]:]
|
||||||
|
denoised = torch.clone(denoised_uncond)
|
||||||
|
|
||||||
|
for i, conds in enumerate(conds_list):
|
||||||
|
for cond_index, weight in conds:
|
||||||
|
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
|
||||||
|
|
||||||
|
return denoised
|
||||||
|
|
||||||
|
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
|
||||||
if state.interrupted or state.skipped:
|
if state.interrupted or state.skipped:
|
||||||
raise InterruptedException
|
raise InterruptedException
|
||||||
|
|
||||||
@ -239,35 +322,37 @@ class CFGDenoiser(torch.nn.Module):
|
|||||||
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
||||||
|
|
||||||
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
|
||||||
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
|
||||||
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
|
||||||
|
|
||||||
|
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
|
||||||
|
cfg_denoiser_callback(denoiser_params)
|
||||||
|
x_in = denoiser_params.x
|
||||||
|
image_cond_in = denoiser_params.image_cond
|
||||||
|
sigma_in = denoiser_params.sigma
|
||||||
|
|
||||||
if tensor.shape[1] == uncond.shape[1]:
|
if tensor.shape[1] == uncond.shape[1]:
|
||||||
cond_in = torch.cat([tensor, uncond])
|
cond_in = torch.cat([tensor, uncond])
|
||||||
|
|
||||||
if shared.batch_cond_uncond:
|
if shared.batch_cond_uncond:
|
||||||
x_out = self.inner_model(x_in, sigma_in, cond=cond_in)
|
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
|
||||||
else:
|
else:
|
||||||
x_out = torch.zeros_like(x_in)
|
x_out = torch.zeros_like(x_in)
|
||||||
for batch_offset in range(0, x_out.shape[0], batch_size):
|
for batch_offset in range(0, x_out.shape[0], batch_size):
|
||||||
a = batch_offset
|
a = batch_offset
|
||||||
b = a + batch_size
|
b = a + batch_size
|
||||||
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=cond_in[a:b])
|
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
|
||||||
else:
|
else:
|
||||||
x_out = torch.zeros_like(x_in)
|
x_out = torch.zeros_like(x_in)
|
||||||
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
|
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
|
||||||
for batch_offset in range(0, tensor.shape[0], batch_size):
|
for batch_offset in range(0, tensor.shape[0], batch_size):
|
||||||
a = batch_offset
|
a = batch_offset
|
||||||
b = min(a + batch_size, tensor.shape[0])
|
b = min(a + batch_size, tensor.shape[0])
|
||||||
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=tensor[a:b])
|
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
|
||||||
|
|
||||||
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=uncond)
|
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
|
||||||
|
|
||||||
denoised_uncond = x_out[-uncond.shape[0]:]
|
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
|
||||||
denoised = torch.clone(denoised_uncond)
|
|
||||||
|
|
||||||
for i, conds in enumerate(conds_list):
|
|
||||||
for cond_index, weight in conds:
|
|
||||||
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
|
|
||||||
|
|
||||||
if self.mask is not None:
|
if self.mask is not None:
|
||||||
denoised = self.init_latent * self.mask + self.nmask * denoised
|
denoised = self.init_latent * self.mask + self.nmask * denoised
|
||||||
@ -278,34 +363,63 @@ class CFGDenoiser(torch.nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class TorchHijack:
|
class TorchHijack:
|
||||||
def __init__(self, kdiff_sampler):
|
def __init__(self, sampler_noises):
|
||||||
self.kdiff_sampler = kdiff_sampler
|
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
|
||||||
|
# implementation.
|
||||||
|
self.sampler_noises = deque(sampler_noises)
|
||||||
|
|
||||||
def __getattr__(self, item):
|
def __getattr__(self, item):
|
||||||
if item == 'randn_like':
|
if item == 'randn_like':
|
||||||
return self.kdiff_sampler.randn_like
|
return self.randn_like
|
||||||
|
|
||||||
if hasattr(torch, item):
|
if hasattr(torch, item):
|
||||||
return getattr(torch, item)
|
return getattr(torch, item)
|
||||||
|
|
||||||
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
|
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
|
||||||
|
|
||||||
|
def randn_like(self, x):
|
||||||
|
if self.sampler_noises:
|
||||||
|
noise = self.sampler_noises.popleft()
|
||||||
|
if noise.shape == x.shape:
|
||||||
|
return noise
|
||||||
|
|
||||||
|
if x.device.type == 'mps':
|
||||||
|
return torch.randn_like(x, device=devices.cpu).to(x.device)
|
||||||
|
else:
|
||||||
|
return torch.randn_like(x)
|
||||||
|
|
||||||
|
|
||||||
|
# MPS fix for randn in torchsde
|
||||||
|
def torchsde_randn(size, dtype, device, seed):
|
||||||
|
if device.type == 'mps':
|
||||||
|
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
|
||||||
|
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
|
||||||
|
else:
|
||||||
|
generator = torch.Generator(device).manual_seed(int(seed))
|
||||||
|
return torch.randn(size, dtype=dtype, device=device, generator=generator)
|
||||||
|
|
||||||
|
|
||||||
|
torchsde._brownian.brownian_interval._randn = torchsde_randn
|
||||||
|
|
||||||
|
|
||||||
class KDiffusionSampler:
|
class KDiffusionSampler:
|
||||||
def __init__(self, funcname, sd_model):
|
def __init__(self, funcname, sd_model):
|
||||||
self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization)
|
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
|
||||||
|
|
||||||
|
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
|
||||||
self.funcname = funcname
|
self.funcname = funcname
|
||||||
self.func = getattr(k_diffusion.sampling, self.funcname)
|
self.func = getattr(k_diffusion.sampling, self.funcname)
|
||||||
self.extra_params = sampler_extra_params.get(funcname, [])
|
self.extra_params = sampler_extra_params.get(funcname, [])
|
||||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||||
self.sampler_noises = None
|
self.sampler_noises = None
|
||||||
self.sampler_noise_index = 0
|
|
||||||
self.stop_at = None
|
self.stop_at = None
|
||||||
self.eta = None
|
self.eta = None
|
||||||
self.default_eta = 1.0
|
self.default_eta = 1.0
|
||||||
self.config = None
|
self.config = None
|
||||||
self.last_latent = None
|
self.last_latent = None
|
||||||
|
|
||||||
|
self.conditioning_key = sd_model.model.conditioning_key
|
||||||
|
|
||||||
def callback_state(self, d):
|
def callback_state(self, d):
|
||||||
step = d['i']
|
step = d['i']
|
||||||
latent = d["denoised"]
|
latent = d["denoised"]
|
||||||
@ -330,26 +444,13 @@ class KDiffusionSampler:
|
|||||||
def number_of_needed_noises(self, p):
|
def number_of_needed_noises(self, p):
|
||||||
return p.steps
|
return p.steps
|
||||||
|
|
||||||
def randn_like(self, x):
|
|
||||||
noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
|
|
||||||
|
|
||||||
if noise is not None and x.shape == noise.shape:
|
|
||||||
res = noise
|
|
||||||
else:
|
|
||||||
res = torch.randn_like(x)
|
|
||||||
|
|
||||||
self.sampler_noise_index += 1
|
|
||||||
return res
|
|
||||||
|
|
||||||
def initialize(self, p):
|
def initialize(self, p):
|
||||||
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
||||||
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
||||||
self.model_wrap.step = 0
|
self.model_wrap.step = 0
|
||||||
self.sampler_noise_index = 0
|
|
||||||
self.eta = p.eta or opts.eta_ancestral
|
self.eta = p.eta or opts.eta_ancestral
|
||||||
|
|
||||||
if self.sampler_noises is not None:
|
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
|
||||||
k_diffusion.sampling.torch = TorchHijack(self)
|
|
||||||
|
|
||||||
extra_params_kwargs = {}
|
extra_params_kwargs = {}
|
||||||
for param_name in self.extra_params:
|
for param_name in self.extra_params:
|
||||||
@ -361,16 +462,33 @@ class KDiffusionSampler:
|
|||||||
|
|
||||||
return extra_params_kwargs
|
return extra_params_kwargs
|
||||||
|
|
||||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
|
def get_sigmas(self, p, steps):
|
||||||
steps, t_enc = setup_img2img_steps(p, steps)
|
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
|
||||||
|
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
|
||||||
|
discard_next_to_last_sigma = True
|
||||||
|
p.extra_generation_params["Discard penultimate sigma"] = True
|
||||||
|
|
||||||
|
steps += 1 if discard_next_to_last_sigma else 0
|
||||||
|
|
||||||
if p.sampler_noise_scheduler_override:
|
if p.sampler_noise_scheduler_override:
|
||||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||||
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
||||||
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
|
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
|
||||||
|
|
||||||
|
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
|
||||||
else:
|
else:
|
||||||
sigmas = self.model_wrap.get_sigmas(steps)
|
sigmas = self.model_wrap.get_sigmas(steps)
|
||||||
|
|
||||||
|
if discard_next_to_last_sigma:
|
||||||
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
||||||
|
|
||||||
|
return sigmas
|
||||||
|
|
||||||
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
||||||
|
steps, t_enc = setup_img2img_steps(p, steps)
|
||||||
|
|
||||||
|
sigmas = self.get_sigmas(p, steps)
|
||||||
|
|
||||||
sigma_sched = sigmas[steps - t_enc - 1:]
|
sigma_sched = sigmas[steps - t_enc - 1:]
|
||||||
xi = x + noise * sigma_sched[0]
|
xi = x + noise * sigma_sched[0]
|
||||||
|
|
||||||
@ -388,20 +506,21 @@ class KDiffusionSampler:
|
|||||||
extra_params_kwargs['sigmas'] = sigma_sched
|
extra_params_kwargs['sigmas'] = sigma_sched
|
||||||
|
|
||||||
self.model_wrap_cfg.init_latent = x
|
self.model_wrap_cfg.init_latent = x
|
||||||
|
self.last_latent = x
|
||||||
|
|
||||||
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
|
||||||
|
'cond': conditioning,
|
||||||
|
'image_cond': image_conditioning,
|
||||||
|
'uncond': unconditional_conditioning,
|
||||||
|
'cond_scale': p.cfg_scale
|
||||||
|
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||||
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
|
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
|
||||||
steps = steps or p.steps
|
steps = steps or p.steps
|
||||||
|
|
||||||
if p.sampler_noise_scheduler_override:
|
sigmas = self.get_sigmas(p, steps)
|
||||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
|
||||||
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
|
||||||
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
|
|
||||||
else:
|
|
||||||
sigmas = self.model_wrap.get_sigmas(steps)
|
|
||||||
|
|
||||||
x = x * sigmas[0]
|
x = x * sigmas[0]
|
||||||
|
|
||||||
@ -414,7 +533,13 @@ class KDiffusionSampler:
|
|||||||
else:
|
else:
|
||||||
extra_params_kwargs['sigmas'] = sigmas
|
extra_params_kwargs['sigmas'] = sigmas
|
||||||
|
|
||||||
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
self.last_latent = x
|
||||||
|
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
|
||||||
|
'cond': conditioning,
|
||||||
|
'image_cond': image_conditioning,
|
||||||
|
'uncond': unconditional_conditioning,
|
||||||
|
'cond_scale': p.cfg_scale
|
||||||
|
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||||
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
|
243
modules/sd_vae.py
Normal file
243
modules/sd_vae.py
Normal file
@ -0,0 +1,243 @@
|
|||||||
|
import torch
|
||||||
|
import safetensors.torch
|
||||||
|
import os
|
||||||
|
import collections
|
||||||
|
from collections import namedtuple
|
||||||
|
from modules import shared, devices, script_callbacks, sd_models
|
||||||
|
from modules.paths import models_path
|
||||||
|
import glob
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
|
|
||||||
|
model_dir = "Stable-diffusion"
|
||||||
|
model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
||||||
|
vae_dir = "VAE"
|
||||||
|
vae_path = os.path.abspath(os.path.join(models_path, vae_dir))
|
||||||
|
|
||||||
|
|
||||||
|
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
|
||||||
|
|
||||||
|
|
||||||
|
default_vae_dict = {"auto": "auto", "None": None, None: None}
|
||||||
|
default_vae_list = ["auto", "None"]
|
||||||
|
|
||||||
|
|
||||||
|
default_vae_values = [default_vae_dict[x] for x in default_vae_list]
|
||||||
|
vae_dict = dict(default_vae_dict)
|
||||||
|
vae_list = list(default_vae_list)
|
||||||
|
first_load = True
|
||||||
|
|
||||||
|
|
||||||
|
base_vae = None
|
||||||
|
loaded_vae_file = None
|
||||||
|
checkpoint_info = None
|
||||||
|
|
||||||
|
checkpoints_loaded = collections.OrderedDict()
|
||||||
|
|
||||||
|
def get_base_vae(model):
|
||||||
|
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
|
||||||
|
return base_vae
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def store_base_vae(model):
|
||||||
|
global base_vae, checkpoint_info
|
||||||
|
if checkpoint_info != model.sd_checkpoint_info:
|
||||||
|
assert not loaded_vae_file, "Trying to store non-base VAE!"
|
||||||
|
base_vae = deepcopy(model.first_stage_model.state_dict())
|
||||||
|
checkpoint_info = model.sd_checkpoint_info
|
||||||
|
|
||||||
|
|
||||||
|
def delete_base_vae():
|
||||||
|
global base_vae, checkpoint_info
|
||||||
|
base_vae = None
|
||||||
|
checkpoint_info = None
|
||||||
|
|
||||||
|
|
||||||
|
def restore_base_vae(model):
|
||||||
|
global loaded_vae_file
|
||||||
|
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
|
||||||
|
print("Restoring base VAE")
|
||||||
|
_load_vae_dict(model, base_vae)
|
||||||
|
loaded_vae_file = None
|
||||||
|
delete_base_vae()
|
||||||
|
|
||||||
|
|
||||||
|
def get_filename(filepath):
|
||||||
|
return os.path.splitext(os.path.basename(filepath))[0]
|
||||||
|
|
||||||
|
|
||||||
|
def refresh_vae_list(vae_path=vae_path, model_path=model_path):
|
||||||
|
global vae_dict, vae_list
|
||||||
|
res = {}
|
||||||
|
candidates = [
|
||||||
|
*glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True),
|
||||||
|
*glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True),
|
||||||
|
*glob.iglob(os.path.join(model_path, '**/*.vae.safetensors'), recursive=True),
|
||||||
|
*glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True),
|
||||||
|
*glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True),
|
||||||
|
*glob.iglob(os.path.join(vae_path, '**/*.safetensors'), recursive=True),
|
||||||
|
]
|
||||||
|
if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path):
|
||||||
|
candidates.append(shared.cmd_opts.vae_path)
|
||||||
|
for filepath in candidates:
|
||||||
|
name = get_filename(filepath)
|
||||||
|
res[name] = filepath
|
||||||
|
vae_list.clear()
|
||||||
|
vae_list.extend(default_vae_list)
|
||||||
|
vae_list.extend(list(res.keys()))
|
||||||
|
vae_dict.clear()
|
||||||
|
vae_dict.update(res)
|
||||||
|
vae_dict.update(default_vae_dict)
|
||||||
|
return vae_list
|
||||||
|
|
||||||
|
|
||||||
|
def get_vae_from_settings(vae_file="auto"):
|
||||||
|
# else, we load from settings, if not set to be default
|
||||||
|
if vae_file == "auto" and shared.opts.sd_vae is not None:
|
||||||
|
# if saved VAE settings isn't recognized, fallback to auto
|
||||||
|
vae_file = vae_dict.get(shared.opts.sd_vae, "auto")
|
||||||
|
# if VAE selected but not found, fallback to auto
|
||||||
|
if vae_file not in default_vae_values and not os.path.isfile(vae_file):
|
||||||
|
vae_file = "auto"
|
||||||
|
print(f"Selected VAE doesn't exist: {vae_file}")
|
||||||
|
return vae_file
|
||||||
|
|
||||||
|
|
||||||
|
def resolve_vae(checkpoint_file=None, vae_file="auto"):
|
||||||
|
global first_load, vae_dict, vae_list
|
||||||
|
|
||||||
|
# if vae_file argument is provided, it takes priority, but not saved
|
||||||
|
if vae_file and vae_file not in default_vae_list:
|
||||||
|
if not os.path.isfile(vae_file):
|
||||||
|
print(f"VAE provided as function argument doesn't exist: {vae_file}")
|
||||||
|
vae_file = "auto"
|
||||||
|
# for the first load, if vae-path is provided, it takes priority, saved, and failure is reported
|
||||||
|
if first_load and shared.cmd_opts.vae_path is not None:
|
||||||
|
if os.path.isfile(shared.cmd_opts.vae_path):
|
||||||
|
vae_file = shared.cmd_opts.vae_path
|
||||||
|
shared.opts.data['sd_vae'] = get_filename(vae_file)
|
||||||
|
else:
|
||||||
|
print(f"VAE provided as command line argument doesn't exist: {vae_file}")
|
||||||
|
# fallback to selector in settings, if vae selector not set to act as default fallback
|
||||||
|
if not shared.opts.sd_vae_as_default:
|
||||||
|
vae_file = get_vae_from_settings(vae_file)
|
||||||
|
# vae-path cmd arg takes priority for auto
|
||||||
|
if vae_file == "auto" and shared.cmd_opts.vae_path is not None:
|
||||||
|
if os.path.isfile(shared.cmd_opts.vae_path):
|
||||||
|
vae_file = shared.cmd_opts.vae_path
|
||||||
|
print(f"Using VAE provided as command line argument: {vae_file}")
|
||||||
|
# if still not found, try look for ".vae.pt" beside model
|
||||||
|
model_path = os.path.splitext(checkpoint_file)[0]
|
||||||
|
if vae_file == "auto":
|
||||||
|
vae_file_try = model_path + ".vae.pt"
|
||||||
|
if os.path.isfile(vae_file_try):
|
||||||
|
vae_file = vae_file_try
|
||||||
|
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||||
|
# if still not found, try look for ".vae.ckpt" beside model
|
||||||
|
if vae_file == "auto":
|
||||||
|
vae_file_try = model_path + ".vae.ckpt"
|
||||||
|
if os.path.isfile(vae_file_try):
|
||||||
|
vae_file = vae_file_try
|
||||||
|
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||||
|
# if still not found, try look for ".vae.safetensors" beside model
|
||||||
|
if vae_file == "auto":
|
||||||
|
vae_file_try = model_path + ".vae.safetensors"
|
||||||
|
if os.path.isfile(vae_file_try):
|
||||||
|
vae_file = vae_file_try
|
||||||
|
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||||
|
# No more fallbacks for auto
|
||||||
|
if vae_file == "auto":
|
||||||
|
vae_file = None
|
||||||
|
# Last check, just because
|
||||||
|
if vae_file and not os.path.exists(vae_file):
|
||||||
|
vae_file = None
|
||||||
|
|
||||||
|
return vae_file
|
||||||
|
|
||||||
|
|
||||||
|
def load_vae(model, vae_file=None):
|
||||||
|
global first_load, vae_dict, vae_list, loaded_vae_file
|
||||||
|
# save_settings = False
|
||||||
|
|
||||||
|
cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0
|
||||||
|
|
||||||
|
if vae_file:
|
||||||
|
if cache_enabled and vae_file in checkpoints_loaded:
|
||||||
|
# use vae checkpoint cache
|
||||||
|
print(f"Loading VAE weights [{get_filename(vae_file)}] from cache")
|
||||||
|
store_base_vae(model)
|
||||||
|
_load_vae_dict(model, checkpoints_loaded[vae_file])
|
||||||
|
else:
|
||||||
|
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
|
||||||
|
print(f"Loading VAE weights from: {vae_file}")
|
||||||
|
store_base_vae(model)
|
||||||
|
|
||||||
|
vae_ckpt = sd_models.read_state_dict(vae_file, map_location=shared.weight_load_location)
|
||||||
|
vae_dict_1 = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||||
|
_load_vae_dict(model, vae_dict_1)
|
||||||
|
|
||||||
|
if cache_enabled:
|
||||||
|
# cache newly loaded vae
|
||||||
|
checkpoints_loaded[vae_file] = vae_dict_1.copy()
|
||||||
|
|
||||||
|
# clean up cache if limit is reached
|
||||||
|
if cache_enabled:
|
||||||
|
while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: # we need to count the current model
|
||||||
|
checkpoints_loaded.popitem(last=False) # LRU
|
||||||
|
|
||||||
|
# If vae used is not in dict, update it
|
||||||
|
# It will be removed on refresh though
|
||||||
|
vae_opt = get_filename(vae_file)
|
||||||
|
if vae_opt not in vae_dict:
|
||||||
|
vae_dict[vae_opt] = vae_file
|
||||||
|
vae_list.append(vae_opt)
|
||||||
|
elif loaded_vae_file:
|
||||||
|
restore_base_vae(model)
|
||||||
|
|
||||||
|
loaded_vae_file = vae_file
|
||||||
|
|
||||||
|
first_load = False
|
||||||
|
|
||||||
|
|
||||||
|
# don't call this from outside
|
||||||
|
def _load_vae_dict(model, vae_dict_1):
|
||||||
|
model.first_stage_model.load_state_dict(vae_dict_1)
|
||||||
|
model.first_stage_model.to(devices.dtype_vae)
|
||||||
|
|
||||||
|
|
||||||
|
def clear_loaded_vae():
|
||||||
|
global loaded_vae_file
|
||||||
|
loaded_vae_file = None
|
||||||
|
|
||||||
|
|
||||||
|
def reload_vae_weights(sd_model=None, vae_file="auto"):
|
||||||
|
from modules import lowvram, devices, sd_hijack
|
||||||
|
|
||||||
|
if not sd_model:
|
||||||
|
sd_model = shared.sd_model
|
||||||
|
|
||||||
|
checkpoint_info = sd_model.sd_checkpoint_info
|
||||||
|
checkpoint_file = checkpoint_info.filename
|
||||||
|
vae_file = resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||||
|
|
||||||
|
if loaded_vae_file == vae_file:
|
||||||
|
return
|
||||||
|
|
||||||
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
|
lowvram.send_everything_to_cpu()
|
||||||
|
else:
|
||||||
|
sd_model.to(devices.cpu)
|
||||||
|
|
||||||
|
sd_hijack.model_hijack.undo_hijack(sd_model)
|
||||||
|
|
||||||
|
load_vae(sd_model, vae_file)
|
||||||
|
|
||||||
|
sd_hijack.model_hijack.hijack(sd_model)
|
||||||
|
script_callbacks.model_loaded_callback(sd_model)
|
||||||
|
|
||||||
|
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
||||||
|
sd_model.to(devices.device)
|
||||||
|
|
||||||
|
print("VAE Weights loaded.")
|
||||||
|
return sd_model
|
58
modules/sd_vae_approx.py
Normal file
58
modules/sd_vae_approx.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from modules import devices, paths
|
||||||
|
|
||||||
|
sd_vae_approx_model = None
|
||||||
|
|
||||||
|
|
||||||
|
class VAEApprox(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(VAEApprox, self).__init__()
|
||||||
|
self.conv1 = nn.Conv2d(4, 8, (7, 7))
|
||||||
|
self.conv2 = nn.Conv2d(8, 16, (5, 5))
|
||||||
|
self.conv3 = nn.Conv2d(16, 32, (3, 3))
|
||||||
|
self.conv4 = nn.Conv2d(32, 64, (3, 3))
|
||||||
|
self.conv5 = nn.Conv2d(64, 32, (3, 3))
|
||||||
|
self.conv6 = nn.Conv2d(32, 16, (3, 3))
|
||||||
|
self.conv7 = nn.Conv2d(16, 8, (3, 3))
|
||||||
|
self.conv8 = nn.Conv2d(8, 3, (3, 3))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
extra = 11
|
||||||
|
x = nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
|
||||||
|
x = nn.functional.pad(x, (extra, extra, extra, extra))
|
||||||
|
|
||||||
|
for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8, ]:
|
||||||
|
x = layer(x)
|
||||||
|
x = nn.functional.leaky_relu(x, 0.1)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def model():
|
||||||
|
global sd_vae_approx_model
|
||||||
|
|
||||||
|
if sd_vae_approx_model is None:
|
||||||
|
sd_vae_approx_model = VAEApprox()
|
||||||
|
sd_vae_approx_model.load_state_dict(torch.load(os.path.join(paths.models_path, "VAE-approx", "model.pt")))
|
||||||
|
sd_vae_approx_model.eval()
|
||||||
|
sd_vae_approx_model.to(devices.device, devices.dtype)
|
||||||
|
|
||||||
|
return sd_vae_approx_model
|
||||||
|
|
||||||
|
|
||||||
|
def cheap_approximation(sample):
|
||||||
|
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
|
||||||
|
|
||||||
|
coefs = torch.tensor([
|
||||||
|
[0.298, 0.207, 0.208],
|
||||||
|
[0.187, 0.286, 0.173],
|
||||||
|
[-0.158, 0.189, 0.264],
|
||||||
|
[-0.184, -0.271, -0.473],
|
||||||
|
]).to(sample.device)
|
||||||
|
|
||||||
|
x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)
|
||||||
|
|
||||||
|
return x_sample
|
@ -3,24 +3,27 @@ import datetime
|
|||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
import time
|
||||||
|
|
||||||
|
from PIL import Image
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
import tqdm
|
import tqdm
|
||||||
|
|
||||||
import modules.artists
|
import modules.artists
|
||||||
import modules.interrogate
|
import modules.interrogate
|
||||||
import modules.memmon
|
import modules.memmon
|
||||||
import modules.sd_models
|
|
||||||
import modules.styles
|
import modules.styles
|
||||||
import modules.devices as devices
|
import modules.devices as devices
|
||||||
from modules import sd_samplers, sd_models, localization
|
from modules import localization, sd_vae, extensions, script_loading, errors, ui_components
|
||||||
from modules.hypernetworks import hypernetwork
|
|
||||||
from modules.paths import models_path, script_path, sd_path
|
from modules.paths import models_path, script_path, sd_path
|
||||||
|
|
||||||
|
|
||||||
|
demo = None
|
||||||
|
|
||||||
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
||||||
default_sd_model_file = sd_model_file
|
default_sd_model_file = sd_model_file
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",)
|
parser.add_argument("--config", type=str, default=os.path.join(script_path, "configs/v1-inference.yaml"), help="path to config which constructs model",)
|
||||||
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
|
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
|
||||||
parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
|
parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
|
||||||
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
|
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
|
||||||
@ -30,6 +33,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
|
|||||||
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
|
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
|
||||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||||
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
|
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
|
||||||
|
parser.add_argument("--textual-inversion-templates-dir", type=str, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates")
|
||||||
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
|
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
|
||||||
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
|
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
|
||||||
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
|
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
|
||||||
@ -39,34 +43,39 @@ parser.add_argument("--lowram", action='store_true', help="load stable diffusion
|
|||||||
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
|
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
|
||||||
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
|
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
|
||||||
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
|
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
|
||||||
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
|
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
|
||||||
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
|
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
|
||||||
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
|
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
|
||||||
|
parser.add_argument("--enable-insecure-extension-access", action='store_true', help="enable extensions tab regardless of other options")
|
||||||
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
|
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
|
||||||
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
|
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
|
||||||
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
|
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
|
||||||
parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
|
parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
|
||||||
parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
|
parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
|
||||||
parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(models_path, 'ScuNET'))
|
parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
|
||||||
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(models_path, 'SwinIR'))
|
|
||||||
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(models_path, 'LDSR'))
|
|
||||||
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
|
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
|
||||||
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
|
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
|
||||||
parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
|
parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
|
||||||
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
|
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
|
||||||
|
parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
|
||||||
|
parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024)
|
||||||
|
parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None)
|
||||||
|
parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None)
|
||||||
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
|
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
|
||||||
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
|
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
|
||||||
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
||||||
parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
||||||
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
||||||
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
||||||
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
|
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
|
||||||
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json'))
|
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json'))
|
||||||
parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
|
parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
|
||||||
|
parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False)
|
||||||
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
|
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
|
||||||
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
|
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
|
||||||
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
|
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
|
||||||
parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing', choices=["color-sketch", "editor"], default="editor")
|
parser.add_argument("--gradio-img2img-tool", type=str, help='does not do anything')
|
||||||
|
parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything")
|
||||||
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
|
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
|
||||||
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
|
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
|
||||||
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
|
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
|
||||||
@ -76,12 +85,27 @@ parser.add_argument("--disable-console-progressbars", action='store_true', help=
|
|||||||
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
|
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
|
||||||
parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
|
parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
|
||||||
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
|
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
|
||||||
parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui")
|
parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
|
||||||
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui")
|
parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
|
||||||
|
parser.add_argument("--api-log", action='store_true', help="use api-log=True to enable logging of all API requests")
|
||||||
|
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
|
||||||
|
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
|
||||||
|
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
|
||||||
|
parser.add_argument("--administrator", action='store_true', help="Administrator rights", default=False)
|
||||||
|
parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origin(s) in the form of a comma-separated list (no spaces)", default=None)
|
||||||
|
parser.add_argument("--cors-allow-origins-regex", type=str, help="Allowed CORS origin(s) in the form of a single regular expression", default=None)
|
||||||
|
parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requires --tls-certfile to fully function", default=None)
|
||||||
|
parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
|
||||||
|
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
|
||||||
|
|
||||||
|
script_loading.preload_extensions(extensions.extensions_dir, parser)
|
||||||
|
script_loading.preload_extensions(extensions.extensions_builtin_dir, parser)
|
||||||
|
|
||||||
cmd_opts = parser.parse_args()
|
cmd_opts = parser.parse_args()
|
||||||
restricted_opts = [
|
|
||||||
|
restricted_opts = {
|
||||||
"samples_filename_pattern",
|
"samples_filename_pattern",
|
||||||
|
"directories_filename_pattern",
|
||||||
"outdir_samples",
|
"outdir_samples",
|
||||||
"outdir_txt2img_samples",
|
"outdir_txt2img_samples",
|
||||||
"outdir_img2img_samples",
|
"outdir_img2img_samples",
|
||||||
@ -89,10 +113,23 @@ restricted_opts = [
|
|||||||
"outdir_grids",
|
"outdir_grids",
|
||||||
"outdir_txt2img_grids",
|
"outdir_txt2img_grids",
|
||||||
"outdir_save",
|
"outdir_save",
|
||||||
|
}
|
||||||
|
|
||||||
|
ui_reorder_categories = [
|
||||||
|
"sampler",
|
||||||
|
"dimensions",
|
||||||
|
"cfg",
|
||||||
|
"seed",
|
||||||
|
"checkboxes",
|
||||||
|
"hires_fix",
|
||||||
|
"batch",
|
||||||
|
"scripts",
|
||||||
]
|
]
|
||||||
|
|
||||||
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_bsrgan, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
|
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
|
||||||
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'])
|
|
||||||
|
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
|
||||||
|
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
|
||||||
|
|
||||||
device = devices.device
|
device = devices.device
|
||||||
weight_load_location = None if cmd_opts.lowram else "cpu"
|
weight_load_location = None if cmd_opts.lowram else "cpu"
|
||||||
@ -103,10 +140,12 @@ xformers_available = False
|
|||||||
config_filename = cmd_opts.ui_settings_file
|
config_filename = cmd_opts.ui_settings_file
|
||||||
|
|
||||||
os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
|
os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
|
||||||
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
hypernetworks = {}
|
||||||
loaded_hypernetwork = None
|
loaded_hypernetwork = None
|
||||||
|
|
||||||
|
|
||||||
def reload_hypernetworks():
|
def reload_hypernetworks():
|
||||||
|
from modules.hypernetworks import hypernetwork
|
||||||
global hypernetworks
|
global hypernetworks
|
||||||
|
|
||||||
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||||
@ -119,6 +158,7 @@ class State:
|
|||||||
job = ""
|
job = ""
|
||||||
job_no = 0
|
job_no = 0
|
||||||
job_count = 0
|
job_count = 0
|
||||||
|
processing_has_refined_job_count = False
|
||||||
job_timestamp = '0'
|
job_timestamp = '0'
|
||||||
sampling_step = 0
|
sampling_step = 0
|
||||||
sampling_steps = 0
|
sampling_steps = 0
|
||||||
@ -126,6 +166,8 @@ class State:
|
|||||||
current_image = None
|
current_image = None
|
||||||
current_image_sampling_step = 0
|
current_image_sampling_step = 0
|
||||||
textinfo = None
|
textinfo = None
|
||||||
|
time_start = None
|
||||||
|
need_restart = False
|
||||||
|
|
||||||
def skip(self):
|
def skip(self):
|
||||||
self.skipped = True
|
self.skipped = True
|
||||||
@ -134,12 +176,68 @@ class State:
|
|||||||
self.interrupted = True
|
self.interrupted = True
|
||||||
|
|
||||||
def nextjob(self):
|
def nextjob(self):
|
||||||
|
if opts.show_progress_every_n_steps == -1:
|
||||||
|
self.do_set_current_image()
|
||||||
|
|
||||||
self.job_no += 1
|
self.job_no += 1
|
||||||
self.sampling_step = 0
|
self.sampling_step = 0
|
||||||
self.current_image_sampling_step = 0
|
self.current_image_sampling_step = 0
|
||||||
|
|
||||||
def get_job_timestamp(self):
|
def dict(self):
|
||||||
return datetime.datetime.now().strftime("%Y%m%d%H%M%S") # shouldn't this return job_timestamp?
|
obj = {
|
||||||
|
"skipped": self.skipped,
|
||||||
|
"interrupted": self.interrupted,
|
||||||
|
"job": self.job,
|
||||||
|
"job_count": self.job_count,
|
||||||
|
"job_timestamp": self.job_timestamp,
|
||||||
|
"job_no": self.job_no,
|
||||||
|
"sampling_step": self.sampling_step,
|
||||||
|
"sampling_steps": self.sampling_steps,
|
||||||
|
}
|
||||||
|
|
||||||
|
return obj
|
||||||
|
|
||||||
|
def begin(self):
|
||||||
|
self.sampling_step = 0
|
||||||
|
self.job_count = -1
|
||||||
|
self.processing_has_refined_job_count = False
|
||||||
|
self.job_no = 0
|
||||||
|
self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
||||||
|
self.current_latent = None
|
||||||
|
self.current_image = None
|
||||||
|
self.current_image_sampling_step = 0
|
||||||
|
self.skipped = False
|
||||||
|
self.interrupted = False
|
||||||
|
self.textinfo = None
|
||||||
|
self.time_start = time.time()
|
||||||
|
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
|
def end(self):
|
||||||
|
self.job = ""
|
||||||
|
self.job_count = 0
|
||||||
|
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
|
"""sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
|
||||||
|
def set_current_image(self):
|
||||||
|
if not parallel_processing_allowed:
|
||||||
|
return
|
||||||
|
|
||||||
|
if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.show_progress_every_n_steps > 0:
|
||||||
|
self.do_set_current_image()
|
||||||
|
|
||||||
|
def do_set_current_image(self):
|
||||||
|
if self.current_latent is None:
|
||||||
|
return
|
||||||
|
|
||||||
|
import modules.sd_samplers
|
||||||
|
if opts.show_progress_grid:
|
||||||
|
self.current_image = modules.sd_samplers.samples_to_image_grid(self.current_latent)
|
||||||
|
else:
|
||||||
|
self.current_image = modules.sd_samplers.sample_to_image(self.current_latent)
|
||||||
|
|
||||||
|
self.current_image_sampling_step = self.sampling_step
|
||||||
|
|
||||||
|
|
||||||
state = State()
|
state = State()
|
||||||
@ -153,8 +251,6 @@ interrogator = modules.interrogate.InterrogateModels("interrogate")
|
|||||||
|
|
||||||
face_restorers = []
|
face_restorers = []
|
||||||
|
|
||||||
localization.list_localizations(cmd_opts.localizations_dir)
|
|
||||||
|
|
||||||
|
|
||||||
def realesrgan_models_names():
|
def realesrgan_models_names():
|
||||||
import modules.realesrgan_model
|
import modules.realesrgan_model
|
||||||
@ -162,13 +258,13 @@ def realesrgan_models_names():
|
|||||||
|
|
||||||
|
|
||||||
class OptionInfo:
|
class OptionInfo:
|
||||||
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, show_on_main_page=False, refresh=None):
|
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None):
|
||||||
self.default = default
|
self.default = default
|
||||||
self.label = label
|
self.label = label
|
||||||
self.component = component
|
self.component = component
|
||||||
self.component_args = component_args
|
self.component_args = component_args
|
||||||
self.onchange = onchange
|
self.onchange = onchange
|
||||||
self.section = None
|
self.section = section
|
||||||
self.refresh = refresh
|
self.refresh = refresh
|
||||||
|
|
||||||
|
|
||||||
@ -179,6 +275,21 @@ def options_section(section_identifier, options_dict):
|
|||||||
return options_dict
|
return options_dict
|
||||||
|
|
||||||
|
|
||||||
|
def list_checkpoint_tiles():
|
||||||
|
import modules.sd_models
|
||||||
|
return modules.sd_models.checkpoint_tiles()
|
||||||
|
|
||||||
|
|
||||||
|
def refresh_checkpoints():
|
||||||
|
import modules.sd_models
|
||||||
|
return modules.sd_models.list_models()
|
||||||
|
|
||||||
|
|
||||||
|
def list_samplers():
|
||||||
|
import modules.sd_samplers
|
||||||
|
return modules.sd_samplers.all_samplers
|
||||||
|
|
||||||
|
|
||||||
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
|
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
|
||||||
|
|
||||||
options_templates = {}
|
options_templates = {}
|
||||||
@ -186,7 +297,8 @@ options_templates = {}
|
|||||||
options_templates.update(options_section(('saving-images', "Saving images/grids"), {
|
options_templates.update(options_section(('saving-images', "Saving images/grids"), {
|
||||||
"samples_save": OptionInfo(True, "Always save all generated images"),
|
"samples_save": OptionInfo(True, "Always save all generated images"),
|
||||||
"samples_format": OptionInfo('png', 'File format for images'),
|
"samples_format": OptionInfo('png', 'File format for images'),
|
||||||
"samples_filename_pattern": OptionInfo("", "Images filename pattern"),
|
"samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs),
|
||||||
|
"save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
|
||||||
|
|
||||||
"grid_save": OptionInfo(True, "Always save all generated image grids"),
|
"grid_save": OptionInfo(True, "Always save all generated image grids"),
|
||||||
"grid_format": OptionInfo('png', 'File format for grids'),
|
"grid_format": OptionInfo('png', 'File format for grids'),
|
||||||
@ -198,12 +310,19 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
|
|||||||
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
|
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
|
||||||
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
|
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
|
||||||
"save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
|
"save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
|
||||||
|
"save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
|
||||||
|
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
|
||||||
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
|
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
|
||||||
"export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
|
"export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
|
||||||
|
|
||||||
"use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
|
"use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
|
||||||
|
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
|
||||||
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
|
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
|
||||||
"do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
|
"do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
|
||||||
|
|
||||||
|
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
|
||||||
|
"clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
|
||||||
|
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('saving-paths', "Paths for saving"), {
|
options_templates.update(options_section(('saving-paths', "Paths for saving"), {
|
||||||
@ -221,19 +340,15 @@ options_templates.update(options_section(('saving-to-dirs', "Saving to a directo
|
|||||||
"save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
|
"save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
|
||||||
"grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"),
|
"grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"),
|
||||||
"use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
|
"use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
|
||||||
"directories_filename_pattern": OptionInfo("", "Directory name pattern"),
|
"directories_filename_pattern": OptionInfo("", "Directory name pattern", component_args=hide_dirs),
|
||||||
"directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1}),
|
"directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('upscaling', "Upscaling"), {
|
options_templates.update(options_section(('upscaling', "Upscaling"), {
|
||||||
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
|
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
|
||||||
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
||||||
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN x4+", "R-ESRGAN x4+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
|
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
|
||||||
"SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}),
|
|
||||||
"SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
|
||||||
"ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}),
|
|
||||||
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
|
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
|
||||||
"use_scale_latent_for_hires_fix": OptionInfo(False, "Upscale latent space image when doing hires. fix"),
|
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('face-restoration', "Face restoration"), {
|
options_templates.update(options_section(('face-restoration', "Face restoration"), {
|
||||||
@ -249,35 +364,47 @@ options_templates.update(options_section(('system', "System"), {
|
|||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('training', "Training"), {
|
options_templates.update(options_section(('training', "Training"), {
|
||||||
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"),
|
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
|
||||||
|
"pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
|
||||||
|
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
|
||||||
|
"save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."),
|
||||||
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
|
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
|
||||||
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
||||||
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
|
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
|
||||||
"training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
|
"training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
|
||||||
|
"training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"),
|
||||||
"training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
|
"training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
|
||||||
"training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
|
"training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
|
||||||
"training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
|
"training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
|
||||||
|
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
|
||||||
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||||
|
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||||
|
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list),
|
||||||
|
"sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
|
||||||
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
||||||
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
||||||
|
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||||
|
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01 }),
|
||||||
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
||||||
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
|
|
||||||
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
|
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
|
||||||
|
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}),
|
||||||
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
|
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
|
||||||
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
||||||
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
|
||||||
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
|
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
|
||||||
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
|
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
|
||||||
"filter_nsfw": OptionInfo(False, "Filter NSFW content"),
|
'CLIP_stop_at_last_layers': OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
|
||||||
'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
|
|
||||||
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
|
options_templates.update(options_section(('compatibility', "Compatibility"), {
|
||||||
|
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
||||||
|
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
|
||||||
|
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
|
||||||
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
||||||
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
|
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
|
||||||
"interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
|
"interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
|
||||||
@ -290,26 +417,34 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
|
|||||||
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
|
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
|
||||||
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
|
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
|
||||||
"deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
|
"deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
|
||||||
|
"deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('ui', "User interface"), {
|
options_templates.update(options_section(('ui', "User interface"), {
|
||||||
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
||||||
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
|
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set to 0 to disable. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
|
||||||
|
"show_progress_type": OptionInfo("Full", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
|
||||||
|
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
|
||||||
"return_grid": OptionInfo(True, "Show grid in results for web"),
|
"return_grid": OptionInfo(True, "Show grid in results for web"),
|
||||||
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
|
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
|
||||||
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
|
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
|
||||||
"add_model_name_to_info": OptionInfo(False, "Add model name to generation information"),
|
"add_model_name_to_info": OptionInfo(False, "Add model name to generation information"),
|
||||||
"disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
|
"disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
|
||||||
|
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
|
||||||
|
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
|
||||||
"font": OptionInfo("", "Font for image grids that have text"),
|
"font": OptionInfo("", "Font for image grids that have text"),
|
||||||
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
|
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
|
||||||
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
|
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
|
||||||
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
|
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
|
||||||
|
"samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"),
|
||||||
|
"dimensions_and_batch_together": OptionInfo(True, "Show Witdth/Height and Batch sliders in same row"),
|
||||||
'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"),
|
'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"),
|
||||||
|
'ui_reorder': OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
|
||||||
'localization': OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
|
'localization': OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
|
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
|
||||||
"hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in sd_samplers.all_samplers]}),
|
"hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}),
|
||||||
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||||
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||||
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
|
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
|
||||||
@ -317,8 +452,15 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
|
|||||||
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||||
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||||
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
|
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
|
||||||
|
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
|
options_templates.update(options_section((None, "Hidden options"), {
|
||||||
|
"disabled_extensions": OptionInfo([], "Disable those extensions"),
|
||||||
|
}))
|
||||||
|
|
||||||
|
options_templates.update()
|
||||||
|
|
||||||
|
|
||||||
class Options:
|
class Options:
|
||||||
data = None
|
data = None
|
||||||
@ -330,8 +472,19 @@ class Options:
|
|||||||
|
|
||||||
def __setattr__(self, key, value):
|
def __setattr__(self, key, value):
|
||||||
if self.data is not None:
|
if self.data is not None:
|
||||||
if key in self.data:
|
if key in self.data or key in self.data_labels:
|
||||||
|
assert not cmd_opts.freeze_settings, "changing settings is disabled"
|
||||||
|
|
||||||
|
info = opts.data_labels.get(key, None)
|
||||||
|
comp_args = info.component_args if info else None
|
||||||
|
if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
|
||||||
|
raise RuntimeError(f"not possible to set {key} because it is restricted")
|
||||||
|
|
||||||
|
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
|
||||||
|
raise RuntimeError(f"not possible to set {key} because it is restricted")
|
||||||
|
|
||||||
self.data[key] = value
|
self.data[key] = value
|
||||||
|
return
|
||||||
|
|
||||||
return super(Options, self).__setattr__(key, value)
|
return super(Options, self).__setattr__(key, value)
|
||||||
|
|
||||||
@ -345,9 +498,33 @@ class Options:
|
|||||||
|
|
||||||
return super(Options, self).__getattribute__(item)
|
return super(Options, self).__getattribute__(item)
|
||||||
|
|
||||||
|
def set(self, key, value):
|
||||||
|
"""sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
|
||||||
|
|
||||||
|
oldval = self.data.get(key, None)
|
||||||
|
if oldval == value:
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
setattr(self, key, value)
|
||||||
|
except RuntimeError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
if self.data_labels[key].onchange is not None:
|
||||||
|
try:
|
||||||
|
self.data_labels[key].onchange()
|
||||||
|
except Exception as e:
|
||||||
|
errors.display(e, f"changing setting {key} to {value}")
|
||||||
|
setattr(self, key, oldval)
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
def save(self, filename):
|
def save(self, filename):
|
||||||
|
assert not cmd_opts.freeze_settings, "saving settings is disabled"
|
||||||
|
|
||||||
with open(filename, "w", encoding="utf8") as file:
|
with open(filename, "w", encoding="utf8") as file:
|
||||||
json.dump(self.data, file)
|
json.dump(self.data, file, indent=4)
|
||||||
|
|
||||||
def same_type(self, x, y):
|
def same_type(self, x, y):
|
||||||
if x is None or y is None:
|
if x is None or y is None:
|
||||||
@ -372,25 +549,52 @@ class Options:
|
|||||||
if bad_settings > 0:
|
if bad_settings > 0:
|
||||||
print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
|
print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
|
||||||
|
|
||||||
def onchange(self, key, func):
|
def onchange(self, key, func, call=True):
|
||||||
item = self.data_labels.get(key)
|
item = self.data_labels.get(key)
|
||||||
item.onchange = func
|
item.onchange = func
|
||||||
|
|
||||||
func()
|
if call:
|
||||||
|
func()
|
||||||
|
|
||||||
def dumpjson(self):
|
def dumpjson(self):
|
||||||
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
|
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
|
||||||
return json.dumps(d)
|
return json.dumps(d)
|
||||||
|
|
||||||
|
def add_option(self, key, info):
|
||||||
|
self.data_labels[key] = info
|
||||||
|
|
||||||
|
def reorder(self):
|
||||||
|
"""reorder settings so that all items related to section always go together"""
|
||||||
|
|
||||||
|
section_ids = {}
|
||||||
|
settings_items = self.data_labels.items()
|
||||||
|
for k, item in settings_items:
|
||||||
|
if item.section not in section_ids:
|
||||||
|
section_ids[item.section] = len(section_ids)
|
||||||
|
|
||||||
|
self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])}
|
||||||
|
|
||||||
|
|
||||||
opts = Options()
|
opts = Options()
|
||||||
if os.path.exists(config_filename):
|
if os.path.exists(config_filename):
|
||||||
opts.load(config_filename)
|
opts.load(config_filename)
|
||||||
|
|
||||||
|
latent_upscale_default_mode = "Latent"
|
||||||
|
latent_upscale_modes = {
|
||||||
|
"Latent": {"mode": "bilinear", "antialias": False},
|
||||||
|
"Latent (antialiased)": {"mode": "bilinear", "antialias": True},
|
||||||
|
"Latent (bicubic)": {"mode": "bicubic", "antialias": False},
|
||||||
|
"Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
|
||||||
|
"Latent (nearest)": {"mode": "nearest", "antialias": False},
|
||||||
|
"Latent (nearest-exact)": {"mode": "nearest-exact", "antialias": False},
|
||||||
|
}
|
||||||
|
|
||||||
sd_upscalers = []
|
sd_upscalers = []
|
||||||
|
|
||||||
sd_model = None
|
sd_model = None
|
||||||
|
|
||||||
|
clip_model = None
|
||||||
|
|
||||||
progress_print_out = sys.stdout
|
progress_print_out = sys.stdout
|
||||||
|
|
||||||
|
|
||||||
@ -418,7 +622,7 @@ class TotalTQDM:
|
|||||||
return
|
return
|
||||||
if self._tqdm is None:
|
if self._tqdm is None:
|
||||||
self.reset()
|
self.reset()
|
||||||
self._tqdm.total=new_total
|
self._tqdm.total = new_total
|
||||||
|
|
||||||
def clear(self):
|
def clear(self):
|
||||||
if self._tqdm is not None:
|
if self._tqdm is not None:
|
||||||
@ -430,3 +634,8 @@ total_tqdm = TotalTQDM()
|
|||||||
|
|
||||||
mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
|
mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
|
||||||
mem_mon.start()
|
mem_mon.start()
|
||||||
|
|
||||||
|
|
||||||
|
def listfiles(dirname):
|
||||||
|
filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname)) if not x.startswith(".")]
|
||||||
|
return [file for file in filenames if os.path.isfile(file)]
|
||||||
|
@ -65,17 +65,6 @@ class StyleDatabase:
|
|||||||
def apply_negative_styles_to_prompt(self, prompt, styles):
|
def apply_negative_styles_to_prompt(self, prompt, styles):
|
||||||
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
|
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
|
||||||
|
|
||||||
def apply_styles(self, p: StableDiffusionProcessing) -> None:
|
|
||||||
if isinstance(p.prompt, list):
|
|
||||||
p.prompt = [self.apply_styles_to_prompt(prompt, p.styles) for prompt in p.prompt]
|
|
||||||
else:
|
|
||||||
p.prompt = self.apply_styles_to_prompt(p.prompt, p.styles)
|
|
||||||
|
|
||||||
if isinstance(p.negative_prompt, list):
|
|
||||||
p.negative_prompt = [self.apply_negative_styles_to_prompt(prompt, p.styles) for prompt in p.negative_prompt]
|
|
||||||
else:
|
|
||||||
p.negative_prompt = self.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)
|
|
||||||
|
|
||||||
def save_styles(self, path: str) -> None:
|
def save_styles(self, path: str) -> None:
|
||||||
# Write to temporary file first, so we don't nuke the file if something goes wrong
|
# Write to temporary file first, so we don't nuke the file if something goes wrong
|
||||||
fd, temp_path = tempfile.mkstemp(".csv")
|
fd, temp_path = tempfile.mkstemp(".csv")
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user