mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 11:50:18 +08:00
first attempt to produce crrect seeds in batch
This commit is contained in:
parent
85b97cc49c
commit
9d40212485
@ -48,3 +48,13 @@ def randn(seed, shape):
|
|||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
return torch.randn(shape, device=device)
|
return torch.randn(shape, device=device)
|
||||||
|
|
||||||
|
|
||||||
|
def randn_without_seed(shape):
|
||||||
|
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
|
||||||
|
if device.type == 'mps':
|
||||||
|
generator = torch.Generator(device=cpu)
|
||||||
|
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
|
||||||
|
return noise
|
||||||
|
|
||||||
|
return torch.randn(shape, device=device)
|
||||||
|
|
||||||
|
@ -119,8 +119,14 @@ def slerp(val, low, high):
|
|||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0):
|
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
|
||||||
xs = []
|
xs = []
|
||||||
|
|
||||||
|
if p is not None and p.sampler is not None and len(seeds) > 1:
|
||||||
|
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
|
||||||
|
else:
|
||||||
|
sampler_noises = None
|
||||||
|
|
||||||
for i, seed in enumerate(seeds):
|
for i, seed in enumerate(seeds):
|
||||||
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
|
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
|
||||||
|
|
||||||
@ -155,9 +161,17 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
|||||||
x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
|
x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
|
||||||
noise = x
|
noise = x
|
||||||
|
|
||||||
|
if sampler_noises is not None:
|
||||||
|
cnt = p.sampler.number_of_needed_noises(p)
|
||||||
|
|
||||||
|
for j in range(cnt):
|
||||||
|
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
|
||||||
|
|
||||||
xs.append(noise)
|
xs.append(noise)
|
||||||
|
|
||||||
|
if sampler_noises is not None:
|
||||||
|
p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
|
||||||
|
|
||||||
x = torch.stack(xs).to(shared.device)
|
x = torch.stack(xs).to(shared.device)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@ -254,7 +268,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
comments += model_hijack.comments
|
comments += model_hijack.comments
|
||||||
|
|
||||||
# we manually generate all input noises because each one should have a specific seed
|
# we manually generate all input noises because each one should have a specific seed
|
||||||
x = create_random_tensors([opt_C, p.height // opt_f, p.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
|
x = create_random_tensors([opt_C, p.height // opt_f, p.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
|
||||||
|
|
||||||
if p.n_iter > 1:
|
if p.n_iter > 1:
|
||||||
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
||||||
|
@ -93,6 +93,10 @@ class VanillaStableDiffusionSampler:
|
|||||||
self.mask = None
|
self.mask = None
|
||||||
self.nmask = None
|
self.nmask = None
|
||||||
self.init_latent = None
|
self.init_latent = None
|
||||||
|
self.sampler_noises = None
|
||||||
|
|
||||||
|
def number_of_needed_noises(self, p):
|
||||||
|
return 0
|
||||||
|
|
||||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
||||||
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
||||||
@ -171,16 +175,37 @@ def extended_trange(count, *args, **kwargs):
|
|||||||
shared.total_tqdm.update()
|
shared.total_tqdm.update()
|
||||||
|
|
||||||
|
|
||||||
|
original_randn_like = torch.randn_like
|
||||||
|
|
||||||
class KDiffusionSampler:
|
class KDiffusionSampler:
|
||||||
def __init__(self, funcname, sd_model):
|
def __init__(self, funcname, sd_model):
|
||||||
self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model)
|
self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model)
|
||||||
self.funcname = funcname
|
self.funcname = funcname
|
||||||
self.func = getattr(k_diffusion.sampling, self.funcname)
|
self.func = getattr(k_diffusion.sampling, self.funcname)
|
||||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||||
|
self.sampler_noises = None
|
||||||
|
self.sampler_noise_index = 0
|
||||||
|
|
||||||
|
k_diffusion.sampling.torch.randn_like = self.randn_like
|
||||||
|
|
||||||
def callback_state(self, d):
|
def callback_state(self, d):
|
||||||
store_latent(d["denoised"])
|
store_latent(d["denoised"])
|
||||||
|
|
||||||
|
def number_of_needed_noises(self, p):
|
||||||
|
return p.steps
|
||||||
|
|
||||||
|
def randn_like(self, x):
|
||||||
|
noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
|
||||||
|
|
||||||
|
if noise is not None and x.shape == noise.shape:
|
||||||
|
res = noise
|
||||||
|
else:
|
||||||
|
print('generating')
|
||||||
|
res = original_randn_like(x)
|
||||||
|
|
||||||
|
self.sampler_noise_index += 1
|
||||||
|
return res
|
||||||
|
|
||||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
||||||
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
||||||
sigmas = self.model_wrap.get_sigmas(p.steps)
|
sigmas = self.model_wrap.get_sigmas(p.steps)
|
||||||
|
Loading…
Reference in New Issue
Block a user