mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-03-06 14:04:53 +08:00
Merge pull request #14121 from AUTOMATIC1111/fix-Auto-focal-point-crop-for-opencv-4.8.x
Fix auto focal point crop for opencv >= 4.8
This commit is contained in:
commit
9eadc4f146
@ -3,6 +3,8 @@ import requests
|
|||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import ImageDraw
|
from PIL import ImageDraw
|
||||||
|
from modules import paths_internal
|
||||||
|
from pkg_resources import parse_version
|
||||||
|
|
||||||
GREEN = "#0F0"
|
GREEN = "#0F0"
|
||||||
BLUE = "#00F"
|
BLUE = "#00F"
|
||||||
@ -25,7 +27,6 @@ def crop_image(im, settings):
|
|||||||
elif is_portrait(settings.crop_width, settings.crop_height):
|
elif is_portrait(settings.crop_width, settings.crop_height):
|
||||||
scale_by = settings.crop_height / im.height
|
scale_by = settings.crop_height / im.height
|
||||||
|
|
||||||
|
|
||||||
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
|
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
|
||||||
im_debug = im.copy()
|
im_debug = im.copy()
|
||||||
|
|
||||||
@ -69,6 +70,7 @@ def crop_image(im, settings):
|
|||||||
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
def focal_point(im, settings):
|
def focal_point(im, settings):
|
||||||
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
|
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
|
||||||
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
|
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
|
||||||
@ -78,118 +80,120 @@ def focal_point(im, settings):
|
|||||||
|
|
||||||
weight_pref_total = 0
|
weight_pref_total = 0
|
||||||
if corner_points:
|
if corner_points:
|
||||||
weight_pref_total += settings.corner_points_weight
|
weight_pref_total += settings.corner_points_weight
|
||||||
if entropy_points:
|
if entropy_points:
|
||||||
weight_pref_total += settings.entropy_points_weight
|
weight_pref_total += settings.entropy_points_weight
|
||||||
if face_points:
|
if face_points:
|
||||||
weight_pref_total += settings.face_points_weight
|
weight_pref_total += settings.face_points_weight
|
||||||
|
|
||||||
corner_centroid = None
|
corner_centroid = None
|
||||||
if corner_points:
|
if corner_points:
|
||||||
corner_centroid = centroid(corner_points)
|
corner_centroid = centroid(corner_points)
|
||||||
corner_centroid.weight = settings.corner_points_weight / weight_pref_total
|
corner_centroid.weight = settings.corner_points_weight / weight_pref_total
|
||||||
pois.append(corner_centroid)
|
pois.append(corner_centroid)
|
||||||
|
|
||||||
entropy_centroid = None
|
entropy_centroid = None
|
||||||
if entropy_points:
|
if entropy_points:
|
||||||
entropy_centroid = centroid(entropy_points)
|
entropy_centroid = centroid(entropy_points)
|
||||||
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
|
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
|
||||||
pois.append(entropy_centroid)
|
pois.append(entropy_centroid)
|
||||||
|
|
||||||
face_centroid = None
|
face_centroid = None
|
||||||
if face_points:
|
if face_points:
|
||||||
face_centroid = centroid(face_points)
|
face_centroid = centroid(face_points)
|
||||||
face_centroid.weight = settings.face_points_weight / weight_pref_total
|
face_centroid.weight = settings.face_points_weight / weight_pref_total
|
||||||
pois.append(face_centroid)
|
pois.append(face_centroid)
|
||||||
|
|
||||||
average_point = poi_average(pois, settings)
|
average_point = poi_average(pois, settings)
|
||||||
|
|
||||||
if settings.annotate_image:
|
if settings.annotate_image:
|
||||||
d = ImageDraw.Draw(im)
|
d = ImageDraw.Draw(im)
|
||||||
max_size = min(im.width, im.height) * 0.07
|
max_size = min(im.width, im.height) * 0.07
|
||||||
if corner_centroid is not None:
|
if corner_centroid is not None:
|
||||||
color = BLUE
|
color = BLUE
|
||||||
box = corner_centroid.bounding(max_size * corner_centroid.weight)
|
box = corner_centroid.bounding(max_size * corner_centroid.weight)
|
||||||
d.text((box[0], box[1]-15), f"Edge: {corner_centroid.weight:.02f}", fill=color)
|
d.text((box[0], box[1] - 15), f"Edge: {corner_centroid.weight:.02f}", fill=color)
|
||||||
d.ellipse(box, outline=color)
|
d.ellipse(box, outline=color)
|
||||||
if len(corner_points) > 1:
|
if len(corner_points) > 1:
|
||||||
for f in corner_points:
|
for f in corner_points:
|
||||||
d.rectangle(f.bounding(4), outline=color)
|
d.rectangle(f.bounding(4), outline=color)
|
||||||
if entropy_centroid is not None:
|
if entropy_centroid is not None:
|
||||||
color = "#ff0"
|
color = "#ff0"
|
||||||
box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
|
box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
|
||||||
d.text((box[0], box[1]-15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color)
|
d.text((box[0], box[1] - 15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color)
|
||||||
d.ellipse(box, outline=color)
|
d.ellipse(box, outline=color)
|
||||||
if len(entropy_points) > 1:
|
if len(entropy_points) > 1:
|
||||||
for f in entropy_points:
|
for f in entropy_points:
|
||||||
d.rectangle(f.bounding(4), outline=color)
|
d.rectangle(f.bounding(4), outline=color)
|
||||||
if face_centroid is not None:
|
if face_centroid is not None:
|
||||||
color = RED
|
color = RED
|
||||||
box = face_centroid.bounding(max_size * face_centroid.weight)
|
box = face_centroid.bounding(max_size * face_centroid.weight)
|
||||||
d.text((box[0], box[1]-15), f"Face: {face_centroid.weight:.02f}", fill=color)
|
d.text((box[0], box[1] - 15), f"Face: {face_centroid.weight:.02f}", fill=color)
|
||||||
d.ellipse(box, outline=color)
|
d.ellipse(box, outline=color)
|
||||||
if len(face_points) > 1:
|
if len(face_points) > 1:
|
||||||
for f in face_points:
|
for f in face_points:
|
||||||
d.rectangle(f.bounding(4), outline=color)
|
d.rectangle(f.bounding(4), outline=color)
|
||||||
|
|
||||||
d.ellipse(average_point.bounding(max_size), outline=GREEN)
|
d.ellipse(average_point.bounding(max_size), outline=GREEN)
|
||||||
|
|
||||||
return average_point
|
return average_point
|
||||||
|
|
||||||
|
|
||||||
def image_face_points(im, settings):
|
def image_face_points(im, settings):
|
||||||
if settings.dnn_model_path is not None:
|
if settings.dnn_model_path is not None:
|
||||||
detector = cv2.FaceDetectorYN.create(
|
detector = cv2.FaceDetectorYN.create(
|
||||||
settings.dnn_model_path,
|
settings.dnn_model_path,
|
||||||
"",
|
"",
|
||||||
(im.width, im.height),
|
(im.width, im.height),
|
||||||
0.9, # score threshold
|
0.9, # score threshold
|
||||||
0.3, # nms threshold
|
0.3, # nms threshold
|
||||||
5000 # keep top k before nms
|
5000 # keep top k before nms
|
||||||
)
|
)
|
||||||
faces = detector.detect(np.array(im))
|
faces = detector.detect(np.array(im))
|
||||||
results = []
|
results = []
|
||||||
if faces[1] is not None:
|
if faces[1] is not None:
|
||||||
for face in faces[1]:
|
for face in faces[1]:
|
||||||
x = face[0]
|
x = face[0]
|
||||||
y = face[1]
|
y = face[1]
|
||||||
w = face[2]
|
w = face[2]
|
||||||
h = face[3]
|
h = face[3]
|
||||||
results.append(
|
results.append(
|
||||||
PointOfInterest(
|
PointOfInterest(
|
||||||
int(x + (w * 0.5)), # face focus left/right is center
|
int(x + (w * 0.5)), # face focus left/right is center
|
||||||
int(y + (h * 0.33)), # face focus up/down is close to the top of the head
|
int(y + (h * 0.33)), # face focus up/down is close to the top of the head
|
||||||
size = w,
|
size=w,
|
||||||
weight = 1/len(faces[1])
|
weight=1 / len(faces[1])
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
return results
|
return results
|
||||||
else:
|
else:
|
||||||
np_im = np.array(im)
|
np_im = np.array(im)
|
||||||
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
tries = [
|
tries = [
|
||||||
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
|
[f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01],
|
||||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
|
[f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05],
|
||||||
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
|
[f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05],
|
||||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
|
[f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05],
|
||||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
|
[f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05],
|
||||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
|
[f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05],
|
||||||
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
|
[f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05],
|
||||||
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
|
[f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05]
|
||||||
]
|
]
|
||||||
for t in tries:
|
for t in tries:
|
||||||
classifier = cv2.CascadeClassifier(t[0])
|
classifier = cv2.CascadeClassifier(t[0])
|
||||||
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
|
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
|
||||||
try:
|
try:
|
||||||
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
|
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
|
||||||
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
minNeighbors=7, minSize=(minsize, minsize),
|
||||||
except Exception:
|
flags=cv2.CASCADE_SCALE_IMAGE)
|
||||||
continue
|
except Exception:
|
||||||
|
continue
|
||||||
|
|
||||||
if faces:
|
if faces:
|
||||||
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
||||||
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
|
return [PointOfInterest((r[0] + r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0] - r[2]),
|
||||||
|
weight=1 / len(rects)) for r in rects]
|
||||||
return []
|
return []
|
||||||
|
|
||||||
|
|
||||||
@ -198,7 +202,7 @@ def image_corner_points(im, settings):
|
|||||||
|
|
||||||
# naive attempt at preventing focal points from collecting at watermarks near the bottom
|
# naive attempt at preventing focal points from collecting at watermarks near the bottom
|
||||||
gd = ImageDraw.Draw(grayscale)
|
gd = ImageDraw.Draw(grayscale)
|
||||||
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
|
gd.rectangle([0, im.height * .9, im.width, im.height], fill="#999")
|
||||||
|
|
||||||
np_im = np.array(grayscale)
|
np_im = np.array(grayscale)
|
||||||
|
|
||||||
@ -206,7 +210,7 @@ def image_corner_points(im, settings):
|
|||||||
np_im,
|
np_im,
|
||||||
maxCorners=100,
|
maxCorners=100,
|
||||||
qualityLevel=0.04,
|
qualityLevel=0.04,
|
||||||
minDistance=min(grayscale.width, grayscale.height)*0.06,
|
minDistance=min(grayscale.width, grayscale.height) * 0.06,
|
||||||
useHarrisDetector=False,
|
useHarrisDetector=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -215,8 +219,8 @@ def image_corner_points(im, settings):
|
|||||||
|
|
||||||
focal_points = []
|
focal_points = []
|
||||||
for point in points:
|
for point in points:
|
||||||
x, y = point.ravel()
|
x, y = point.ravel()
|
||||||
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
|
focal_points.append(PointOfInterest(x, y, size=4, weight=1 / len(points)))
|
||||||
|
|
||||||
return focal_points
|
return focal_points
|
||||||
|
|
||||||
@ -225,13 +229,13 @@ def image_entropy_points(im, settings):
|
|||||||
landscape = im.height < im.width
|
landscape = im.height < im.width
|
||||||
portrait = im.height > im.width
|
portrait = im.height > im.width
|
||||||
if landscape:
|
if landscape:
|
||||||
move_idx = [0, 2]
|
move_idx = [0, 2]
|
||||||
move_max = im.size[0]
|
move_max = im.size[0]
|
||||||
elif portrait:
|
elif portrait:
|
||||||
move_idx = [1, 3]
|
move_idx = [1, 3]
|
||||||
move_max = im.size[1]
|
move_max = im.size[1]
|
||||||
else:
|
else:
|
||||||
return []
|
return []
|
||||||
|
|
||||||
e_max = 0
|
e_max = 0
|
||||||
crop_current = [0, 0, settings.crop_width, settings.crop_height]
|
crop_current = [0, 0, settings.crop_width, settings.crop_height]
|
||||||
@ -241,14 +245,14 @@ def image_entropy_points(im, settings):
|
|||||||
e = image_entropy(crop)
|
e = image_entropy(crop)
|
||||||
|
|
||||||
if (e > e_max):
|
if (e > e_max):
|
||||||
e_max = e
|
e_max = e
|
||||||
crop_best = list(crop_current)
|
crop_best = list(crop_current)
|
||||||
|
|
||||||
crop_current[move_idx[0]] += 4
|
crop_current[move_idx[0]] += 4
|
||||||
crop_current[move_idx[1]] += 4
|
crop_current[move_idx[1]] += 4
|
||||||
|
|
||||||
x_mid = int(crop_best[0] + settings.crop_width/2)
|
x_mid = int(crop_best[0] + settings.crop_width / 2)
|
||||||
y_mid = int(crop_best[1] + settings.crop_height/2)
|
y_mid = int(crop_best[1] + settings.crop_height / 2)
|
||||||
|
|
||||||
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
|
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
|
||||||
|
|
||||||
@ -294,22 +298,23 @@ def is_square(w, h):
|
|||||||
return w == h
|
return w == h
|
||||||
|
|
||||||
|
|
||||||
def download_and_cache_models(dirname):
|
model_dir_opencv = os.path.join(paths_internal.models_path, 'opencv')
|
||||||
download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
|
if parse_version(cv2.__version__) >= parse_version('4.8'):
|
||||||
model_file_name = 'face_detection_yunet.onnx'
|
model_file_path = os.path.join(model_dir_opencv, 'face_detection_yunet_2023mar.onnx')
|
||||||
|
model_url = 'https://github.com/opencv/opencv_zoo/blob/b6e370b10f641879a87890d44e42173077154a05/models/face_detection_yunet/face_detection_yunet_2023mar.onnx?raw=true'
|
||||||
|
else:
|
||||||
|
model_file_path = os.path.join(model_dir_opencv, 'face_detection_yunet.onnx')
|
||||||
|
model_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
|
||||||
|
|
||||||
os.makedirs(dirname, exist_ok=True)
|
|
||||||
|
|
||||||
cache_file = os.path.join(dirname, model_file_name)
|
def download_and_cache_models():
|
||||||
if not os.path.exists(cache_file):
|
if not os.path.exists(model_file_path):
|
||||||
print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
|
os.makedirs(model_dir_opencv, exist_ok=True)
|
||||||
response = requests.get(download_url)
|
print(f"downloading face detection model from '{model_url}' to '{model_file_path}'")
|
||||||
with open(cache_file, "wb") as f:
|
response = requests.get(model_url)
|
||||||
|
with open(model_file_path, "wb") as f:
|
||||||
f.write(response.content)
|
f.write(response.content)
|
||||||
|
return model_file_path
|
||||||
if os.path.exists(cache_file):
|
|
||||||
return cache_file
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
class PointOfInterest:
|
class PointOfInterest:
|
||||||
|
@ -3,7 +3,7 @@ from PIL import Image, ImageOps
|
|||||||
import math
|
import math
|
||||||
import tqdm
|
import tqdm
|
||||||
|
|
||||||
from modules import paths, shared, images, deepbooru
|
from modules import shared, images, deepbooru
|
||||||
from modules.textual_inversion import autocrop
|
from modules.textual_inversion import autocrop
|
||||||
|
|
||||||
|
|
||||||
@ -196,7 +196,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
|
|||||||
|
|
||||||
dnn_model_path = None
|
dnn_model_path = None
|
||||||
try:
|
try:
|
||||||
dnn_model_path = autocrop.download_and_cache_models(os.path.join(paths.models_path, "opencv"))
|
dnn_model_path = autocrop.download_and_cache_models()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e)
|
print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user