mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-03-06 14:04:53 +08:00
Merge pull request #14121 from AUTOMATIC1111/fix-Auto-focal-point-crop-for-opencv-4.8.x
Fix auto focal point crop for opencv >= 4.8
This commit is contained in:
commit
9eadc4f146
@ -3,6 +3,8 @@ import requests
|
||||
import os
|
||||
import numpy as np
|
||||
from PIL import ImageDraw
|
||||
from modules import paths_internal
|
||||
from pkg_resources import parse_version
|
||||
|
||||
GREEN = "#0F0"
|
||||
BLUE = "#00F"
|
||||
@ -25,7 +27,6 @@ def crop_image(im, settings):
|
||||
elif is_portrait(settings.crop_width, settings.crop_height):
|
||||
scale_by = settings.crop_height / im.height
|
||||
|
||||
|
||||
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
|
||||
im_debug = im.copy()
|
||||
|
||||
@ -69,6 +70,7 @@ def crop_image(im, settings):
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def focal_point(im, settings):
|
||||
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
|
||||
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
|
||||
@ -183,13 +185,15 @@ def image_face_points(im, settings):
|
||||
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
|
||||
try:
|
||||
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
|
||||
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
||||
minNeighbors=7, minSize=(minsize, minsize),
|
||||
flags=cv2.CASCADE_SCALE_IMAGE)
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
if faces:
|
||||
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
||||
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
|
||||
return [PointOfInterest((r[0] + r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0] - r[2]),
|
||||
weight=1 / len(rects)) for r in rects]
|
||||
return []
|
||||
|
||||
|
||||
@ -294,22 +298,23 @@ def is_square(w, h):
|
||||
return w == h
|
||||
|
||||
|
||||
def download_and_cache_models(dirname):
|
||||
download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
|
||||
model_file_name = 'face_detection_yunet.onnx'
|
||||
model_dir_opencv = os.path.join(paths_internal.models_path, 'opencv')
|
||||
if parse_version(cv2.__version__) >= parse_version('4.8'):
|
||||
model_file_path = os.path.join(model_dir_opencv, 'face_detection_yunet_2023mar.onnx')
|
||||
model_url = 'https://github.com/opencv/opencv_zoo/blob/b6e370b10f641879a87890d44e42173077154a05/models/face_detection_yunet/face_detection_yunet_2023mar.onnx?raw=true'
|
||||
else:
|
||||
model_file_path = os.path.join(model_dir_opencv, 'face_detection_yunet.onnx')
|
||||
model_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
|
||||
|
||||
os.makedirs(dirname, exist_ok=True)
|
||||
|
||||
cache_file = os.path.join(dirname, model_file_name)
|
||||
if not os.path.exists(cache_file):
|
||||
print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
|
||||
response = requests.get(download_url)
|
||||
with open(cache_file, "wb") as f:
|
||||
def download_and_cache_models():
|
||||
if not os.path.exists(model_file_path):
|
||||
os.makedirs(model_dir_opencv, exist_ok=True)
|
||||
print(f"downloading face detection model from '{model_url}' to '{model_file_path}'")
|
||||
response = requests.get(model_url)
|
||||
with open(model_file_path, "wb") as f:
|
||||
f.write(response.content)
|
||||
|
||||
if os.path.exists(cache_file):
|
||||
return cache_file
|
||||
return None
|
||||
return model_file_path
|
||||
|
||||
|
||||
class PointOfInterest:
|
||||
|
@ -3,7 +3,7 @@ from PIL import Image, ImageOps
|
||||
import math
|
||||
import tqdm
|
||||
|
||||
from modules import paths, shared, images, deepbooru
|
||||
from modules import shared, images, deepbooru
|
||||
from modules.textual_inversion import autocrop
|
||||
|
||||
|
||||
@ -196,7 +196,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
|
||||
|
||||
dnn_model_path = None
|
||||
try:
|
||||
dnn_model_path = autocrop.download_and_cache_models(os.path.join(paths.models_path, "opencv"))
|
||||
dnn_model_path = autocrop.download_and_cache_models()
|
||||
except Exception as e:
|
||||
print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user