Organized the settings and UI of soft inpainting to allow for toggling the feature, and centralizes default values to reduce the amount of copy-pasta.

This commit is contained in:
CodeHatchling 2023-12-04 01:27:22 -07:00
parent 552f8bc832
commit aaacf48232
9 changed files with 197 additions and 49 deletions

View File

@ -15,6 +15,7 @@ import modules.shared as shared
import modules.processing as processing import modules.processing as processing
from modules.ui import plaintext_to_html from modules.ui import plaintext_to_html
import modules.scripts import modules.scripts
import modules.soft_inpainting as si
def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None): def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
@ -162,6 +163,7 @@ def img2img(id_task: str,
sampler_name: str, sampler_name: str,
mask_blur: int, mask_blur: int,
mask_alpha: float, mask_alpha: float,
mask_blend_enabled: bool,
mask_blend_power: float, mask_blend_power: float,
mask_blend_scale: float, mask_blend_scale: float,
inpaint_detail_preservation: float, inpaint_detail_preservation: float,
@ -227,6 +229,9 @@ def img2img(id_task: str,
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
soft_inpainting = si.SoftInpaintingSettings(mask_blend_power, mask_blend_scale, inpaint_detail_preservation) \
if mask_blend_enabled else None
p = StableDiffusionProcessingImg2Img( p = StableDiffusionProcessingImg2Img(
sd_model=shared.sd_model, sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples, outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
@ -244,9 +249,7 @@ def img2img(id_task: str,
init_images=[image], init_images=[image],
mask=mask, mask=mask,
mask_blur=mask_blur, mask_blur=mask_blur,
mask_blend_power=mask_blend_power, soft_inpainting=soft_inpainting,
mask_blend_scale=mask_blend_scale,
inpaint_detail_preservation=inpaint_detail_preservation,
inpainting_fill=inpainting_fill, inpainting_fill=inpainting_fill,
resize_mode=resize_mode, resize_mode=resize_mode,
denoising_strength=denoising_strength, denoising_strength=denoising_strength,
@ -267,9 +270,8 @@ def img2img(id_task: str,
if mask: if mask:
p.extra_generation_params["Mask blur"] = mask_blur p.extra_generation_params["Mask blur"] = mask_blur
p.extra_generation_params["Mask blending bias"] = mask_blend_power if soft_inpainting is not None:
p.extra_generation_params["Mask blending preservation"] = mask_blend_scale soft_inpainting.add_generation_params(p.extra_generation_params)
p.extra_generation_params["Mask blending contrast boost"] = inpaint_detail_preservation
with closing(p): with closing(p):
if is_batch: if is_batch:

View File

@ -30,6 +30,7 @@ import modules.sd_models as sd_models
import modules.sd_vae as sd_vae import modules.sd_vae as sd_vae
from ldm.data.util import AddMiDaS from ldm.data.util import AddMiDaS
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
import modules.soft_inpainting as si
from einops import repeat, rearrange from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType from blendmodes.blend import blendLayers, BlendType
@ -1425,9 +1426,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
mask_blur_x: int = 4 mask_blur_x: int = 4
mask_blur_y: int = 4 mask_blur_y: int = 4
mask_blur: int = None mask_blur: int = None
mask_blend_power: float = 1 soft_inpainting: si.SoftInpaintingParameters = si.default
mask_blend_scale: float = 0.5
inpaint_detail_preservation: float = 4
inpainting_fill: int = 0 inpainting_fill: int = 0
inpaint_full_res: bool = True inpaint_full_res: bool = True
inpaint_full_res_padding: int = 0 inpaint_full_res_padding: int = 0

View File

@ -6,6 +6,7 @@ import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
import modules.soft_inpainting as si
def catenate_conds(conds): def catenate_conds(conds):
@ -43,9 +44,7 @@ class CFGDenoiser(torch.nn.Module):
self.model_wrap = None self.model_wrap = None
self.mask = None self.mask = None
self.nmask = None self.nmask = None
self.mask_blend_power = 1 self.soft_inpainting: si.SoftInpaintingParameters = None
self.mask_blend_scale = 0.5
self.inpaint_detail_preservation = 4
self.init_latent = None self.init_latent = None
self.steps = None self.steps = None
"""number of steps as specified by user in UI""" """number of steps as specified by user in UI"""
@ -95,7 +94,8 @@ class CFGDenoiser(torch.nn.Module):
self.sampler.sampler_extra_args['uncond'] = uc self.sampler.sampler_extra_args['uncond'] = uc
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
def latent_blend(a, b, t): def latent_blend(a, b, t, one_minus_t=None):
""" """
Interpolates two latent image representations according to the parameter t, Interpolates two latent image representations according to the parameter t,
where the interpolated vectors' magnitudes are also interpolated separately. where the interpolated vectors' magnitudes are also interpolated separately.
@ -104,7 +104,11 @@ class CFGDenoiser(torch.nn.Module):
""" """
# NOTE: We use inplace operations wherever possible. # NOTE: We use inplace operations wherever possible.
one_minus_t = 1 - t if one_minus_t is None:
one_minus_t = 1 - t
if self.soft_inpainting is None:
return a * one_minus_t + b * t
# Linearly interpolate the image vectors. # Linearly interpolate the image vectors.
a_scaled = a * one_minus_t a_scaled = a * one_minus_t
@ -119,10 +123,10 @@ class CFGDenoiser(torch.nn.Module):
current_magnitude = torch.norm(image_interp, p=2, dim=1).to(torch.float64).add_(0.00001) current_magnitude = torch.norm(image_interp, p=2, dim=1).to(torch.float64).add_(0.00001)
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1). # Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
a_magnitude = torch.norm(a, p=2, dim=1).to(torch.float64).pow_(self.inpaint_detail_preservation) * one_minus_t a_magnitude = torch.norm(a, p=2, dim=1).to(torch.float64).pow_(self.soft_inpainting.inpaint_detail_preservation) * one_minus_t
b_magnitude = torch.norm(b, p=2, dim=1).to(torch.float64).pow_(self.inpaint_detail_preservation) * t b_magnitude = torch.norm(b, p=2, dim=1).to(torch.float64).pow_(self.soft_inpainting.inpaint_detail_preservation) * t
desired_magnitude = a_magnitude desired_magnitude = a_magnitude
desired_magnitude.add_(b_magnitude).pow_(1 / self.inpaint_detail_preservation) desired_magnitude.add_(b_magnitude).pow_(1 / self.soft_inpainting.inpaint_detail_preservation)
del a_magnitude, b_magnitude, one_minus_t del a_magnitude, b_magnitude, one_minus_t
# Change the linearly interpolated image vectors' magnitudes to the value we want. # Change the linearly interpolated image vectors' magnitudes to the value we want.
@ -156,7 +160,10 @@ class CFGDenoiser(torch.nn.Module):
NOTE: "mask" is not used NOTE: "mask" is not used
""" """
return torch.pow(nmask, (_sigma ** self.mask_blend_power) * self.mask_blend_scale) if self.soft_inpainting is None:
return nmask
return torch.pow(nmask, (_sigma ** self.soft_inpainting.mask_blend_power) * self.soft_inpainting.mask_blend_scale)
if state.interrupted or state.skipped: if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException raise sd_samplers_common.InterruptedException
@ -176,7 +183,10 @@ class CFGDenoiser(torch.nn.Module):
# Blend in the original latents (before) # Blend in the original latents (before)
if self.mask_before_denoising and self.mask is not None: if self.mask_before_denoising and self.mask is not None:
x = latent_blend(self.init_latent, x, get_modified_nmask(self.nmask, sigma)) if self.soft_inpainting is None:
x = latent_blend(self.init_latent, x, self.nmask, self.mask)
else:
x = latent_blend(self.init_latent, x, get_modified_nmask(self.nmask, sigma))
batch_size = len(conds_list) batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)] repeats = [len(conds_list[i]) for i in range(batch_size)]
@ -279,7 +289,10 @@ class CFGDenoiser(torch.nn.Module):
# Blend in the original latents (after) # Blend in the original latents (after)
if not self.mask_before_denoising and self.mask is not None: if not self.mask_before_denoising and self.mask is not None:
denoised = latent_blend(self.init_latent, denoised, get_modified_nmask(self.nmask, sigma)) if self.soft_inpainting is None:
denoised = latent_blend(self.init_latent, denoised, self.nmask, self.mask)
else:
denoised = latent_blend(self.init_latent, denoised, get_modified_nmask(self.nmask, sigma))
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma) self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)

View File

@ -277,9 +277,7 @@ class Sampler:
self.model_wrap_cfg.p = p self.model_wrap_cfg.p = p
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.mask_blend_power = p.mask_blend_power if hasattr(p, 'mask_blend_power') else None self.model_wrap_cfg.soft_inpainting = p.soft_inpainting if hasattr(p, 'soft_inpainting') else None
self.model_wrap_cfg.mask_blend_scale = p.mask_blend_scale if hasattr(p, 'mask_blend_scale') else None
self.model_wrap_cfg.inpaint_detail_preservation = p.inpaint_detail_preservation if hasattr(p, 'inpaint_detail_preservation') else None
self.model_wrap_cfg.step = 0 self.model_wrap_cfg.step = 0
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None) self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else getattr(opts, self.eta_option_field, 0.0) self.eta = p.eta if p.eta is not None else getattr(opts, self.eta_option_field, 0.0)

133
modules/soft_inpainting.py Normal file
View File

@ -0,0 +1,133 @@
class SoftInpaintingSettings:
def __init__(self, mask_blend_power, mask_blend_scale, inpaint_detail_preservation):
self.mask_blend_power = mask_blend_power
self.mask_blend_scale = mask_blend_scale
self.inpaint_detail_preservation = inpaint_detail_preservation
def get_paste_fields(self):
return [
(self.mask_blend_power, gen_param_labels.mask_blend_power),
(self.mask_blend_scale, gen_param_labels.mask_blend_scale),
(self.inpaint_detail_preservation, gen_param_labels.inpaint_detail_preservation),
]
def add_generation_params(self, dest):
dest[enabled_gen_param_label] = True
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power
dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation
enabled_ui_label = "Soft inpainting"
enabled_gen_param_label = "Soft inpainting enabled"
enabled_el_id = "soft_inpainting_enabled"
default = SoftInpaintingSettings(1, 0.5, 4)
ui_labels = SoftInpaintingSettings("Schedule bias", "Preservation strength", "Transition contrast boost")
ui_info = SoftInpaintingSettings(
mask_blend_power="Shifts when preservation of original content occurs during denoising.",
# "Below 1: Stronger preservation near the end (with low sigma)\n"
# "1: Balanced (proportional to sigma)\n"
# "Above 1: Stronger preservation in the beginning (with high sigma)",
mask_blend_scale="How strongly partially masked content should be preserved.",
# "Low values: Favors generated content.\n"
# "High values: Favors original content.",
inpaint_detail_preservation="Amplifies the contrast that may be lost in partially masked regions.")
gen_param_labels = SoftInpaintingSettings("Soft inpainting schedule bias", "Soft inpainting preservation strength", "Soft inpainting transition contrast boost")
el_ids = SoftInpaintingSettings("mask_blend_power", "mask_blend_scale", "inpaint_detail_preservation")
def gradio_ui():
import gradio as gr
from modules.ui_components import InputAccordion
"""
with InputAccordion(False, label="Refiner", elem_id=self.elem_id("enable")) as enable_refiner:
with gr.Row():
refiner_checkpoint = gr.Dropdown(label='Checkpoint', elem_id=self.elem_id("checkpoint"), choices=sd_models.checkpoint_tiles(), value='', tooltip="switch to another model in the middle of generation")
create_refresh_button(refiner_checkpoint, sd_models.list_models, lambda: {"choices": sd_models.checkpoint_tiles()}, self.elem_id("checkpoint_refresh"))
refiner_switch_at = gr.Slider(value=0.8, label="Switch at", minimum=0.01, maximum=1.0, step=0.01, elem_id=self.elem_id("switch_at"), tooltip="fraction of sampling steps when the switch to refiner model should happen; 1=never, 0.5=switch in the middle of generation")
"""
with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled:
with gr.Group():
gr.Markdown(
"""
Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity.
**High _Mask blur_** values are recommended!
""")
result = SoftInpaintingSettings(
gr.Slider(label=ui_labels.mask_blend_power,
info=ui_info.mask_blend_power,
minimum=0,
maximum=8,
step=0.1,
value=default.mask_blend_power,
elem_id=el_ids.mask_blend_power),
gr.Slider(label=ui_labels.mask_blend_scale,
info=ui_info.mask_blend_scale,
minimum=0,
maximum=8,
step=0.05,
value=default.mask_blend_scale,
elem_id=el_ids.mask_blend_scale),
gr.Slider(label=ui_labels.inpaint_detail_preservation,
info=ui_info.inpaint_detail_preservation,
minimum=1,
maximum=32,
step=0.5,
value=default.inpaint_detail_preservation,
elem_id=el_ids.inpaint_detail_preservation))
with gr.Accordion("Help", open=False):
gr.Markdown(
f"""
### {ui_labels.mask_blend_power}
The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas).
This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step.
This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation.
- **Below 1**: Stronger preservation near the end (with low sigma)
- **1**: Balanced (proportional to sigma)
- **Above 1**: Stronger preservation in the beginning (with high sigma)
""")
gr.Markdown(
f"""
### {ui_labels.mask_blend_scale}
Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content.
This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength.
- **Low values**: Favors generated content.
- **High values**: Favors original content.
""")
gr.Markdown(
f"""
### {ui_labels.inpaint_detail_preservation}
This parameter controls how the original latent vectors and denoised latent vectors are interpolated.
With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors.
This can prevent the loss of contrast that occurs with linear interpolation.
- **Low values**: Softer blending, details may fade.
- **High values**: Stronger contrast, may over-saturate colors.
""")
return (
[
soft_inpainting_enabled,
result.mask_blend_power,
result.mask_blend_scale,
result.inpaint_detail_preservation
],
[
(soft_inpainting_enabled, enabled_gen_param_label),
(result.mask_blend_power, gen_param_labels.mask_blend_power),
(result.mask_blend_scale, gen_param_labels.mask_blend_scale),
(result.inpaint_detail_preservation, gen_param_labels.inpaint_detail_preservation)
]
)

View File

@ -29,6 +29,7 @@ import modules.shared as shared
from modules import prompt_parser from modules import prompt_parser
from modules.sd_hijack import model_hijack from modules.sd_hijack import model_hijack
from modules.generation_parameters_copypaste import image_from_url_text from modules.generation_parameters_copypaste import image_from_url_text
import modules.soft_inpainting as si
create_setting_component = ui_settings.create_setting_component create_setting_component = ui_settings.create_setting_component
@ -678,9 +679,16 @@ def create_ui():
with FormRow(): with FormRow():
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id="img2img_mask_blur") mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id="img2img_mask_blur")
mask_alpha = gr.Slider(label="Mask transparency", visible=False, elem_id="img2img_mask_alpha") mask_alpha = gr.Slider(label="Mask transparency", visible=False, elem_id="img2img_mask_alpha")
with FormRow():
soft_inpainting = si.gradio_ui()
"""
mask_blend_power = gr.Slider(label='Blending bias', minimum=0, maximum=8, step=0.1, value=1, elem_id="img2img_mask_blend_power") mask_blend_power = gr.Slider(label='Blending bias', minimum=0, maximum=8, step=0.1, value=1, elem_id="img2img_mask_blend_power")
mask_blend_scale = gr.Slider(label='Blending preservation', minimum=0, maximum=8, step=0.05, value=0.5, elem_id="img2img_mask_blend_scale") mask_blend_scale = gr.Slider(label='Blending preservation', minimum=0, maximum=8, step=0.05, value=0.5, elem_id="img2img_mask_blend_scale")
inpaint_detail_preservation = gr.Slider(label='Blending contrast boost', minimum=1, maximum=32, step=0.5, value=4, elem_id="img2img_mask_blend_offset") inpaint_detail_preservation = gr.Slider(label='Blending contrast boost', minimum=1, maximum=32, step=0.5, value=4, elem_id="img2img_mask_blend_offset")
"""
with FormRow(): with FormRow():
inpainting_mask_invert = gr.Radio(label='Mask mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", elem_id="img2img_mask_mode") inpainting_mask_invert = gr.Radio(label='Mask mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", elem_id="img2img_mask_mode")
@ -736,9 +744,7 @@ def create_ui():
sampler_name, sampler_name,
mask_blur, mask_blur,
mask_alpha, mask_alpha,
mask_blend_power, *(soft_inpainting[0]),
mask_blend_scale,
inpaint_detail_preservation,
inpainting_fill, inpainting_fill,
batch_count, batch_count,
batch_size, batch_size,
@ -837,11 +843,10 @@ def create_ui():
(toprow.ui_styles.dropdown, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()), (toprow.ui_styles.dropdown, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
(denoising_strength, "Denoising strength"), (denoising_strength, "Denoising strength"),
(mask_blur, "Mask blur"), (mask_blur, "Mask blur"),
(mask_blend_power, "Mask blending bias"), *(soft_inpainting[1]),
(mask_blend_scale, "Mask blending preservation"),
(inpaint_detail_preservation, "Mask blending contrast boost"),
*scripts.scripts_img2img.infotext_fields *scripts.scripts_img2img.infotext_fields
] ]
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields, override_settings) parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields, override_settings)
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields, override_settings) parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields, override_settings)
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(

View File

@ -10,6 +10,7 @@ from PIL import Image, ImageDraw
from modules import images from modules import images
from modules.processing import Processed, process_images from modules.processing import Processed, process_images
from modules.shared import opts, state from modules.shared import opts, state
import modules.soft_inpainting as si
# this function is taken from https://github.com/parlance-zz/g-diffuser-bot # this function is taken from https://github.com/parlance-zz/g-diffuser-bot
@ -133,16 +134,14 @@ class Script(scripts.Script):
pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels")) pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels"))
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=8, elem_id=self.elem_id("mask_blur")) mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=8, elem_id=self.elem_id("mask_blur"))
mask_blend_power = gr.Slider(label='Blending bias', minimum=0, maximum=8, step=0.1, value=1, elem_id=self.elem_id("mask_blend_power")) soft_inpainting = si.gradio_ui()[0]
mask_blend_scale = gr.Slider(label='Blending preservation', minimum=0, maximum=8, step=0.05, value=0.5, elem_id=self.elem_id("mask_blend_scale"))
inpaint_detail_preservation = gr.Slider(label='Blending contrast boost', minimum=1, maximum=32, step=0.5, value=4, elem_id=self.elem_id("inpaint_detail_preservation"))
direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction")) direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction"))
noise_q = gr.Slider(label="Fall-off exponent (lower=higher detail)", minimum=0.0, maximum=4.0, step=0.01, value=1.0, elem_id=self.elem_id("noise_q")) noise_q = gr.Slider(label="Fall-off exponent (lower=higher detail)", minimum=0.0, maximum=4.0, step=0.01, value=1.0, elem_id=self.elem_id("noise_q"))
color_variation = gr.Slider(label="Color variation", minimum=0.0, maximum=1.0, step=0.01, value=0.05, elem_id=self.elem_id("color_variation")) color_variation = gr.Slider(label="Color variation", minimum=0.0, maximum=1.0, step=0.01, value=0.05, elem_id=self.elem_id("color_variation"))
return [info, pixels, mask_blur, mask_blend_power, mask_blend_scale, inpaint_detail_preservation, direction, noise_q, color_variation] return [info, pixels, mask_blur, *soft_inpainting, direction, noise_q, color_variation]
def run(self, p, _, pixels, mask_blur, mask_blend_power, mask_blend_scale, inpaint_detail_preservation, direction, noise_q, color_variation): def run(self, p, _, pixels, mask_blur, mask_blend_enabled, mask_blend_power, mask_blend_scale, inpaint_detail_preservation, direction, noise_q, color_variation):
initial_seed_and_info = [None, None] initial_seed_and_info = [None, None]
process_width = p.width process_width = p.width
@ -170,9 +169,9 @@ class Script(scripts.Script):
p.mask_blur_x = mask_blur_x*4 p.mask_blur_x = mask_blur_x*4
p.mask_blur_y = mask_blur_y*4 p.mask_blur_y = mask_blur_y*4
p.mask_blend_power = mask_blend_power
p.mask_blend_scale = mask_blend_scale p.soft_inpainting = si.SoftInpaintingSettings(mask_blend_power, mask_blend_scale, inpaint_detail_preservation) \
p.inpaint_detail_preservation = inpaint_detail_preservation if mask_blend_enabled else None
init_img = p.init_images[0] init_img = p.init_images[0]
target_w = math.ceil((init_img.width + left + right) / 64) * 64 target_w = math.ceil((init_img.width + left + right) / 64) * 64

View File

@ -7,6 +7,7 @@ from PIL import Image, ImageDraw
from modules import images, devices from modules import images, devices
from modules.processing import Processed, process_images from modules.processing import Processed, process_images
from modules.shared import opts, state from modules.shared import opts, state
import modules.soft_inpainting as si
class Script(scripts.Script): class Script(scripts.Script):
@ -22,23 +23,19 @@ class Script(scripts.Script):
pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels")) pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels"))
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur")) mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur"))
mask_blend_power = gr.Slider(label='Blending bias', minimum=0, maximum=8, step=0.1, value=1, elem_id=self.elem_id("mask_blend_power")) soft_inpainting = si.gradio_ui()[0]
mask_blend_scale = gr.Slider(label='Blending preservation', minimum=0, maximum=8, step=0.05, value=0.5, elem_id=self.elem_id("mask_blend_scale"))
inpaint_detail_preservation = gr.Slider(label='Blending contrast boost', minimum=1, maximum=32, step=0.5, value=4, elem_id=self.elem_id("inpaint_detail_preservation"))
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill")) inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill"))
direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction")) direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction"))
return [pixels, mask_blur, mask_blend_power, mask_blend_scale, inpaint_detail_preservation, inpainting_fill, direction] return [pixels, mask_blur, *soft_inpainting, inpainting_fill, direction]
def run(self, p, pixels, mask_blur, mask_blend_power, mask_blend_scale, inpaint_detail_preservation, inpainting_fill, direction): def run(self, p, pixels, mask_blur, mask_blend_enabled, mask_blend_power, mask_blend_scale, inpaint_detail_preservation, inpainting_fill, direction):
initial_seed = None initial_seed = None
initial_info = None initial_info = None
p.mask_blur = mask_blur * 2 p.mask_blur = mask_blur * 2
p.mask_blend_power = mask_blend_power p.soft_inpainting = si.SoftInpaintingSettings(mask_blend_power, mask_blend_scale, inpaint_detail_preservation) \
p.mask_blend_scale = mask_blend_scale if mask_blend_enabled else None
p.inpaint_detail_preservation = inpaint_detail_preservation
p.inpainting_fill = inpainting_fill p.inpainting_fill = inpainting_fill
p.inpaint_full_res = False p.inpaint_full_res = False

View File

@ -1,6 +1,7 @@
import pytest import pytest
import requests import requests
import modules.soft_inpainting as si
@pytest.fixture() @pytest.fixture()
@ -24,9 +25,10 @@ def simple_img2img_request(img2img_basic_image_base64):
"inpainting_mask_invert": False, "inpainting_mask_invert": False,
"mask": None, "mask": None,
"mask_blur": 4, "mask_blur": 4,
"mask_blend_power": 1, "mask_blend_enabled": True,
"mask_blend_scale": 0.5, "mask_blend_power": si.default.mask_blend_power,
"inpaint_detail_preservation": 4, "mask_blend_scale": si.default.mask_blend_scale,
"inpaint_detail_preservation": si.default.inpaint_detail_preservation,
"n_iter": 1, "n_iter": 1,
"negative_prompt": "", "negative_prompt": "",
"override_settings": {}, "override_settings": {},