diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 886cf0c3b..168bfb09d 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -1,5 +1,7 @@ import os -from PIL import Image, ImageOps +import cv2 +import numpy as np +from PIL import Image, ImageOps, ImageDraw import platform import sys import tqdm @@ -11,7 +13,7 @@ if cmd_opts.deepdanbooru: import modules.deepbooru as deepbooru -def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False): +def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, process_entropy_focus=False): try: if process_caption: shared.interrogator.load() @@ -21,7 +23,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ db_opts[deepbooru.OPT_INCLUDE_RANKS] = False deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts) - preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru) + preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru, process_entropy_focus) finally: @@ -33,7 +35,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ -def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False): +def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, process_entropy_focus=False): width = process_width height = process_height src = os.path.abspath(process_src) @@ -93,6 +95,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro is_tall = ratio > 1.35 is_wide = ratio < 1 / 1.35 + processing_option_ran = False + if process_split and is_tall: img = img.resize((width, height * img.height // img.width)) @@ -101,6 +105,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro bot = img.crop((0, img.height - height, width, img.height)) save_pic(bot, index) + + processing_option_ran = True elif process_split and is_wide: img = img.resize((width * img.width // img.height, height)) @@ -109,8 +115,143 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro right = img.crop((img.width - width, 0, img.width, height)) save_pic(right, index) - else: + + processing_option_ran = True + + if process_entropy_focus and (is_tall or is_wide): + if is_tall: + img = img.resize((width, height * img.height // img.width)) + else: + img = img.resize((width * img.width // img.height, height)) + + x_focal_center, y_focal_center = image_central_focal_point(img, width, height) + + # take the focal point and turn it into crop coordinates that try to center over the focal + # point but then get adjusted back into the frame + y_half = int(height / 2) + x_half = int(width / 2) + + x1 = x_focal_center - x_half + if x1 < 0: + x1 = 0 + elif x1 + width > img.width: + x1 = img.width - width + + y1 = y_focal_center - y_half + if y1 < 0: + y1 = 0 + elif y1 + height > img.height: + y1 = img.height - height + + x2 = x1 + width + y2 = y1 + height + + crop = [x1, y1, x2, y2] + + focal = img.crop(tuple(crop)) + save_pic(focal, index) + + processing_option_ran = True + + if not processing_option_ran: img = images.resize_image(1, img, width, height) save_pic(img, index) shared.state.nextjob() + + +def image_central_focal_point(im, target_width, target_height): + focal_points = [] + + focal_points.extend( + image_focal_points(im) + ) + + fp_entropy = image_entropy_point(im, target_width, target_height) + fp_entropy['weight'] = len(focal_points) + 1 # about half of the weight to entropy + + focal_points.append(fp_entropy) + + weight = 0.0 + x = 0.0 + y = 0.0 + for focal_point in focal_points: + weight += focal_point['weight'] + x += focal_point['x'] * focal_point['weight'] + y += focal_point['y'] * focal_point['weight'] + avg_x = round(x // weight) + avg_y = round(y // weight) + + return avg_x, avg_y + + +def image_focal_points(im): + grayscale = im.convert("L") + + # naive attempt at preventing focal points from collecting at watermarks near the bottom + gd = ImageDraw.Draw(grayscale) + gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") + + np_im = np.array(grayscale) + + points = cv2.goodFeaturesToTrack( + np_im, + maxCorners=50, + qualityLevel=0.04, + minDistance=min(grayscale.width, grayscale.height)*0.05, + useHarrisDetector=False, + ) + + if points is None: + return [] + + focal_points = [] + for point in points: + x, y = point.ravel() + focal_points.append({ + 'x': x, + 'y': y, + 'weight': 1.0 + }) + + return focal_points + + +def image_entropy_point(im, crop_width, crop_height): + img = im.copy() + # just make it easier to slide the test crop with images oriented the same way + if (img.size[0] < img.size[1]): + portrait = True + img = img.rotate(90, expand=1) + + e_max = 0 + crop_current = [0, 0, crop_width, crop_height] + crop_best = crop_current + while crop_current[2] < img.size[0]: + crop = img.crop(tuple(crop_current)) + e = image_entropy(crop) + + if (e_max < e): + e_max = e + crop_best = list(crop_current) + + crop_current[0] += 4 + crop_current[2] += 4 + + x_mid = int((crop_best[2] - crop_best[0])/2) + y_mid = int((crop_best[3] - crop_best[1])/2) + + return { + 'x': x_mid, + 'y': y_mid, + 'weight': 1.0 + } + + +def image_entropy(im): + # greyscale image entropy + band = np.asarray(im.convert("L")) + hist, _ = np.histogram(band, bins=range(0, 256)) + hist = hist[hist > 0] + return -np.log2(hist / hist.sum()).sum() +