mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 05:45:05 +08:00
parent
98947d173e
commit
abfa22c16f
@ -94,12 +94,3 @@ def autocast(disable=False):
|
|||||||
return contextlib.nullcontext()
|
return contextlib.nullcontext()
|
||||||
|
|
||||||
return torch.autocast("cuda")
|
return torch.autocast("cuda")
|
||||||
|
|
||||||
|
|
||||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
|
|
||||||
def mps_contiguous(input_tensor, device):
|
|
||||||
return input_tensor.contiguous() if device.type == 'mps' else input_tensor
|
|
||||||
|
|
||||||
|
|
||||||
def mps_contiguous_to(input_tensor, device):
|
|
||||||
return mps_contiguous(input_tensor, device).to(device)
|
|
||||||
|
@ -199,7 +199,7 @@ def upscale_without_tiling(model, img):
|
|||||||
img = img[:, :, ::-1]
|
img = img[:, :, ::-1]
|
||||||
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
|
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
|
||||||
img = torch.from_numpy(img).float()
|
img = torch.from_numpy(img).float()
|
||||||
img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_esrgan)
|
img = img.unsqueeze(0).to(devices.device_esrgan)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
output = model(img)
|
output = model(img)
|
||||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||||
|
@ -54,8 +54,9 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
|||||||
img = img[:, :, ::-1]
|
img = img[:, :, ::-1]
|
||||||
img = np.moveaxis(img, 2, 0) / 255
|
img = np.moveaxis(img, 2, 0) / 255
|
||||||
img = torch.from_numpy(img).float()
|
img = torch.from_numpy(img).float()
|
||||||
img = devices.mps_contiguous_to(img.unsqueeze(0), device)
|
img = img.unsqueeze(0).to(device)
|
||||||
|
|
||||||
|
img = img.to(device)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
output = model(img)
|
output = model(img)
|
||||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||||
|
@ -111,7 +111,7 @@ def upscale(
|
|||||||
img = img[:, :, ::-1]
|
img = img[:, :, ::-1]
|
||||||
img = np.moveaxis(img, 2, 0) / 255
|
img = np.moveaxis(img, 2, 0) / 255
|
||||||
img = torch.from_numpy(img).float()
|
img = torch.from_numpy(img).float()
|
||||||
img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_swinir)
|
img = img.unsqueeze(0).to(devices.device_swinir)
|
||||||
with torch.no_grad(), precision_scope("cuda"):
|
with torch.no_grad(), precision_scope("cuda"):
|
||||||
_, _, h_old, w_old = img.size()
|
_, _, h_old, w_old = img.size()
|
||||||
h_pad = (h_old // window_size + 1) * window_size - h_old
|
h_pad = (h_old // window_size + 1) * window_size - h_old
|
||||||
|
Loading…
Reference in New Issue
Block a user