Label and load SD .safetensors model files

This commit is contained in:
Tim Patton 2022-11-19 14:49:22 -05:00
parent 47a44c7e42
commit ac7ecd2d84
4 changed files with 19 additions and 8 deletions

View File

@ -84,6 +84,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- API - API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML. - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) - via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- Can use safetensors to safely load model files without python pickle
## Where are Aesthetic Gradients?!?! ## Where are Aesthetic Gradients?!?!
Aesthetic Gradients are now an extension. You can install it using git: Aesthetic Gradients are now an extension. You can install it using git:

View File

@ -82,6 +82,7 @@ def cleanup_models():
src_path = models_path src_path = models_path
dest_path = os.path.join(models_path, "Stable-diffusion") dest_path = os.path.join(models_path, "Stable-diffusion")
move_files(src_path, dest_path, ".ckpt") move_files(src_path, dest_path, ".ckpt")
move_files(src_path, dest_path, ".safetensors")
src_path = os.path.join(root_path, "ESRGAN") src_path = os.path.join(root_path, "ESRGAN")
dest_path = os.path.join(models_path, "ESRGAN") dest_path = os.path.join(models_path, "ESRGAN")
move_files(src_path, dest_path) move_files(src_path, dest_path)

View File

@ -4,6 +4,7 @@ import sys
import gc import gc
from collections import namedtuple from collections import namedtuple
import torch import torch
from safetensors.torch import load_file
import re import re
from omegaconf import OmegaConf from omegaconf import OmegaConf
@ -16,9 +17,10 @@ from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inp
model_dir = "Stable-diffusion" model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir)) model_path = os.path.abspath(os.path.join(models_path, model_dir))
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config']) CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config', 'exttype'])
checkpoints_list = {} checkpoints_list = {}
checkpoints_loaded = collections.OrderedDict() checkpoints_loaded = collections.OrderedDict()
checkpoint_types = {'.ckpt':'pickle','.safetensors':'safetensors'}
try: try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
@ -45,7 +47,7 @@ def checkpoint_tiles():
def list_models(): def list_models():
checkpoints_list.clear() checkpoints_list.clear()
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"]) model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt",".safetensors"])
def modeltitle(path, shorthash): def modeltitle(path, shorthash):
abspath = os.path.abspath(path) abspath = os.path.abspath(path)
@ -60,15 +62,15 @@ def list_models():
if name.startswith("\\") or name.startswith("/"): if name.startswith("\\") or name.startswith("/"):
name = name[1:] name = name[1:]
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] shortname, ext = os.path.splitext(name.replace("/", "_").replace("\\", "_"))
return f'{name} [{shorthash}]', shortname return f'{name} [{checkpoint_types[ext]}] [{shorthash}]', shortname
cmd_ckpt = shared.cmd_opts.ckpt cmd_ckpt = shared.cmd_opts.ckpt
if os.path.exists(cmd_ckpt): if os.path.exists(cmd_ckpt):
h = model_hash(cmd_ckpt) h = model_hash(cmd_ckpt)
title, short_model_name = modeltitle(cmd_ckpt, h) title, short_model_name = modeltitle(cmd_ckpt, h)
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config) checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config, '')
shared.opts.data['sd_model_checkpoint'] = title shared.opts.data['sd_model_checkpoint'] = title
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
@ -76,12 +78,12 @@ def list_models():
h = model_hash(filename) h = model_hash(filename)
title, short_model_name = modeltitle(filename, h) title, short_model_name = modeltitle(filename, h)
basename, _ = os.path.splitext(filename) basename, ext = os.path.splitext(filename)
config = basename + ".yaml" config = basename + ".yaml"
if not os.path.exists(config): if not os.path.exists(config):
config = shared.cmd_opts.config config = shared.cmd_opts.config
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config) checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config, ext)
def get_closet_checkpoint_match(searchString): def get_closet_checkpoint_match(searchString):
@ -173,7 +175,13 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
# load from file # load from file
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) if(checkpoint_types[checkpoint_info.exttype] == 'safetensors'):
# safely load weights
# TODO: safetensors supports zero copy fast load to gpu, see issue #684
pl_sd = load_file(checkpoint_file, device=shared.weight_load_location)
else:
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
if "global_step" in pl_sd: if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}") print(f"Global Step: {pl_sd['global_step']}")

View File

@ -28,3 +28,4 @@ kornia
lark lark
inflection inflection
GitPython GitPython
safetensors