mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-29 19:05:05 +08:00
add preserve_colors flag for images.resize_image
This commit is contained in:
parent
0d7a17add5
commit
ad4fac2f8e
114
modules/colorfix.py
Normal file
114
modules/colorfix.py
Normal file
@ -0,0 +1,114 @@
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch import Tensor
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torchvision.transforms import ToTensor, ToPILImage
|
||||
|
||||
def adain_color_fix(target: Image, source: Image):
|
||||
# Convert images to tensors
|
||||
to_tensor = ToTensor()
|
||||
target_tensor = to_tensor(target).unsqueeze(0)
|
||||
source_tensor = to_tensor(source).unsqueeze(0)
|
||||
|
||||
# Apply adaptive instance normalization
|
||||
result_tensor = adaptive_instance_normalization(target_tensor, source_tensor)
|
||||
|
||||
# Convert tensor back to image
|
||||
to_image = ToPILImage()
|
||||
result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0))
|
||||
|
||||
return result_image
|
||||
|
||||
def wavelet_color_fix(target: Image, source: Image):
|
||||
# Convert images to tensors
|
||||
to_tensor = ToTensor()
|
||||
target_tensor = to_tensor(target).unsqueeze(0)
|
||||
source_tensor = to_tensor(source).unsqueeze(0)
|
||||
|
||||
# Apply wavelet reconstruction
|
||||
result_tensor = wavelet_reconstruction(target_tensor, source_tensor)
|
||||
|
||||
# Convert tensor back to image
|
||||
to_image = ToPILImage()
|
||||
result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0))
|
||||
|
||||
return result_image
|
||||
|
||||
def calc_mean_std(feat: Tensor, eps=1e-5):
|
||||
"""Calculate mean and std for adaptive_instance_normalization.
|
||||
Args:
|
||||
feat (Tensor): 4D tensor.
|
||||
eps (float): A small value added to the variance to avoid
|
||||
divide-by-zero. Default: 1e-5.
|
||||
"""
|
||||
size = feat.size()
|
||||
assert len(size) == 4, 'The input feature should be 4D tensor.'
|
||||
b, c = size[:2]
|
||||
feat_var = feat.view(b, c, -1).var(dim=2) + eps
|
||||
feat_std = feat_var.sqrt().view(b, c, 1, 1)
|
||||
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
|
||||
return feat_mean, feat_std
|
||||
|
||||
def adaptive_instance_normalization(content_feat:Tensor, style_feat:Tensor):
|
||||
"""Adaptive instance normalization.
|
||||
Adjust the reference features to have the similar color and illuminations
|
||||
as those in the degradate features.
|
||||
Args:
|
||||
content_feat (Tensor): The reference feature.
|
||||
style_feat (Tensor): The degradate features.
|
||||
"""
|
||||
size = content_feat.size()
|
||||
style_mean, style_std = calc_mean_std(style_feat)
|
||||
content_mean, content_std = calc_mean_std(content_feat)
|
||||
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
|
||||
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
||||
|
||||
def wavelet_blur(image: Tensor, radius: int):
|
||||
"""
|
||||
Apply wavelet blur to the input tensor.
|
||||
"""
|
||||
# input shape: (1, 3, H, W)
|
||||
# convolution kernel
|
||||
kernel_vals = [
|
||||
[0.0625, 0.125, 0.0625],
|
||||
[0.125, 0.25, 0.125],
|
||||
[0.0625, 0.125, 0.0625],
|
||||
]
|
||||
kernel = torch.tensor(kernel_vals, dtype=image.dtype, device=image.device)
|
||||
# add channel dimensions to the kernel to make it a 4D tensor
|
||||
kernel = kernel[None, None]
|
||||
# repeat the kernel across all input channels
|
||||
kernel = kernel.repeat(3, 1, 1, 1)
|
||||
image = F.pad(image, (radius, radius, radius, radius), mode='replicate')
|
||||
# apply convolution
|
||||
output = F.conv2d(image, kernel, groups=3, dilation=radius)
|
||||
return output
|
||||
|
||||
def wavelet_decomposition(image: Tensor, levels=5):
|
||||
"""
|
||||
Apply wavelet decomposition to the input tensor.
|
||||
This function only returns the low frequency & the high frequency.
|
||||
"""
|
||||
high_freq = torch.zeros_like(image)
|
||||
for i in range(levels):
|
||||
radius = 2 ** i
|
||||
low_freq = wavelet_blur(image, radius)
|
||||
high_freq += (image - low_freq)
|
||||
image = low_freq
|
||||
|
||||
return high_freq, low_freq
|
||||
|
||||
def wavelet_reconstruction(content_feat:Tensor, style_feat:Tensor):
|
||||
"""
|
||||
Apply wavelet decomposition, so that the content will have the same color as the style.
|
||||
"""
|
||||
# calculate the wavelet decomposition of the content feature
|
||||
content_high_freq, content_low_freq = wavelet_decomposition(content_feat)
|
||||
del content_low_freq
|
||||
# calculate the wavelet decomposition of the style feature
|
||||
style_high_freq, style_low_freq = wavelet_decomposition(style_feat)
|
||||
del style_high_freq
|
||||
# reconstruct the content feature with the style's high frequency
|
||||
return content_high_freq + style_low_freq
|
||||
|
@ -22,6 +22,7 @@ import hashlib
|
||||
from modules import sd_samplers, shared, script_callbacks, errors
|
||||
from modules.paths_internal import roboto_ttf_file
|
||||
from modules.shared import opts
|
||||
from modules.colorfix import wavelet_color_fix
|
||||
|
||||
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
||||
|
||||
@ -249,7 +250,7 @@ def draw_prompt_matrix(im, width, height, all_prompts, margin=0):
|
||||
return draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin)
|
||||
|
||||
|
||||
def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
||||
def resize_image(resize_mode, im, width, height, upscaler_name=None, preserve_colors=False):
|
||||
"""
|
||||
Resizes an image with the specified resize_mode, width, and height.
|
||||
|
||||
@ -263,7 +264,7 @@ def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
||||
height: The height to resize the image to.
|
||||
upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img.
|
||||
"""
|
||||
|
||||
before_resize = im
|
||||
upscaler_name = upscaler_name or opts.upscaler_for_img2img
|
||||
|
||||
def resize(im, w, h):
|
||||
@ -285,6 +286,9 @@ def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
||||
if im.width != w or im.height != h:
|
||||
im = im.resize((w, h), resample=LANCZOS)
|
||||
|
||||
if preserve_colors:
|
||||
im = wavelet_color_fix(im, before_resize.resize(im.size))
|
||||
|
||||
return im
|
||||
|
||||
if resize_mode == 0:
|
||||
|
@ -67,7 +67,7 @@ def uncrop(image, dest_size, paste_loc):
|
||||
base_image = Image.new('RGBA', dest_size)
|
||||
factor_x = w // image.size[0]
|
||||
factor_y = h // image.size[1]
|
||||
image = images.resize_image(1, image, w, h)
|
||||
image = images.resize_image(1, image, w, h, preserve_colors=True)
|
||||
paste_x = max(x - factor_x, 0)
|
||||
paste_y = max(y - factor_y, 0)
|
||||
base_image.paste(image, (paste_x, paste_y))
|
||||
@ -1683,7 +1683,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
image = images.flatten(img, opts.img2img_background_color)
|
||||
|
||||
if crop_region is None and self.resize_mode != 3:
|
||||
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
||||
image = images.resize_image(self.resize_mode, image, self.width, self.height, preserve_colors=True)
|
||||
|
||||
if image_mask is not None:
|
||||
if self.mask_for_overlay.size != (image.width, image.height):
|
||||
@ -1696,7 +1696,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
# crop_region is not None if we are doing inpaint full res
|
||||
if crop_region is not None:
|
||||
image = image.crop(crop_region)
|
||||
image = images.resize_image(2, image, self.width, self.height)
|
||||
image = images.resize_image(2, image, self.width, self.height, preserve_colors=True)
|
||||
|
||||
if image_mask is not None:
|
||||
if self.inpainting_fill != 1:
|
||||
|
Loading…
Reference in New Issue
Block a user