mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-21 13:50:12 +08:00
alternative solution for infotext issue
This commit is contained in:
parent
d0bf509fa1
commit
ae36e0899f
@ -600,9 +600,13 @@ def program_version():
|
|||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False):
|
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
|
||||||
|
if index is None:
|
||||||
index = position_in_batch + iteration * p.batch_size
|
index = position_in_batch + iteration * p.batch_size
|
||||||
|
|
||||||
|
if all_negative_prompts is None:
|
||||||
|
all_negative_prompts = p.all_negative_prompts
|
||||||
|
|
||||||
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
|
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
|
||||||
enable_hr = getattr(p, 'enable_hr', False)
|
enable_hr = getattr(p, 'enable_hr', False)
|
||||||
token_merging_ratio = p.get_token_merging_ratio()
|
token_merging_ratio = p.get_token_merging_ratio()
|
||||||
@ -642,7 +646,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
|||||||
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
|
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
|
||||||
|
|
||||||
prompt_text = p.prompt if use_main_prompt else all_prompts[index]
|
prompt_text = p.prompt if use_main_prompt else all_prompts[index]
|
||||||
negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
|
negative_prompt_text = f"\nNegative prompt: {all_negative_prompts[index]}" if all_negative_prompts[index] else ""
|
||||||
|
|
||||||
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
|
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
|
||||||
|
|
||||||
@ -716,29 +720,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
else:
|
else:
|
||||||
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
|
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
|
||||||
|
|
||||||
def infotext(iteration=0, position_in_batch=0, use_main_prompt=False):
|
|
||||||
all_prompts = p.all_prompts[:]
|
|
||||||
all_negative_prompts = p.all_negative_prompts[:]
|
|
||||||
all_seeds = p.all_seeds[:]
|
|
||||||
all_subseeds = p.all_subseeds[:]
|
|
||||||
|
|
||||||
# apply changes to generation data
|
|
||||||
all_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.prompts
|
|
||||||
all_negative_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.negative_prompts
|
|
||||||
all_seeds[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.seeds
|
|
||||||
all_subseeds[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.subseeds
|
|
||||||
|
|
||||||
# update p.all_negative_prompts in case extensions changed the size of the batch
|
|
||||||
# create_infotext below uses it
|
|
||||||
old_negative_prompts = p.all_negative_prompts
|
|
||||||
p.all_negative_prompts = all_negative_prompts
|
|
||||||
|
|
||||||
try:
|
|
||||||
return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch, use_main_prompt)
|
|
||||||
finally:
|
|
||||||
# restore p.all_negative_prompts in case extensions changed the size of the batch
|
|
||||||
p.all_negative_prompts = old_negative_prompts
|
|
||||||
|
|
||||||
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
||||||
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||||
|
|
||||||
@ -826,9 +807,20 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
if p.scripts is not None:
|
if p.scripts is not None:
|
||||||
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
|
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
|
||||||
|
|
||||||
postprocess_batch_list_args = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
|
batch_params = scripts.PostprocessBatchListArgs(
|
||||||
p.scripts.postprocess_batch_list(p, postprocess_batch_list_args, batch_number=n)
|
list(x_samples_ddim),
|
||||||
x_samples_ddim = postprocess_batch_list_args.images
|
p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size],
|
||||||
|
p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size],
|
||||||
|
p.seeds,
|
||||||
|
p.subseeds,
|
||||||
|
)
|
||||||
|
|
||||||
|
if p.scripts is not None:
|
||||||
|
p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
|
||||||
|
x_samples_ddim = batch_params.images
|
||||||
|
|
||||||
|
def infotext(index=0, use_main_prompt=False):
|
||||||
|
return create_infotext(p, batch_params.prompts, batch_params.seeds, batch_params.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=batch_params.negative_prompts)
|
||||||
|
|
||||||
for i, x_sample in enumerate(x_samples_ddim):
|
for i, x_sample in enumerate(x_samples_ddim):
|
||||||
p.batch_index = i
|
p.batch_index = i
|
||||||
@ -838,7 +830,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
|
|
||||||
if p.restore_faces:
|
if p.restore_faces:
|
||||||
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
|
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
|
||||||
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
|
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
@ -855,15 +847,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
if p.color_corrections is not None and i < len(p.color_corrections):
|
if p.color_corrections is not None and i < len(p.color_corrections):
|
||||||
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
|
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
|
||||||
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||||
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
|
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
|
||||||
image = apply_color_correction(p.color_corrections[i], image)
|
image = apply_color_correction(p.color_corrections[i], image)
|
||||||
|
|
||||||
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||||
|
|
||||||
if opts.samples_save and not p.do_not_save_samples:
|
if opts.samples_save and not p.do_not_save_samples:
|
||||||
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
|
||||||
|
|
||||||
text = infotext(n, i)
|
text = infotext(i)
|
||||||
infotexts.append(text)
|
infotexts.append(text)
|
||||||
if opts.enable_pnginfo:
|
if opts.enable_pnginfo:
|
||||||
image.info["parameters"] = text
|
image.info["parameters"] = text
|
||||||
@ -874,10 +866,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
|
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
|
||||||
|
|
||||||
if opts.save_mask:
|
if opts.save_mask:
|
||||||
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
|
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
|
||||||
|
|
||||||
if opts.save_mask_composite:
|
if opts.save_mask_composite:
|
||||||
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
|
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
|
||||||
|
|
||||||
if opts.return_mask:
|
if opts.return_mask:
|
||||||
output_images.append(image_mask)
|
output_images.append(image_mask)
|
||||||
|
@ -17,8 +17,12 @@ class PostprocessImageArgs:
|
|||||||
|
|
||||||
|
|
||||||
class PostprocessBatchListArgs:
|
class PostprocessBatchListArgs:
|
||||||
def __init__(self, images):
|
def __init__(self, images, prompts, negative_prompts, seeds, subseeds):
|
||||||
self.images = images
|
self.images = images
|
||||||
|
self.prompts = prompts
|
||||||
|
self.negative_prompts = negative_prompts
|
||||||
|
self.seeds = seeds
|
||||||
|
self.subseeds = subseeds
|
||||||
|
|
||||||
|
|
||||||
class Script:
|
class Script:
|
||||||
|
Loading…
Reference in New Issue
Block a user