diff --git a/modules/sd_schedulers.py b/modules/sd_schedulers.py index 118beea5d..84b0abb6a 100644 --- a/modules/sd_schedulers.py +++ b/modules/sd_schedulers.py @@ -76,6 +76,16 @@ def kl_optimal(n, sigma_min, sigma_max, device): sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max) return sigmas + +def simple_scheduler(n, sigma_min, sigma_max, inner_model, device): + sigs = [] + ss = len(inner_model.sigmas) / n + for x in range(n): + sigs += [float(inner_model.sigmas[-(1 + int(x * ss))])] + sigs += [0.0] + return torch.FloatTensor(sigs).to(device) + + def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False): start = inner_model.sigma_to_t(torch.tensor(sigma_max)) end = inner_model.sigma_to_t(torch.tensor(sigma_min)) @@ -92,6 +102,7 @@ def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, fl sigs += [0.0] return torch.FloatTensor(sigs).to(device) + def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device): sigs = [] ss = max(len(inner_model.sigmas) // n, 1) @@ -113,6 +124,7 @@ schedulers = [ Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]), Scheduler('kl_optimal', 'KL Optimal', kl_optimal), Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas), + Scheduler('simple', 'Simple', simple_scheduler, need_inner_model=True), Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True), Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True), ]