mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 03:40:14 +08:00
added support for hypernetworks (???)
This commit is contained in:
parent
2995107fa2
commit
bad7cb29ce
55
modules/hypernetwork.py
Normal file
55
modules/hypernetwork.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
import glob
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
from modules import devices
|
||||||
|
|
||||||
|
|
||||||
|
class HypernetworkModule(torch.nn.Module):
|
||||||
|
def __init__(self, dim, state_dict):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.linear1 = torch.nn.Linear(dim, dim * 2)
|
||||||
|
self.linear2 = torch.nn.Linear(dim * 2, dim)
|
||||||
|
|
||||||
|
self.load_state_dict(state_dict, strict=True)
|
||||||
|
self.to(devices.device)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + (self.linear2(self.linear1(x)))
|
||||||
|
|
||||||
|
|
||||||
|
class Hypernetwork:
|
||||||
|
filename = None
|
||||||
|
name = None
|
||||||
|
|
||||||
|
def __init__(self, filename):
|
||||||
|
self.filename = filename
|
||||||
|
self.name = os.path.splitext(os.path.basename(filename))[0]
|
||||||
|
self.layers = {}
|
||||||
|
|
||||||
|
state_dict = torch.load(filename, map_location='cpu')
|
||||||
|
for size, sd in state_dict.items():
|
||||||
|
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
|
||||||
|
|
||||||
|
|
||||||
|
def load_hypernetworks(path):
|
||||||
|
res = {}
|
||||||
|
|
||||||
|
for filename in glob.iglob(path + '**/*.pt', recursive=True):
|
||||||
|
hn = Hypernetwork(filename)
|
||||||
|
res[hn.name] = hn
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
def apply(self, x, context=None, mask=None, original=None):
|
||||||
|
|
||||||
|
|
||||||
|
if CrossAttention.hypernetwork is not None and context.shape[2] in CrossAttention.hypernetwork:
|
||||||
|
if context.shape[1] == 77 and CrossAttention.noise_cond:
|
||||||
|
context = context + (torch.randn_like(context) * 0.1)
|
||||||
|
h_k, h_v = CrossAttention.hypernetwork[context.shape[2]]
|
||||||
|
k = self.to_k(h_k(context))
|
||||||
|
v = self.to_v(h_v(context))
|
||||||
|
else:
|
||||||
|
k = self.to_k(context)
|
||||||
|
v = self.to_v(context)
|
@ -5,6 +5,8 @@ from torch import einsum
|
|||||||
from ldm.util import default
|
from ldm.util import default
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
|
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
|
||||||
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
|
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
|
||||||
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
||||||
@ -42,8 +44,19 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
|
|||||||
|
|
||||||
q_in = self.to_q(x)
|
q_in = self.to_q(x)
|
||||||
context = default(context, x)
|
context = default(context, x)
|
||||||
k_in = self.to_k(context) * self.scale
|
|
||||||
v_in = self.to_v(context)
|
hypernetwork = shared.selected_hypernetwork()
|
||||||
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||||
|
|
||||||
|
if hypernetwork_layers is not None:
|
||||||
|
k_in = self.to_k(hypernetwork_layers[0](context))
|
||||||
|
v_in = self.to_v(hypernetwork_layers[1](context))
|
||||||
|
else:
|
||||||
|
k_in = self.to_k(context)
|
||||||
|
v_in = self.to_v(context)
|
||||||
|
|
||||||
|
k_in *= self.scale
|
||||||
|
|
||||||
del context, x
|
del context, x
|
||||||
|
|
||||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
||||||
|
@ -13,7 +13,7 @@ import modules.memmon
|
|||||||
import modules.sd_models
|
import modules.sd_models
|
||||||
import modules.styles
|
import modules.styles
|
||||||
import modules.devices as devices
|
import modules.devices as devices
|
||||||
from modules import sd_samplers
|
from modules import sd_samplers, hypernetwork
|
||||||
from modules.paths import models_path, script_path, sd_path
|
from modules.paths import models_path, script_path, sd_path
|
||||||
|
|
||||||
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
||||||
@ -76,6 +76,12 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
|
|||||||
|
|
||||||
config_filename = cmd_opts.ui_settings_file
|
config_filename = cmd_opts.ui_settings_file
|
||||||
|
|
||||||
|
hypernetworks = hypernetwork.load_hypernetworks(os.path.join(models_path, 'hypernetworks'))
|
||||||
|
|
||||||
|
|
||||||
|
def selected_hypernetwork():
|
||||||
|
return hypernetworks.get(opts.sd_hypernetwork, None)
|
||||||
|
|
||||||
|
|
||||||
class State:
|
class State:
|
||||||
interrupted = False
|
interrupted = False
|
||||||
@ -206,6 +212,7 @@ options_templates.update(options_section(('system', "System"), {
|
|||||||
|
|
||||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}),
|
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}),
|
||||||
|
"sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}),
|
||||||
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
||||||
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
|
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
|
||||||
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
|
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
|
||||||
|
@ -77,6 +77,11 @@ def apply_checkpoint(p, x, xs):
|
|||||||
modules.sd_models.reload_model_weights(shared.sd_model, info)
|
modules.sd_models.reload_model_weights(shared.sd_model, info)
|
||||||
|
|
||||||
|
|
||||||
|
def apply_hypernetwork(p, x, xs):
|
||||||
|
hn = shared.hypernetworks.get(x, None)
|
||||||
|
opts.data["sd_hypernetwork"] = hn.name if hn is not None else 'None'
|
||||||
|
|
||||||
|
|
||||||
def format_value_add_label(p, opt, x):
|
def format_value_add_label(p, opt, x):
|
||||||
if type(x) == float:
|
if type(x) == float:
|
||||||
x = round(x, 8)
|
x = round(x, 8)
|
||||||
@ -122,6 +127,7 @@ axis_options = [
|
|||||||
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list),
|
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list),
|
||||||
AxisOption("Sampler", str, apply_sampler, format_value),
|
AxisOption("Sampler", str, apply_sampler, format_value),
|
||||||
AxisOption("Checkpoint name", str, apply_checkpoint, format_value),
|
AxisOption("Checkpoint name", str, apply_checkpoint, format_value),
|
||||||
|
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value),
|
||||||
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label),
|
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label),
|
||||||
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label),
|
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label),
|
||||||
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
|
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
|
||||||
@ -193,6 +199,8 @@ class Script(scripts.Script):
|
|||||||
modules.processing.fix_seed(p)
|
modules.processing.fix_seed(p)
|
||||||
p.batch_size = 1
|
p.batch_size = 1
|
||||||
|
|
||||||
|
initial_hn = opts.sd_hypernetwork
|
||||||
|
|
||||||
def process_axis(opt, vals):
|
def process_axis(opt, vals):
|
||||||
if opt.label == 'Nothing':
|
if opt.label == 'Nothing':
|
||||||
return [0]
|
return [0]
|
||||||
@ -300,4 +308,6 @@ class Script(scripts.Script):
|
|||||||
# restore checkpoint in case it was changed by axes
|
# restore checkpoint in case it was changed by axes
|
||||||
modules.sd_models.reload_model_weights(shared.sd_model)
|
modules.sd_models.reload_model_weights(shared.sd_model)
|
||||||
|
|
||||||
|
opts.data["sd_hypernetwork"] = initial_hn
|
||||||
|
|
||||||
return processed
|
return processed
|
||||||
|
Loading…
Reference in New Issue
Block a user