mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 11:50:18 +08:00
Merge pull request #11850 from lambertae/restart_sampling
Restart sampling
This commit is contained in:
commit
bef40851af
@ -145,6 +145,7 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
|
||||
|
||||
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
|
||||
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
|
||||
- Restart sampling - https://github.com/Newbeeer/diffusion_restart_sampling
|
||||
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
|
||||
- CodeFormer - https://github.com/sczhou/CodeFormer
|
||||
- ESRGAN - https://github.com/xinntao/ESRGAN
|
||||
|
@ -30,12 +30,81 @@ samplers_k_diffusion = [
|
||||
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
|
||||
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
|
||||
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
|
||||
('Restart (new)', 'restart_sampler', ['restart'], {'scheduler': 'karras', "second_order": True}),
|
||||
]
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list = None):
|
||||
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)"""
|
||||
'''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
|
||||
'''If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list'''
|
||||
from tqdm.auto import trange
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
step_id = 0
|
||||
from k_diffusion.sampling import to_d, get_sigmas_karras
|
||||
def heun_step(x, old_sigma, new_sigma, second_order = True):
|
||||
nonlocal step_id
|
||||
denoised = model(x, old_sigma * s_in, **extra_args)
|
||||
d = to_d(x, old_sigma, denoised)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
|
||||
dt = new_sigma - old_sigma
|
||||
if new_sigma == 0 or not second_order:
|
||||
# Euler method
|
||||
x = x + d * dt
|
||||
else:
|
||||
# Heun's method
|
||||
x_2 = x + d * dt
|
||||
denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
|
||||
d_2 = to_d(x_2, new_sigma, denoised_2)
|
||||
d_prime = (d + d_2) / 2
|
||||
x = x + d_prime * dt
|
||||
step_id += 1
|
||||
return x
|
||||
steps = sigmas.shape[0] - 1
|
||||
if restart_list is None:
|
||||
if steps >= 20:
|
||||
restart_steps = 9
|
||||
restart_times = 1
|
||||
if steps >= 36:
|
||||
restart_steps = steps // 4
|
||||
restart_times = 2
|
||||
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
|
||||
restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
|
||||
else:
|
||||
restart_list = dict()
|
||||
temp_list = dict()
|
||||
for key, value in restart_list.items():
|
||||
temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value
|
||||
restart_list = temp_list
|
||||
step_list = []
|
||||
for i in range(len(sigmas) - 1):
|
||||
step_list.append((sigmas[i], sigmas[i + 1]))
|
||||
if i + 1 in restart_list:
|
||||
restart_steps, restart_times, restart_max = restart_list[i + 1]
|
||||
min_idx = i + 1
|
||||
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
|
||||
if max_idx < min_idx:
|
||||
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
|
||||
while restart_times > 0:
|
||||
restart_times -= 1
|
||||
step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])])
|
||||
last_sigma = None
|
||||
for i in trange(len(step_list), disable=disable):
|
||||
if last_sigma is None:
|
||||
last_sigma = step_list[i][0]
|
||||
elif last_sigma < step_list[i][0]:
|
||||
x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (step_list[i][0] ** 2 - last_sigma ** 2) ** 0.5
|
||||
x = heun_step(x, step_list[i][0], step_list[i][1])
|
||||
last_sigma = step_list[i][1]
|
||||
return x
|
||||
|
||||
samplers_data_k_diffusion = [
|
||||
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
|
||||
for label, funcname, aliases, options in samplers_k_diffusion
|
||||
if hasattr(k_diffusion.sampling, funcname)
|
||||
if (hasattr(k_diffusion.sampling, funcname) or funcname == 'restart_sampler')
|
||||
]
|
||||
|
||||
sampler_extra_params = {
|
||||
@ -270,7 +339,7 @@ class KDiffusionSampler:
|
||||
|
||||
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
|
||||
self.funcname = funcname
|
||||
self.func = getattr(k_diffusion.sampling, self.funcname)
|
||||
self.func = getattr(k_diffusion.sampling, self.funcname) if funcname != "restart_sampler" else restart_sampler
|
||||
self.extra_params = sampler_extra_params.get(funcname, [])
|
||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||
self.sampler_noises = None
|
||||
|
Loading…
Reference in New Issue
Block a user