diff --git a/modules/processing.py b/modules/processing.py index 159548dba..c05e608ab 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -108,17 +108,18 @@ def txt2img_image_conditioning(sd_model, x, width, height): else: sd = sd_model.model.state_dict() diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None) - if diffusion_model_input.shape[1] == 9: - # The "masked-image" in this case will just be all 0.5 since the entire image is masked. - image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5 - image_conditioning = images_tensor_to_samples(image_conditioning, - approximation_indexes.get(opts.sd_vae_encode_method)) + if diffusion_model_input is not None: + if diffusion_model_input.shape[1] == 9: + # The "masked-image" in this case will just be all 0.5 since the entire image is masked. + image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5 + image_conditioning = images_tensor_to_samples(image_conditioning, + approximation_indexes.get(opts.sd_vae_encode_method)) - # Add the fake full 1s mask to the first dimension. - image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0) - image_conditioning = image_conditioning.to(x.dtype) + # Add the fake full 1s mask to the first dimension. + image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0) + image_conditioning = image_conditioning.to(x.dtype) - return image_conditioning + return image_conditioning # Dummy zero conditioning if we're not using inpainting or unclip models. # Still takes up a bit of memory, but no encoder call. @@ -378,8 +379,9 @@ class StableDiffusionProcessing: sd = self.sampler.model_wrap.inner_model.model.state_dict() diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None) - if diffusion_model_input.shape[1] == 9: - return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) + if diffusion_model_input is not None: + if diffusion_model_input.shape[1] == 9: + return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) # Dummy zero conditioning if we're not using inpainting or depth model. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) diff --git a/modules/sd_models_xl.py b/modules/sd_models_xl.py index d8a9a73bc..162d0fee8 100644 --- a/modules/sd_models_xl.py +++ b/modules/sd_models_xl.py @@ -36,8 +36,9 @@ def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond): sd = self.model.state_dict() diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None) - if diffusion_model_input.shape[1] == 9: - x = torch.cat([x] + cond['c_concat'], dim=1) + if diffusion_model_input is not None: + if diffusion_model_input.shape[1] == 9: + x = torch.cat([x] + cond['c_concat'], dim=1) return self.model(x, t, cond)