mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 12:25:06 +08:00
Drop dependency on basicsr
This commit is contained in:
parent
f476649c02
commit
c9174253fb
@ -17,6 +17,28 @@ if TYPE_CHECKING:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def bgr_image_to_rgb_tensor(img: np.ndarray) -> torch.Tensor:
|
||||
"""Convert a BGR NumPy image in [0..1] range to a PyTorch RGB float32 tensor."""
|
||||
assert img.shape[2] == 3, "image must be RGB"
|
||||
if img.dtype == "float64":
|
||||
img = img.astype("float32")
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
return torch.from_numpy(img.transpose(2, 0, 1)).float()
|
||||
|
||||
|
||||
def rgb_tensor_to_bgr_image(tensor: torch.Tensor, *, min_max=(0.0, 1.0)) -> np.ndarray:
|
||||
"""
|
||||
Convert a PyTorch RGB tensor in range `min_max` to a BGR NumPy image in [0..1] range.
|
||||
"""
|
||||
tensor = tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
||||
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
|
||||
assert tensor.dim() == 3, "tensor must be RGB"
|
||||
img_np = tensor.numpy().transpose(1, 2, 0)
|
||||
if img_np.shape[2] == 1: # gray image, no RGB/BGR required
|
||||
return np.squeeze(img_np, axis=2)
|
||||
return cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)
|
||||
|
||||
|
||||
def create_face_helper(device) -> FaceRestoreHelper:
|
||||
from facexlib.detection import retinaface
|
||||
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
||||
@ -43,7 +65,6 @@ def restore_with_face_helper(
|
||||
|
||||
`restore_face` should take a cropped face image and return a restored face image.
|
||||
"""
|
||||
from basicsr.utils import img2tensor, tensor2img
|
||||
from torchvision.transforms.functional import normalize
|
||||
np_image = np_image[:, :, ::-1]
|
||||
original_resolution = np_image.shape[0:2]
|
||||
@ -56,23 +77,19 @@ def restore_with_face_helper(
|
||||
face_helper.align_warp_face()
|
||||
logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces))
|
||||
for cropped_face in face_helper.cropped_faces:
|
||||
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
||||
cropped_face_t = bgr_image_to_rgb_tensor(cropped_face / 255.0)
|
||||
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
||||
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
|
||||
|
||||
try:
|
||||
with torch.no_grad():
|
||||
restored_face = tensor2img(
|
||||
restore_face(cropped_face_t),
|
||||
rgb2bgr=True,
|
||||
min_max=(-1, 1),
|
||||
)
|
||||
cropped_face_t = restore_face(cropped_face_t)
|
||||
devices.torch_gc()
|
||||
except Exception:
|
||||
errors.report('Failed face-restoration inference', exc_info=True)
|
||||
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
|
||||
|
||||
restored_face = restored_face.astype('uint8')
|
||||
restored_face = rgb_tensor_to_bgr_image(cropped_face_t, min_max=(-1, 1))
|
||||
restored_face = (restored_face * 255.0).astype('uint8')
|
||||
face_helper.add_restored_face(restored_face)
|
||||
|
||||
logger.debug("Merging restored faces into image")
|
||||
|
@ -2,7 +2,6 @@ GitPython
|
||||
Pillow
|
||||
accelerate
|
||||
|
||||
basicsr
|
||||
blendmodes
|
||||
clean-fid
|
||||
einops
|
||||
|
@ -1,7 +1,6 @@
|
||||
GitPython==3.1.32
|
||||
Pillow==9.5.0
|
||||
accelerate==0.21.0
|
||||
basicsr==1.4.2
|
||||
blendmodes==2022
|
||||
clean-fid==0.1.35
|
||||
einops==0.4.1
|
||||
|
Loading…
Reference in New Issue
Block a user