mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-29 02:45:05 +08:00
Prompt matrix now draws text like in demo.
This commit is contained in:
parent
61bfa6c16b
commit
cb118c4036
12
README.md
12
README.md
@ -75,17 +75,17 @@ Pick out of three sampling methods for txt2img: DDIM, PLMS, k-diffusion:
|
||||
|
||||
### Prompt matrix
|
||||
Separate multiple prompts using the `|` character, and the system will produce an image for every combination of them.
|
||||
For example, if you use `a house in a field of grass|at dawn|illustration` prompt, there are four combinations possible (first part of prompt is always kept):
|
||||
For example, if you use `a busy city street in a modern city|illustration|cinematic lighting` prompt, there are four combinations possible (first part of prompt is always kept):
|
||||
|
||||
- `a house in a field of grass`
|
||||
- `a house in a field of grass, at dawn`
|
||||
- `a house in a field of grass, illustration`
|
||||
- `a house in a field of grass, at dawn, illustration`
|
||||
- `a busy city street in a modern city`
|
||||
- `a busy city street in a modern city, illustration`
|
||||
- `a busy city street in a modern city, cinematic lighting`
|
||||
- `a busy city street in a modern city, illustration, cinematic lighting`
|
||||
|
||||
Four images will be produced, in this order, all with same seed and each with corresponding prompt:
|
||||
![](images/prompt-matrix.png)
|
||||
|
||||
Another example, this time with 5 prompts and 16 variations, (text added manually):
|
||||
Another example, this time with 5 prompts and 16 variations:
|
||||
![](images/prompt_matrix.jpg)
|
||||
|
||||
### Flagging
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 1.7 MiB After Width: | Height: | Size: 1.8 MiB |
Binary file not shown.
Before Width: | Height: | Size: 770 KiB After Width: | Height: | Size: 1.2 MiB |
129
webui.py
129
webui.py
@ -1,11 +1,10 @@
|
||||
import PIL
|
||||
import argparse, os, sys, glob
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import gradio as gr
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
from PIL import Image, ImageFont, ImageDraw
|
||||
from itertools import islice
|
||||
from einops import rearrange, repeat
|
||||
from torch import autocast
|
||||
@ -76,23 +75,6 @@ def load_model_from_config(config, ckpt, verbose=False):
|
||||
return model
|
||||
|
||||
|
||||
def load_img_pil(img_pil):
|
||||
image = img_pil.convert("RGB")
|
||||
w, h = image.size
|
||||
print(f"loaded input image of size ({w}, {h})")
|
||||
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
|
||||
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
||||
print(f"cropped image to size ({w}, {h})")
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image)
|
||||
return 2. * image - 1.
|
||||
|
||||
|
||||
def load_img(path):
|
||||
return load_img_pil(Image.open(path))
|
||||
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
@ -179,6 +161,71 @@ def image_grid(imgs, batch_size, round_down=False):
|
||||
return grid
|
||||
|
||||
|
||||
def draw_prompt_matrix(im, width, height, all_prompts):
|
||||
def wrap(text, d, font, line_length):
|
||||
lines = ['']
|
||||
for word in text.split():
|
||||
line = f'{lines[-1]} {word}'.strip()
|
||||
if d.textlength(line, font=font) <= line_length:
|
||||
lines[-1] = line
|
||||
else:
|
||||
lines.append(word)
|
||||
return '\n'.join(lines)
|
||||
|
||||
def draw_texts(pos, x, y, texts, sizes):
|
||||
for i, (text, size) in enumerate(zip(texts, sizes)):
|
||||
active = pos & (1 << i) != 0
|
||||
|
||||
if not active:
|
||||
text = '\u0336'.join(text) + '\u0336'
|
||||
|
||||
d.multiline_text((x, y + size[1] / 2), text, font=fnt, fill=color_active if active else color_inactive, anchor="mm", align="center")
|
||||
|
||||
y += size[1] + line_spacing
|
||||
|
||||
fontsize = (width + height) // 25
|
||||
line_spacing = fontsize // 2
|
||||
fnt = ImageFont.truetype("arial.ttf", fontsize)
|
||||
color_active = (0, 0, 0)
|
||||
color_inactive = (153, 153, 153)
|
||||
|
||||
pad_top = height // 4
|
||||
pad_left = width * 3 // 4
|
||||
|
||||
cols = im.width // width
|
||||
rows = im.height // height
|
||||
|
||||
prompts = all_prompts[1:]
|
||||
|
||||
result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white")
|
||||
result.paste(im, (pad_left, pad_top))
|
||||
|
||||
d = ImageDraw.Draw(result)
|
||||
|
||||
boundary = math.ceil(len(prompts) / 2)
|
||||
prompts_horiz = [wrap(x, d, fnt, width) for x in prompts[:boundary]]
|
||||
prompts_vert = [wrap(x, d, fnt, pad_left) for x in prompts[boundary:]]
|
||||
|
||||
sizes_hor = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_horiz]]
|
||||
sizes_ver = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_vert]]
|
||||
hor_text_height = sum([x[1] + line_spacing for x in sizes_hor]) - line_spacing
|
||||
ver_text_height = sum([x[1] + line_spacing for x in sizes_ver]) - line_spacing
|
||||
|
||||
for col in range(cols):
|
||||
x = pad_left + width * col + width / 2
|
||||
y = pad_top / 2 - hor_text_height / 2
|
||||
|
||||
draw_texts(col, x, y, prompts_horiz, sizes_hor)
|
||||
|
||||
for row in range(rows):
|
||||
x = pad_left / 2
|
||||
y = pad_top + height * row + height / 2 - ver_text_height / 2
|
||||
|
||||
draw_texts(row, x, y, prompts_vert, sizes_ver)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, prompt_matrix: bool, ddim_eta: float, n_iter: int, n_samples: int, cfg_scale: float, seed: int, height: int, width: int):
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
@ -212,30 +259,23 @@ def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, pro
|
||||
grid_count = len(os.listdir(outpath)) - 1
|
||||
|
||||
prompt_matrix_prompts = []
|
||||
comment = ""
|
||||
prompt_matrix_parts = []
|
||||
if prompt_matrix:
|
||||
keep_same_seed = True
|
||||
comment = "Image prompts:\n\n"
|
||||
|
||||
items = prompt.split("|")
|
||||
combination_count = 2 ** (len(items)-1)
|
||||
prompt_matrix_parts = prompt.split("|")
|
||||
combination_count = 2 ** (len(prompt_matrix_parts)-1)
|
||||
for combination_num in range(combination_count):
|
||||
current = items[0]
|
||||
label = 'A'
|
||||
current = prompt_matrix_parts[0]
|
||||
|
||||
for n, text in enumerate(items[1:]):
|
||||
for n, text in enumerate(prompt_matrix_parts[1:]):
|
||||
if combination_num & (2**n) > 0:
|
||||
current += ("" if text.strip().startswith(",") else ", ") + text
|
||||
label += chr(ord('B') + n)
|
||||
|
||||
comment += " - " + label + "\n"
|
||||
|
||||
prompt_matrix_prompts.append(current)
|
||||
n_iter = math.ceil(len(prompt_matrix_prompts) / batch_size)
|
||||
|
||||
comment += "\nwhere:\n"
|
||||
for n, text in enumerate(items):
|
||||
comment += " " + chr(ord('A') + n) + " = " + items[n] + "\n"
|
||||
print(f"Prompt matrix will create {len(prompt_matrix_prompts)} images using a total of {n_iter} batches.")
|
||||
|
||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
||||
output_images = []
|
||||
@ -262,7 +302,7 @@ def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, pro
|
||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
if not opt.skip_save or not opt.skip_grid:
|
||||
if prompt_matrix or not opt.skip_save or not opt.skip_grid:
|
||||
for i, x_sample in enumerate(x_samples_ddim):
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
@ -279,24 +319,23 @@ def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, pro
|
||||
output_images.append(image)
|
||||
base_count += 1
|
||||
|
||||
if not opt.skip_grid:
|
||||
# additionally, save as grid
|
||||
if prompt_matrix or not opt.skip_grid:
|
||||
grid = image_grid(output_images, batch_size, round_down=prompt_matrix)
|
||||
|
||||
if prompt_matrix:
|
||||
grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts)
|
||||
output_images.insert(0, grid)
|
||||
|
||||
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||
grid_count += 1
|
||||
|
||||
|
||||
if sampler is not None:
|
||||
del sampler
|
||||
del sampler
|
||||
|
||||
info = f"""
|
||||
{prompt}
|
||||
Steps: {ddim_steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}
|
||||
""".strip()
|
||||
|
||||
if len(comment) > 0:
|
||||
info += "\n\n" + comment
|
||||
|
||||
return output_images, seed, info
|
||||
|
||||
class Flagging(gr.FlaggingCallback):
|
||||
@ -350,7 +389,7 @@ dream_interface = gr.Interface(
|
||||
gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False),
|
||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
|
||||
gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
||||
gr.Slider(minimum=1, maximum=4, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
||||
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
||||
gr.Number(label='Seed', value=-1),
|
||||
gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512),
|
||||
@ -389,7 +428,7 @@ def translation(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, ddim_e
|
||||
grid_count = len(os.listdir(outpath)) - 1
|
||||
|
||||
image = init_img.convert("RGB")
|
||||
image = image.resize((width, height), resample=PIL.Image.Resampling.LANCZOS)
|
||||
image = image.resize((width, height), resample=Image.Resampling.LANCZOS)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image)
|
||||
@ -466,7 +505,7 @@ img2img_interface = gr.Interface(
|
||||
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
|
||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
|
||||
gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
||||
gr.Slider(minimum=1, maximum=4, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
||||
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75),
|
||||
gr.Number(label='Seed', value=-1),
|
||||
@ -494,7 +533,7 @@ def run_GFPGAN(image, strength):
|
||||
res = Image.fromarray(restored_img)
|
||||
|
||||
if strength < 1.0:
|
||||
res = PIL.Image.blend(image, res, strength)
|
||||
res = Image.blend(image, res, strength)
|
||||
|
||||
return res
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user