mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 12:25:06 +08:00
Prompt matrix now draws text like in demo.
This commit is contained in:
parent
61bfa6c16b
commit
cb118c4036
12
README.md
12
README.md
@ -75,17 +75,17 @@ Pick out of three sampling methods for txt2img: DDIM, PLMS, k-diffusion:
|
|||||||
|
|
||||||
### Prompt matrix
|
### Prompt matrix
|
||||||
Separate multiple prompts using the `|` character, and the system will produce an image for every combination of them.
|
Separate multiple prompts using the `|` character, and the system will produce an image for every combination of them.
|
||||||
For example, if you use `a house in a field of grass|at dawn|illustration` prompt, there are four combinations possible (first part of prompt is always kept):
|
For example, if you use `a busy city street in a modern city|illustration|cinematic lighting` prompt, there are four combinations possible (first part of prompt is always kept):
|
||||||
|
|
||||||
- `a house in a field of grass`
|
- `a busy city street in a modern city`
|
||||||
- `a house in a field of grass, at dawn`
|
- `a busy city street in a modern city, illustration`
|
||||||
- `a house in a field of grass, illustration`
|
- `a busy city street in a modern city, cinematic lighting`
|
||||||
- `a house in a field of grass, at dawn, illustration`
|
- `a busy city street in a modern city, illustration, cinematic lighting`
|
||||||
|
|
||||||
Four images will be produced, in this order, all with same seed and each with corresponding prompt:
|
Four images will be produced, in this order, all with same seed and each with corresponding prompt:
|
||||||
![](images/prompt-matrix.png)
|
![](images/prompt-matrix.png)
|
||||||
|
|
||||||
Another example, this time with 5 prompts and 16 variations, (text added manually):
|
Another example, this time with 5 prompts and 16 variations:
|
||||||
![](images/prompt_matrix.jpg)
|
![](images/prompt_matrix.jpg)
|
||||||
|
|
||||||
### Flagging
|
### Flagging
|
||||||
|
Binary file not shown.
Before Width: | Height: | Size: 1.7 MiB After Width: | Height: | Size: 1.8 MiB |
Binary file not shown.
Before Width: | Height: | Size: 770 KiB After Width: | Height: | Size: 1.2 MiB |
127
webui.py
127
webui.py
@ -1,11 +1,10 @@
|
|||||||
import PIL
|
|
||||||
import argparse, os, sys, glob
|
import argparse, os, sys, glob
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
from PIL import Image
|
from PIL import Image, ImageFont, ImageDraw
|
||||||
from itertools import islice
|
from itertools import islice
|
||||||
from einops import rearrange, repeat
|
from einops import rearrange, repeat
|
||||||
from torch import autocast
|
from torch import autocast
|
||||||
@ -76,23 +75,6 @@ def load_model_from_config(config, ckpt, verbose=False):
|
|||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def load_img_pil(img_pil):
|
|
||||||
image = img_pil.convert("RGB")
|
|
||||||
w, h = image.size
|
|
||||||
print(f"loaded input image of size ({w}, {h})")
|
|
||||||
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
|
|
||||||
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
|
||||||
print(f"cropped image to size ({w}, {h})")
|
|
||||||
image = np.array(image).astype(np.float32) / 255.0
|
|
||||||
image = image[None].transpose(0, 3, 1, 2)
|
|
||||||
image = torch.from_numpy(image)
|
|
||||||
return 2. * image - 1.
|
|
||||||
|
|
||||||
|
|
||||||
def load_img(path):
|
|
||||||
return load_img_pil(Image.open(path))
|
|
||||||
|
|
||||||
|
|
||||||
class CFGDenoiser(nn.Module):
|
class CFGDenoiser(nn.Module):
|
||||||
def __init__(self, model):
|
def __init__(self, model):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -179,6 +161,71 @@ def image_grid(imgs, batch_size, round_down=False):
|
|||||||
return grid
|
return grid
|
||||||
|
|
||||||
|
|
||||||
|
def draw_prompt_matrix(im, width, height, all_prompts):
|
||||||
|
def wrap(text, d, font, line_length):
|
||||||
|
lines = ['']
|
||||||
|
for word in text.split():
|
||||||
|
line = f'{lines[-1]} {word}'.strip()
|
||||||
|
if d.textlength(line, font=font) <= line_length:
|
||||||
|
lines[-1] = line
|
||||||
|
else:
|
||||||
|
lines.append(word)
|
||||||
|
return '\n'.join(lines)
|
||||||
|
|
||||||
|
def draw_texts(pos, x, y, texts, sizes):
|
||||||
|
for i, (text, size) in enumerate(zip(texts, sizes)):
|
||||||
|
active = pos & (1 << i) != 0
|
||||||
|
|
||||||
|
if not active:
|
||||||
|
text = '\u0336'.join(text) + '\u0336'
|
||||||
|
|
||||||
|
d.multiline_text((x, y + size[1] / 2), text, font=fnt, fill=color_active if active else color_inactive, anchor="mm", align="center")
|
||||||
|
|
||||||
|
y += size[1] + line_spacing
|
||||||
|
|
||||||
|
fontsize = (width + height) // 25
|
||||||
|
line_spacing = fontsize // 2
|
||||||
|
fnt = ImageFont.truetype("arial.ttf", fontsize)
|
||||||
|
color_active = (0, 0, 0)
|
||||||
|
color_inactive = (153, 153, 153)
|
||||||
|
|
||||||
|
pad_top = height // 4
|
||||||
|
pad_left = width * 3 // 4
|
||||||
|
|
||||||
|
cols = im.width // width
|
||||||
|
rows = im.height // height
|
||||||
|
|
||||||
|
prompts = all_prompts[1:]
|
||||||
|
|
||||||
|
result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white")
|
||||||
|
result.paste(im, (pad_left, pad_top))
|
||||||
|
|
||||||
|
d = ImageDraw.Draw(result)
|
||||||
|
|
||||||
|
boundary = math.ceil(len(prompts) / 2)
|
||||||
|
prompts_horiz = [wrap(x, d, fnt, width) for x in prompts[:boundary]]
|
||||||
|
prompts_vert = [wrap(x, d, fnt, pad_left) for x in prompts[boundary:]]
|
||||||
|
|
||||||
|
sizes_hor = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_horiz]]
|
||||||
|
sizes_ver = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_vert]]
|
||||||
|
hor_text_height = sum([x[1] + line_spacing for x in sizes_hor]) - line_spacing
|
||||||
|
ver_text_height = sum([x[1] + line_spacing for x in sizes_ver]) - line_spacing
|
||||||
|
|
||||||
|
for col in range(cols):
|
||||||
|
x = pad_left + width * col + width / 2
|
||||||
|
y = pad_top / 2 - hor_text_height / 2
|
||||||
|
|
||||||
|
draw_texts(col, x, y, prompts_horiz, sizes_hor)
|
||||||
|
|
||||||
|
for row in range(rows):
|
||||||
|
x = pad_left / 2
|
||||||
|
y = pad_top + height * row + height / 2 - ver_text_height / 2
|
||||||
|
|
||||||
|
draw_texts(row, x, y, prompts_vert, sizes_ver)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, prompt_matrix: bool, ddim_eta: float, n_iter: int, n_samples: int, cfg_scale: float, seed: int, height: int, width: int):
|
def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, prompt_matrix: bool, ddim_eta: float, n_iter: int, n_samples: int, cfg_scale: float, seed: int, height: int, width: int):
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
@ -212,30 +259,23 @@ def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, pro
|
|||||||
grid_count = len(os.listdir(outpath)) - 1
|
grid_count = len(os.listdir(outpath)) - 1
|
||||||
|
|
||||||
prompt_matrix_prompts = []
|
prompt_matrix_prompts = []
|
||||||
comment = ""
|
prompt_matrix_parts = []
|
||||||
if prompt_matrix:
|
if prompt_matrix:
|
||||||
keep_same_seed = True
|
keep_same_seed = True
|
||||||
comment = "Image prompts:\n\n"
|
|
||||||
|
|
||||||
items = prompt.split("|")
|
prompt_matrix_parts = prompt.split("|")
|
||||||
combination_count = 2 ** (len(items)-1)
|
combination_count = 2 ** (len(prompt_matrix_parts)-1)
|
||||||
for combination_num in range(combination_count):
|
for combination_num in range(combination_count):
|
||||||
current = items[0]
|
current = prompt_matrix_parts[0]
|
||||||
label = 'A'
|
|
||||||
|
|
||||||
for n, text in enumerate(items[1:]):
|
for n, text in enumerate(prompt_matrix_parts[1:]):
|
||||||
if combination_num & (2**n) > 0:
|
if combination_num & (2**n) > 0:
|
||||||
current += ("" if text.strip().startswith(",") else ", ") + text
|
current += ("" if text.strip().startswith(",") else ", ") + text
|
||||||
label += chr(ord('B') + n)
|
|
||||||
|
|
||||||
comment += " - " + label + "\n"
|
|
||||||
|
|
||||||
prompt_matrix_prompts.append(current)
|
prompt_matrix_prompts.append(current)
|
||||||
n_iter = math.ceil(len(prompt_matrix_prompts) / batch_size)
|
n_iter = math.ceil(len(prompt_matrix_prompts) / batch_size)
|
||||||
|
|
||||||
comment += "\nwhere:\n"
|
print(f"Prompt matrix will create {len(prompt_matrix_prompts)} images using a total of {n_iter} batches.")
|
||||||
for n, text in enumerate(items):
|
|
||||||
comment += " " + chr(ord('A') + n) + " = " + items[n] + "\n"
|
|
||||||
|
|
||||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
||||||
output_images = []
|
output_images = []
|
||||||
@ -262,7 +302,7 @@ def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, pro
|
|||||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
if not opt.skip_save or not opt.skip_grid:
|
if prompt_matrix or not opt.skip_save or not opt.skip_grid:
|
||||||
for i, x_sample in enumerate(x_samples_ddim):
|
for i, x_sample in enumerate(x_samples_ddim):
|
||||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||||
x_sample = x_sample.astype(np.uint8)
|
x_sample = x_sample.astype(np.uint8)
|
||||||
@ -279,14 +319,16 @@ def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, pro
|
|||||||
output_images.append(image)
|
output_images.append(image)
|
||||||
base_count += 1
|
base_count += 1
|
||||||
|
|
||||||
if not opt.skip_grid:
|
if prompt_matrix or not opt.skip_grid:
|
||||||
# additionally, save as grid
|
|
||||||
grid = image_grid(output_images, batch_size, round_down=prompt_matrix)
|
grid = image_grid(output_images, batch_size, round_down=prompt_matrix)
|
||||||
|
|
||||||
|
if prompt_matrix:
|
||||||
|
grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts)
|
||||||
|
output_images.insert(0, grid)
|
||||||
|
|
||||||
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||||
grid_count += 1
|
grid_count += 1
|
||||||
|
|
||||||
|
|
||||||
if sampler is not None:
|
|
||||||
del sampler
|
del sampler
|
||||||
|
|
||||||
info = f"""
|
info = f"""
|
||||||
@ -294,9 +336,6 @@ def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, pro
|
|||||||
Steps: {ddim_steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}
|
Steps: {ddim_steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}
|
||||||
""".strip()
|
""".strip()
|
||||||
|
|
||||||
if len(comment) > 0:
|
|
||||||
info += "\n\n" + comment
|
|
||||||
|
|
||||||
return output_images, seed, info
|
return output_images, seed, info
|
||||||
|
|
||||||
class Flagging(gr.FlaggingCallback):
|
class Flagging(gr.FlaggingCallback):
|
||||||
@ -350,7 +389,7 @@ dream_interface = gr.Interface(
|
|||||||
gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False),
|
gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False),
|
||||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
|
||||||
gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
||||||
gr.Slider(minimum=1, maximum=4, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
||||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
||||||
gr.Number(label='Seed', value=-1),
|
gr.Number(label='Seed', value=-1),
|
||||||
gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512),
|
gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512),
|
||||||
@ -389,7 +428,7 @@ def translation(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, ddim_e
|
|||||||
grid_count = len(os.listdir(outpath)) - 1
|
grid_count = len(os.listdir(outpath)) - 1
|
||||||
|
|
||||||
image = init_img.convert("RGB")
|
image = init_img.convert("RGB")
|
||||||
image = image.resize((width, height), resample=PIL.Image.Resampling.LANCZOS)
|
image = image.resize((width, height), resample=Image.Resampling.LANCZOS)
|
||||||
image = np.array(image).astype(np.float32) / 255.0
|
image = np.array(image).astype(np.float32) / 255.0
|
||||||
image = image[None].transpose(0, 3, 1, 2)
|
image = image[None].transpose(0, 3, 1, 2)
|
||||||
image = torch.from_numpy(image)
|
image = torch.from_numpy(image)
|
||||||
@ -466,7 +505,7 @@ img2img_interface = gr.Interface(
|
|||||||
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
|
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
|
||||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
|
||||||
gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
||||||
gr.Slider(minimum=1, maximum=4, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
||||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
||||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75),
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75),
|
||||||
gr.Number(label='Seed', value=-1),
|
gr.Number(label='Seed', value=-1),
|
||||||
@ -494,7 +533,7 @@ def run_GFPGAN(image, strength):
|
|||||||
res = Image.fromarray(restored_img)
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
if strength < 1.0:
|
if strength < 1.0:
|
||||||
res = PIL.Image.blend(image, res, strength)
|
res = Image.blend(image, res, strength)
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user