mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-19 21:00:14 +08:00
Merge pull request #14353 from Nuullll/ipex-sdpa
[IPEX] Slice SDPA into smaller chunks
This commit is contained in:
commit
cba6fba123
@ -27,6 +27,71 @@ def torch_xpu_gc():
|
|||||||
|
|
||||||
has_xpu = check_for_xpu()
|
has_xpu = check_for_xpu()
|
||||||
|
|
||||||
|
|
||||||
|
# Arc GPU cannot allocate a single block larger than 4GB: https://github.com/intel/compute-runtime/issues/627
|
||||||
|
# Here we implement a slicing algorithm to split large batch size into smaller chunks,
|
||||||
|
# so that SDPA of each chunk wouldn't require any allocation larger than ARC_SINGLE_ALLOCATION_LIMIT.
|
||||||
|
# The heuristic limit (TOTAL_VRAM // 8) is tuned for Intel Arc A770 16G and Arc A750 8G,
|
||||||
|
# which is the best trade-off between VRAM usage and performance.
|
||||||
|
ARC_SINGLE_ALLOCATION_LIMIT = {}
|
||||||
|
orig_sdp_attn_func = torch.nn.functional.scaled_dot_product_attention
|
||||||
|
def torch_xpu_scaled_dot_product_attention(
|
||||||
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, *args, **kwargs
|
||||||
|
):
|
||||||
|
# cast to same dtype first
|
||||||
|
key = key.to(query.dtype)
|
||||||
|
value = value.to(query.dtype)
|
||||||
|
|
||||||
|
N = query.shape[:-2] # Batch size
|
||||||
|
L = query.size(-2) # Target sequence length
|
||||||
|
E = query.size(-1) # Embedding dimension of the query and key
|
||||||
|
S = key.size(-2) # Source sequence length
|
||||||
|
Ev = value.size(-1) # Embedding dimension of the value
|
||||||
|
|
||||||
|
total_batch_size = torch.numel(torch.empty(N))
|
||||||
|
device_id = query.device.index
|
||||||
|
if device_id not in ARC_SINGLE_ALLOCATION_LIMIT:
|
||||||
|
ARC_SINGLE_ALLOCATION_LIMIT[device_id] = min(torch.xpu.get_device_properties(device_id).total_memory // 8, 4 * 1024 * 1024 * 1024)
|
||||||
|
batch_size_limit = max(1, ARC_SINGLE_ALLOCATION_LIMIT[device_id] // (L * S * query.element_size()))
|
||||||
|
|
||||||
|
if total_batch_size <= batch_size_limit:
|
||||||
|
return orig_sdp_attn_func(
|
||||||
|
query,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
attn_mask,
|
||||||
|
dropout_p,
|
||||||
|
is_causal,
|
||||||
|
*args, **kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
query = torch.reshape(query, (-1, L, E))
|
||||||
|
key = torch.reshape(key, (-1, S, E))
|
||||||
|
value = torch.reshape(value, (-1, S, Ev))
|
||||||
|
if attn_mask is not None:
|
||||||
|
attn_mask = attn_mask.view(-1, L, S)
|
||||||
|
chunk_count = (total_batch_size + batch_size_limit - 1) // batch_size_limit
|
||||||
|
outputs = []
|
||||||
|
for i in range(chunk_count):
|
||||||
|
attn_mask_chunk = (
|
||||||
|
None
|
||||||
|
if attn_mask is None
|
||||||
|
else attn_mask[i * batch_size_limit : (i + 1) * batch_size_limit, :, :]
|
||||||
|
)
|
||||||
|
chunk_output = orig_sdp_attn_func(
|
||||||
|
query[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
|
||||||
|
key[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
|
||||||
|
value[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
|
||||||
|
attn_mask_chunk,
|
||||||
|
dropout_p,
|
||||||
|
is_causal,
|
||||||
|
*args, **kwargs
|
||||||
|
)
|
||||||
|
outputs.append(chunk_output)
|
||||||
|
result = torch.cat(outputs, dim=0)
|
||||||
|
return torch.reshape(result, (*N, L, Ev))
|
||||||
|
|
||||||
|
|
||||||
if has_xpu:
|
if has_xpu:
|
||||||
# W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device
|
# W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device
|
||||||
CondFunc('torch.Generator',
|
CondFunc('torch.Generator',
|
||||||
@ -55,5 +120,5 @@ if has_xpu:
|
|||||||
lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out),
|
lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out),
|
||||||
lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors))
|
lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors))
|
||||||
CondFunc('torch.nn.functional.scaled_dot_product_attention',
|
CondFunc('torch.nn.functional.scaled_dot_product_attention',
|
||||||
lambda orig_func, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False: orig_func(query, key.to(query.dtype), value.to(query.dtype), attn_mask, dropout_p, is_causal),
|
lambda orig_func, *args, **kwargs: torch_xpu_scaled_dot_product_attention(*args, **kwargs),
|
||||||
lambda orig_func, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False: query.dtype != key.dtype or query.dtype != value.dtype)
|
lambda orig_func, query, *args, **kwargs: query.is_xpu)
|
||||||
|
Loading…
Reference in New Issue
Block a user