From cdd996435807e48e6f875ed9bf8ede70ee4743ae Mon Sep 17 00:00:00 2001 From: "Jan Alexander Steffens (heftig)" Date: Fri, 28 Mar 2025 23:06:26 +0100 Subject: [PATCH] Fix Beta sampling to match the paper We need a beta distribution of timesteps, not sigmas. Also allow distribution parameters > 1. --- modules/sd_schedulers.py | 11 +++++++---- modules/shared_options.py | 4 ++-- 2 files changed, 9 insertions(+), 6 deletions(-) diff --git a/modules/sd_schedulers.py b/modules/sd_schedulers.py index f4d16e309..3047600bc 100644 --- a/modules/sd_schedulers.py +++ b/modules/sd_schedulers.py @@ -117,12 +117,15 @@ def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device): def beta_scheduler(n, sigma_min, sigma_max, inner_model, device): - # From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024) """ + # From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024) alpha = shared.opts.beta_dist_alpha beta = shared.opts.beta_dist_beta - timesteps = 1 - np.linspace(0, 1, n) - timesteps = [stats.beta.ppf(x, alpha, beta) for x in timesteps] - sigmas = [sigma_min + (x * (sigma_max-sigma_min)) for x in timesteps] + curve = [stats.beta.ppf(x, alpha, beta) for x in np.linspace(1, 0, n)] + + start = inner_model.sigma_to_t(torch.tensor(sigma_max)) + end = inner_model.sigma_to_t(torch.tensor(sigma_min)) + timesteps = [end + x * (start - end) for x in curve] + sigmas = [inner_model.t_to_sigma(ts) for ts in timesteps] sigmas += [0.0] return torch.FloatTensor(sigmas).to(device) diff --git a/modules/shared_options.py b/modules/shared_options.py index e8b09f1a6..03632ecc0 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -407,8 +407,8 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final", infotext='UniPC lower order final'), 'sd_noise_schedule': OptionInfo("Default", "Noise schedule for sampling", gr.Radio, {"choices": ["Default", "Zero Terminal SNR"]}, infotext="Noise Schedule").info("for use with zero terminal SNR trained models"), 'skip_early_cond': OptionInfo(0.0, "Ignore negative prompt during early sampling", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext="Skip Early CFG").info("disables CFG on a proportion of steps at the beginning of generation; 0=skip none; 1=skip all; can both improve sample diversity/quality and speed up sampling; XYZ plot: Skip Early CFG"), - 'beta_dist_alpha': OptionInfo(0.6, "Beta scheduler - alpha", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Beta scheduler alpha').info('Default = 0.6; the alpha parameter of the beta distribution used in Beta sampling'), - 'beta_dist_beta': OptionInfo(0.6, "Beta scheduler - beta", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Beta scheduler beta').info('Default = 0.6; the beta parameter of the beta distribution used in Beta sampling'), + 'beta_dist_alpha': OptionInfo(0.6, "Beta scheduler - alpha", gr.Slider, {"minimum": 0.01, "maximum": 5.0, "step": 0.01}, infotext='Beta scheduler alpha').info('Default = 0.6; the alpha parameter of the beta distribution used in Beta sampling'), + 'beta_dist_beta': OptionInfo(0.6, "Beta scheduler - beta", gr.Slider, {"minimum": 0.01, "maximum": 5.0, "step": 0.01}, infotext='Beta scheduler beta').info('Default = 0.6; the beta parameter of the beta distribution used in Beta sampling'), })) options_templates.update(options_section(('postprocessing', "Postprocessing", "postprocessing"), {