Merge pull request #4918 from brkirch/pytorch-fixes

Fixes for PyTorch 1.12.1 when using MPS
This commit is contained in:
AUTOMATIC1111 2022-11-27 13:47:01 +03:00 committed by GitHub
commit cc90dcc933
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 25 additions and 8 deletions

View File

@ -2,9 +2,10 @@ import sys, os, shlex
import contextlib
import torch
from modules import errors
from packaging import version
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
# check `getattr` and try it for compatibility
def has_mps() -> bool:
if not getattr(torch, 'has_mps', False):
@ -99,9 +100,25 @@ def autocast(disable=False):
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
def mps_contiguous(input_tensor, device):
return input_tensor.contiguous() if device.type == 'mps' else input_tensor
orig_tensor_to = torch.Tensor.to
def tensor_to_fix(self, *args, **kwargs):
if self.device.type != 'mps' and \
((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
(isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
self = self.contiguous()
return orig_tensor_to(self, *args, **kwargs)
def mps_contiguous_to(input_tensor, device):
return mps_contiguous(input_tensor, device).to(device)
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
orig_layer_norm = torch.nn.functional.layer_norm
def layer_norm_fix(*args, **kwargs):
if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
args = list(args)
args[0] = args[0].contiguous()
return orig_layer_norm(*args, **kwargs)
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
if has_mps() and version.parse(torch.__version__) < version.parse("1.13"):
torch.Tensor.to = tensor_to_fix
torch.nn.functional.layer_norm = layer_norm_fix

View File

@ -199,7 +199,7 @@ def upscale_without_tiling(model, img):
img = img[:, :, ::-1]
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
img = torch.from_numpy(img).float()
img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_esrgan)
img = img.unsqueeze(0).to(devices.device_esrgan)
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()

View File

@ -54,7 +54,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = devices.mps_contiguous_to(img.unsqueeze(0), device)
img = img.unsqueeze(0).to(device)
with torch.no_grad():
output = model(img)

View File

@ -111,7 +111,7 @@ def upscale(
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_swinir)
img = img.unsqueeze(0).to(devices.device_swinir)
with torch.no_grad(), precision_scope("cuda"):
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old