mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
Merge pull request #2573 from raefu/ckpt-cache
add --ckpt-cache option for faster model switching
This commit is contained in:
commit
d13ce89e20
@ -1,4 +1,4 @@
|
|||||||
import glob
|
import collections
|
||||||
import os.path
|
import os.path
|
||||||
import sys
|
import sys
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
@ -15,6 +15,7 @@ model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
|||||||
|
|
||||||
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
|
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
|
||||||
checkpoints_list = {}
|
checkpoints_list = {}
|
||||||
|
checkpoints_loaded = collections.OrderedDict()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
||||||
@ -132,41 +133,45 @@ def load_model_weights(model, checkpoint_info):
|
|||||||
checkpoint_file = checkpoint_info.filename
|
checkpoint_file = checkpoint_info.filename
|
||||||
sd_model_hash = checkpoint_info.hash
|
sd_model_hash = checkpoint_info.hash
|
||||||
|
|
||||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
if checkpoint_info not in checkpoints_loaded:
|
||||||
|
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||||
|
|
||||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
||||||
|
if "global_step" in pl_sd:
|
||||||
|
print(f"Global Step: {pl_sd['global_step']}")
|
||||||
|
|
||||||
if "global_step" in pl_sd:
|
sd = get_state_dict_from_checkpoint(pl_sd)
|
||||||
print(f"Global Step: {pl_sd['global_step']}")
|
model.load_state_dict(sd, strict=False)
|
||||||
|
|
||||||
sd = get_state_dict_from_checkpoint(pl_sd)
|
if shared.cmd_opts.opt_channelslast:
|
||||||
|
model.to(memory_format=torch.channels_last)
|
||||||
|
|
||||||
model.load_state_dict(sd, strict=False)
|
if not shared.cmd_opts.no_half:
|
||||||
|
model.half()
|
||||||
|
|
||||||
if shared.cmd_opts.opt_channelslast:
|
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
||||||
model.to(memory_format=torch.channels_last)
|
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
||||||
|
|
||||||
if not shared.cmd_opts.no_half:
|
vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt"
|
||||||
model.half()
|
|
||||||
|
|
||||||
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None:
|
||||||
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
vae_file = shared.cmd_opts.vae_path
|
||||||
|
|
||||||
vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt"
|
if os.path.exists(vae_file):
|
||||||
|
print(f"Loading VAE weights from: {vae_file}")
|
||||||
|
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
||||||
|
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"}
|
||||||
|
model.first_stage_model.load_state_dict(vae_dict)
|
||||||
|
|
||||||
if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None:
|
model.first_stage_model.to(devices.dtype_vae)
|
||||||
vae_file = shared.cmd_opts.vae_path
|
|
||||||
|
|
||||||
if os.path.exists(vae_file):
|
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
|
||||||
print(f"Loading VAE weights from: {vae_file}")
|
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
|
||||||
|
checkpoints_loaded.popitem(last=False) # LRU
|
||||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
else:
|
||||||
|
print(f"Loading weights [{sd_model_hash}] from cache")
|
||||||
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"}
|
checkpoints_loaded.move_to_end(checkpoint_info)
|
||||||
|
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
||||||
model.first_stage_model.load_state_dict(vae_dict)
|
|
||||||
|
|
||||||
model.first_stage_model.to(devices.dtype_vae)
|
|
||||||
|
|
||||||
model.sd_model_hash = sd_model_hash
|
model.sd_model_hash = sd_model_hash
|
||||||
model.sd_model_checkpoint = checkpoint_file
|
model.sd_model_checkpoint = checkpoint_file
|
||||||
@ -205,6 +210,7 @@ def reload_model_weights(sd_model, info=None):
|
|||||||
return
|
return
|
||||||
|
|
||||||
if sd_model.sd_checkpoint_info.config != checkpoint_info.config:
|
if sd_model.sd_checkpoint_info.config != checkpoint_info.config:
|
||||||
|
checkpoints_loaded.clear()
|
||||||
shared.sd_model = load_model()
|
shared.sd_model = load_model()
|
||||||
return shared.sd_model
|
return shared.sd_model
|
||||||
|
|
||||||
|
@ -242,6 +242,7 @@ options_templates.update(options_section(('training', "Training"), {
|
|||||||
|
|
||||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
||||||
|
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||||
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
||||||
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
||||||
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
||||||
|
Loading…
Reference in New Issue
Block a user