diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index 051be1188..e223a2e0c 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -27,7 +27,6 @@ def crop_image(im, settings): elif is_portrait(settings.crop_width, settings.crop_height): scale_by = settings.crop_height / im.height - im = im.resize((int(im.width * scale_by), int(im.height * scale_by))) im_debug = im.copy() @@ -71,6 +70,7 @@ def crop_image(im, settings): return results + def focal_point(im, settings): corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else [] entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else [] @@ -80,118 +80,120 @@ def focal_point(im, settings): weight_pref_total = 0 if corner_points: - weight_pref_total += settings.corner_points_weight + weight_pref_total += settings.corner_points_weight if entropy_points: - weight_pref_total += settings.entropy_points_weight + weight_pref_total += settings.entropy_points_weight if face_points: - weight_pref_total += settings.face_points_weight + weight_pref_total += settings.face_points_weight corner_centroid = None if corner_points: - corner_centroid = centroid(corner_points) - corner_centroid.weight = settings.corner_points_weight / weight_pref_total - pois.append(corner_centroid) + corner_centroid = centroid(corner_points) + corner_centroid.weight = settings.corner_points_weight / weight_pref_total + pois.append(corner_centroid) entropy_centroid = None if entropy_points: - entropy_centroid = centroid(entropy_points) - entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total - pois.append(entropy_centroid) + entropy_centroid = centroid(entropy_points) + entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total + pois.append(entropy_centroid) face_centroid = None if face_points: - face_centroid = centroid(face_points) - face_centroid.weight = settings.face_points_weight / weight_pref_total - pois.append(face_centroid) + face_centroid = centroid(face_points) + face_centroid.weight = settings.face_points_weight / weight_pref_total + pois.append(face_centroid) average_point = poi_average(pois, settings) if settings.annotate_image: - d = ImageDraw.Draw(im) - max_size = min(im.width, im.height) * 0.07 - if corner_centroid is not None: - color = BLUE - box = corner_centroid.bounding(max_size * corner_centroid.weight) - d.text((box[0], box[1]-15), f"Edge: {corner_centroid.weight:.02f}", fill=color) - d.ellipse(box, outline=color) - if len(corner_points) > 1: - for f in corner_points: - d.rectangle(f.bounding(4), outline=color) - if entropy_centroid is not None: - color = "#ff0" - box = entropy_centroid.bounding(max_size * entropy_centroid.weight) - d.text((box[0], box[1]-15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color) - d.ellipse(box, outline=color) - if len(entropy_points) > 1: - for f in entropy_points: - d.rectangle(f.bounding(4), outline=color) - if face_centroid is not None: - color = RED - box = face_centroid.bounding(max_size * face_centroid.weight) - d.text((box[0], box[1]-15), f"Face: {face_centroid.weight:.02f}", fill=color) - d.ellipse(box, outline=color) - if len(face_points) > 1: - for f in face_points: - d.rectangle(f.bounding(4), outline=color) + d = ImageDraw.Draw(im) + max_size = min(im.width, im.height) * 0.07 + if corner_centroid is not None: + color = BLUE + box = corner_centroid.bounding(max_size * corner_centroid.weight) + d.text((box[0], box[1] - 15), f"Edge: {corner_centroid.weight:.02f}", fill=color) + d.ellipse(box, outline=color) + if len(corner_points) > 1: + for f in corner_points: + d.rectangle(f.bounding(4), outline=color) + if entropy_centroid is not None: + color = "#ff0" + box = entropy_centroid.bounding(max_size * entropy_centroid.weight) + d.text((box[0], box[1] - 15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color) + d.ellipse(box, outline=color) + if len(entropy_points) > 1: + for f in entropy_points: + d.rectangle(f.bounding(4), outline=color) + if face_centroid is not None: + color = RED + box = face_centroid.bounding(max_size * face_centroid.weight) + d.text((box[0], box[1] - 15), f"Face: {face_centroid.weight:.02f}", fill=color) + d.ellipse(box, outline=color) + if len(face_points) > 1: + for f in face_points: + d.rectangle(f.bounding(4), outline=color) - d.ellipse(average_point.bounding(max_size), outline=GREEN) + d.ellipse(average_point.bounding(max_size), outline=GREEN) return average_point def image_face_points(im, settings): if settings.dnn_model_path is not None: - detector = cv2.FaceDetectorYN.create( - settings.dnn_model_path, - "", - (im.width, im.height), - 0.9, # score threshold - 0.3, # nms threshold - 5000 # keep top k before nms - ) - faces = detector.detect(np.array(im)) - results = [] - if faces[1] is not None: - for face in faces[1]: - x = face[0] - y = face[1] - w = face[2] - h = face[3] - results.append( - PointOfInterest( - int(x + (w * 0.5)), # face focus left/right is center - int(y + (h * 0.33)), # face focus up/down is close to the top of the head - size = w, - weight = 1/len(faces[1]) - ) - ) - return results + detector = cv2.FaceDetectorYN.create( + settings.dnn_model_path, + "", + (im.width, im.height), + 0.9, # score threshold + 0.3, # nms threshold + 5000 # keep top k before nms + ) + faces = detector.detect(np.array(im)) + results = [] + if faces[1] is not None: + for face in faces[1]: + x = face[0] + y = face[1] + w = face[2] + h = face[3] + results.append( + PointOfInterest( + int(x + (w * 0.5)), # face focus left/right is center + int(y + (h * 0.33)), # face focus up/down is close to the top of the head + size=w, + weight=1 / len(faces[1]) + ) + ) + return results else: - np_im = np.array(im) - gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) + np_im = np.array(im) + gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) - tries = [ - [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ], - [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ] - ] - for t in tries: - classifier = cv2.CascadeClassifier(t[0]) - minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side - try: - faces = classifier.detectMultiScale(gray, scaleFactor=1.1, - minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) - except Exception: - continue + tries = [ + [f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01], + [f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05], + [f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05], + [f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05], + [f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05], + [f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05], + [f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05], + [f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05] + ] + for t in tries: + classifier = cv2.CascadeClassifier(t[0]) + minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side + try: + faces = classifier.detectMultiScale(gray, scaleFactor=1.1, + minNeighbors=7, minSize=(minsize, minsize), + flags=cv2.CASCADE_SCALE_IMAGE) + except Exception: + continue - if faces: - rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] - return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects] + if faces: + rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] + return [PointOfInterest((r[0] + r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0] - r[2]), + weight=1 / len(rects)) for r in rects] return [] @@ -200,7 +202,7 @@ def image_corner_points(im, settings): # naive attempt at preventing focal points from collecting at watermarks near the bottom gd = ImageDraw.Draw(grayscale) - gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") + gd.rectangle([0, im.height * .9, im.width, im.height], fill="#999") np_im = np.array(grayscale) @@ -208,7 +210,7 @@ def image_corner_points(im, settings): np_im, maxCorners=100, qualityLevel=0.04, - minDistance=min(grayscale.width, grayscale.height)*0.06, + minDistance=min(grayscale.width, grayscale.height) * 0.06, useHarrisDetector=False, ) @@ -217,8 +219,8 @@ def image_corner_points(im, settings): focal_points = [] for point in points: - x, y = point.ravel() - focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points))) + x, y = point.ravel() + focal_points.append(PointOfInterest(x, y, size=4, weight=1 / len(points))) return focal_points @@ -227,13 +229,13 @@ def image_entropy_points(im, settings): landscape = im.height < im.width portrait = im.height > im.width if landscape: - move_idx = [0, 2] - move_max = im.size[0] + move_idx = [0, 2] + move_max = im.size[0] elif portrait: - move_idx = [1, 3] - move_max = im.size[1] + move_idx = [1, 3] + move_max = im.size[1] else: - return [] + return [] e_max = 0 crop_current = [0, 0, settings.crop_width, settings.crop_height] @@ -243,14 +245,14 @@ def image_entropy_points(im, settings): e = image_entropy(crop) if (e > e_max): - e_max = e - crop_best = list(crop_current) + e_max = e + crop_best = list(crop_current) crop_current[move_idx[0]] += 4 crop_current[move_idx[1]] += 4 - x_mid = int(crop_best[0] + settings.crop_width/2) - y_mid = int(crop_best[1] + settings.crop_height/2) + x_mid = int(crop_best[0] + settings.crop_width / 2) + y_mid = int(crop_best[1] + settings.crop_height / 2) return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]