mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
apply lr schedule to hypernets
This commit is contained in:
parent
12f4f4761b
commit
d6fcc6b87b
@ -14,6 +14,7 @@ import torch
|
||||
from torch import einsum
|
||||
from einops import rearrange, repeat
|
||||
import modules.textual_inversion.dataset
|
||||
from modules.textual_inversion.learn_schedule import LearnSchedule
|
||||
|
||||
|
||||
class HypernetworkModule(torch.nn.Module):
|
||||
@ -202,8 +203,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
|
||||
for weight in weights:
|
||||
weight.requires_grad = True
|
||||
|
||||
optimizer = torch.optim.AdamW(weights, lr=learn_rate)
|
||||
|
||||
losses = torch.zeros((32,))
|
||||
|
||||
last_saved_file = "<none>"
|
||||
@ -213,12 +212,24 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
|
||||
if ititial_step > steps:
|
||||
return hypernetwork, filename
|
||||
|
||||
schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
|
||||
(learn_rate, end_step) = next(schedules)
|
||||
print(f'Training at rate of {learn_rate} until step {end_step}')
|
||||
|
||||
optimizer = torch.optim.AdamW(weights, lr=learn_rate)
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
||||
for i, (x, text, cond) in pbar:
|
||||
hypernetwork.step = i + ititial_step
|
||||
|
||||
if hypernetwork.step > steps:
|
||||
break
|
||||
if hypernetwork.step > end_step:
|
||||
try:
|
||||
(learn_rate, end_step) = next(schedules)
|
||||
except Exception:
|
||||
break
|
||||
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
|
||||
for pg in optimizer.param_groups:
|
||||
pg['lr'] = learn_rate
|
||||
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
34
modules/textual_inversion/learn_schedule.py
Normal file
34
modules/textual_inversion/learn_schedule.py
Normal file
@ -0,0 +1,34 @@
|
||||
|
||||
class LearnSchedule:
|
||||
def __init__(self, learn_rate, max_steps, cur_step=0):
|
||||
pairs = learn_rate.split(',')
|
||||
self.rates = []
|
||||
self.it = 0
|
||||
self.maxit = 0
|
||||
for i, pair in enumerate(pairs):
|
||||
tmp = pair.split(':')
|
||||
if len(tmp) == 2:
|
||||
step = int(tmp[1])
|
||||
if step > cur_step:
|
||||
self.rates.append((float(tmp[0]), min(step, max_steps)))
|
||||
self.maxit += 1
|
||||
if step > max_steps:
|
||||
return
|
||||
elif step == -1:
|
||||
self.rates.append((float(tmp[0]), max_steps))
|
||||
self.maxit += 1
|
||||
return
|
||||
else:
|
||||
self.rates.append((float(tmp[0]), max_steps))
|
||||
self.maxit += 1
|
||||
return
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.it < self.maxit:
|
||||
self.it += 1
|
||||
return self.rates[self.it - 1]
|
||||
else:
|
||||
raise StopIteration
|
@ -10,6 +10,7 @@ import datetime
|
||||
|
||||
from modules import shared, devices, sd_hijack, processing, sd_models
|
||||
import modules.textual_inversion.dataset
|
||||
from modules.textual_inversion.learn_schedule import LearnSchedule
|
||||
|
||||
|
||||
class Embedding:
|
||||
@ -198,11 +199,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
if ititial_step > steps:
|
||||
return embedding, filename
|
||||
|
||||
tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)])
|
||||
epoch_len = (tr_img_len * num_repeats) + tr_img_len
|
||||
|
||||
scheduleIter = iter(LearnSchedule(learn_rate, steps, ititial_step))
|
||||
(learn_rate, end_step) = next(scheduleIter)
|
||||
schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
|
||||
(learn_rate, end_step) = next(schedules)
|
||||
print(f'Training at rate of {learn_rate} until step {end_step}')
|
||||
|
||||
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
|
||||
@ -213,7 +211,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
|
||||
if embedding.step > end_step:
|
||||
try:
|
||||
(learn_rate, end_step) = next(scheduleIter)
|
||||
(learn_rate, end_step) = next(schedules)
|
||||
except:
|
||||
break
|
||||
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
|
||||
@ -288,37 +286,3 @@ Last saved image: {html.escape(last_saved_image)}<br/>
|
||||
embedding.save(filename)
|
||||
|
||||
return embedding, filename
|
||||
|
||||
class LearnSchedule:
|
||||
def __init__(self, learn_rate, max_steps, cur_step=0):
|
||||
pairs = learn_rate.split(',')
|
||||
self.rates = []
|
||||
self.it = 0
|
||||
self.maxit = 0
|
||||
for i, pair in enumerate(pairs):
|
||||
tmp = pair.split(':')
|
||||
if len(tmp) == 2:
|
||||
step = int(tmp[1])
|
||||
if step > cur_step:
|
||||
self.rates.append((float(tmp[0]), min(step, max_steps)))
|
||||
self.maxit += 1
|
||||
if step > max_steps:
|
||||
return
|
||||
elif step == -1:
|
||||
self.rates.append((float(tmp[0]), max_steps))
|
||||
self.maxit += 1
|
||||
return
|
||||
else:
|
||||
self.rates.append((float(tmp[0]), max_steps))
|
||||
self.maxit += 1
|
||||
return
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.it < self.maxit:
|
||||
self.it += 1
|
||||
return self.rates[self.it - 1]
|
||||
else:
|
||||
raise StopIteration
|
||||
|
@ -1070,7 +1070,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>")
|
||||
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
|
||||
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
|
||||
learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value = "5.0e-03")
|
||||
learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
|
||||
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
|
||||
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
|
||||
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
|
||||
|
Loading…
Reference in New Issue
Block a user