no idea what i'm doing, trying to support both type of OFT, kblueleaf diag_oft has MultiheadAttn which kohya's doesn't?, attempt create new module based off network_lora.py, errors about tensor dim mismatch

This commit is contained in:
v0xie 2023-11-02 00:13:11 -07:00
parent 65ccd6305f
commit d727ddfccd

View File

@ -1,11 +1,12 @@
import torch import torch
import network import network
from einops import rearrange from einops import rearrange
from modules import devices
class ModuleTypeOFT(network.ModuleType): class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights): def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]): if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
return NetworkModuleOFT(net, weights) return NetworkModuleOFT(net, weights)
return None return None
@ -16,66 +17,117 @@ class NetworkModuleOFT(network.NetworkModule):
super().__init__(net, weights) super().__init__(net, weights)
self.oft_blocks = weights.w["oft_blocks"] self.lin_module = None
self.alpha = weights.w["alpha"] # kohya-ss
self.dim = self.oft_blocks.shape[0] if "oft_blocks" in weights.w.keys():
self.num_blocks = self.dim self.is_kohya = True
self.oft_blocks = weights.w["oft_blocks"]
self.alpha = weights.w["alpha"]
self.dim = self.oft_blocks.shape[0]
elif "oft_diag" in weights.w.keys():
self.is_kohya = False
self.oft_blocks = weights.w["oft_diag"]
# alpha is rank if alpha is 0 or None
if self.alpha is None:
pass
self.dim = self.oft_blocks.shape[0] # FIXME: almost certainly incorrect, assumes tensor is shape [*, m, n]
else:
raise ValueError("oft_blocks or oft_diag must be in weights dict")
if "Linear" in self.sd_module.__class__.__name__: is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [ torch.nn.MultiheadAttention]
#if "Linear" in self.sd_module.__class__.__name__ or is_linear:
if is_linear:
self.out_dim = self.sd_module.out_features self.out_dim = self.sd_module.out_features
elif "Conv" in self.sd_module.__class__.__name__: #elif hasattr(self.sd_module, "embed_dim"):
# self.out_dim = self.sd_module.embed_dim
#else:
# raise ValueError("Linear sd_module must have out_features or embed_dim")
elif is_other_linear:
self.out_dim = self.sd_module.embed_dim
elif is_conv:
self.out_dim = self.sd_module.out_channels self.out_dim = self.sd_module.out_channels
else:
raise ValueError("sd_module must be Linear or Conv")
self.constraint = self.alpha * self.out_dim
self.block_size = self.out_dim // self.num_blocks if self.is_kohya:
self.num_blocks = self.dim
self.block_size = self.out_dim // self.num_blocks
self.constraint = self.alpha * self.out_dim
#elif is_linear or is_conv:
else:
self.num_blocks, self.block_size = factorization(self.out_dim, self.dim)
self.constraint = None
self.org_module: list[torch.Module] = [self.sd_module] self.org_module: list[torch.Module] = [self.sd_module]
# def merge_weight(self, R_weight, org_weight): # if is_other_linear:
# R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype) # weight = self.oft_blocks.reshape(self.oft_blocks.shape[0], -1)
# if org_weight.dim() == 4: # module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
# weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight) # with torch.no_grad():
# else: # if weight.shape != module.weight.shape:
# weight = torch.einsum("oi, op -> pi", org_weight, R_weight) # weight = weight.reshape(module.weight.shape)
# weight = torch.einsum( # module.weight.copy_(weight)
# "k n m, k n ... -> k m ...", # module.to(device=devices.cpu, dtype=devices.dtype)
# self.oft_diag * scale + torch.eye(self.block_size, device=device), # module.weight.requires_grad_(False)
# org_weight # self.lin_module = module
# ) #return module
# return weight
def merge_weight(self, R_weight, org_weight):
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
if org_weight.dim() == 4:
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
else:
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
#weight = torch.einsum(
# "k n m, k n ... -> k m ...",
# self.oft_diag * scale + torch.eye(self.block_size, device=device),
# org_weight
#)
return weight
def get_weight(self, oft_blocks, multiplier=None): def get_weight(self, oft_blocks, multiplier=None):
# constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype) if self.constraint is not None:
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
# block_Q = oft_blocks - oft_blocks.transpose(1, 2) block_Q = oft_blocks - oft_blocks.transpose(1, 2)
# norm_Q = torch.norm(block_Q.flatten()) norm_Q = torch.norm(block_Q.flatten())
# new_norm_Q = torch.clamp(norm_Q, max=constraint) if self.constraint is not None:
# block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) new_norm_Q = torch.clamp(norm_Q, max=constraint)
# m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) else:
# block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse()) new_norm_Q = norm_Q
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
# block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
# R = torch.block_diag(*block_R_weighted) R = torch.block_diag(*block_R_weighted)
#return R return R
return self.oft_blocks #return self.oft_blocks
def calc_updown(self, orig_weight): def calc_updown(self, orig_weight):
multiplier = self.multiplier() * self.calc_scale() multiplier = self.multiplier() * self.calc_scale()
#R = self.get_weight(self.oft_blocks, multiplier) R = self.get_weight(self.oft_blocks, multiplier)
R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) #R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
#merged_weight = self.merge_weight(R, orig_weight) merged_weight = self.merge_weight(R, orig_weight)
orig_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) #if self.lin_module is not None:
weight = torch.einsum( # R = self.lin_module.weight.to(orig_weight.device, dtype=orig_weight.dtype)
'k n m, k n ... -> k m ...', # weight = torch.mul(torch.mul(R, multiplier), orig_weight)
R * multiplier + torch.eye(self.block_size, device=orig_weight.device), #else:
orig_weight # orig_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
) # weight = torch.einsum(
weight = rearrange(weight, 'k m ... -> (k m) ...') # 'k n m, k n ... -> k m ...',
# R * multiplier + torch.eye(self.block_size, device=orig_weight.device),
# orig_weight
# )
# weight = rearrange(weight, 'k m ... -> (k m) ...')
#updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
updown = weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight #updown = weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape output_shape = orig_weight.shape
orig_weight = orig_weight orig_weight = orig_weight
@ -100,3 +152,49 @@ class NetworkModuleOFT(network.NetworkModule):
ex_bias = ex_bias * self.multiplier() ex_bias = ex_bias * self.multiplier()
return updown, ex_bias return updown, ex_bias
# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
'''
return a tuple of two value of input dimension decomposed by the number closest to factor
second value is higher or equal than first value.
In LoRA with Kroneckor Product, first value is a value for weight scale.
secon value is a value for weight.
Becuase of non-commutative property, AB BA. Meaning of two matrices is slightly different.
examples)
factor
-1 2 4 8 16 ...
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
'''
if factor > 0 and (dimension % factor) == 0:
m = factor
n = dimension // factor
if m > n:
n, m = m, n
return m, n
if factor < 0:
factor = dimension
m, n = 1, dimension
length = m + n
while m<n:
new_m = m + 1
while dimension%new_m != 0:
new_m += 1
new_n = dimension // new_m
if new_m + new_n > length or new_m>factor:
break
else:
m, n = new_m, new_n
if m > n:
n, m = m, n
return m, n