diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py index e462ccb1b..ebe6740c5 100644 --- a/extensions-builtin/Lora/network_oft.py +++ b/extensions-builtin/Lora/network_oft.py @@ -29,23 +29,27 @@ class NetworkModuleOFT(network.NetworkModule): self.block_size = self.out_dim // self.num_blocks self.org_module: list[torch.Module] = [self.sd_module] - self.org_weight = self.org_module[0].weight.to(self.org_module[0].weight.device, copy=True) + #self.org_weight = self.org_module[0].weight.to(self.org_module[0].weight.device, copy=True) init_multiplier = self.multiplier() * self.calc_scale() self.last_multiplier = init_multiplier self.R = self.get_weight(self.oft_blocks, init_multiplier) + self.hooks = [] self.merged_weight = self.merge_weight() - self.apply_to() + + #self.apply_to() + self.applied = False self.merged = False def merge_weight(self): - R = self.R.to(self.org_weight.device, dtype=self.org_weight.dtype) - if self.org_weight.dim() == 4: - weight = torch.einsum("oihw, op -> pihw", self.org_weight, R) + org_weight = self.org_module[0].weight + R = self.R.to(org_weight.device, dtype=org_weight.dtype) + if org_weight.dim() == 4: + weight = torch.einsum("oihw, op -> pihw", org_weight, R) else: - weight = torch.einsum("oi, op -> pi", self.org_weight, R) + weight = torch.einsum("oi, op -> pi", org_weight, R) return weight def replace_weight(self, new_weight): @@ -55,17 +59,29 @@ class NetworkModuleOFT(network.NetworkModule): self.merged = True def restore_weight(self): - org_sd = self.org_module[0].state_dict() - org_sd['weight'] = self.org_weight - self.org_module[0].load_state_dict(org_sd) - self.merged = False + pass + #org_sd = self.org_module[0].state_dict() + #org_sd['weight'] = self.org_weight + #self.org_module[0].load_state_dict(org_sd) + #self.merged = False # FIXME: hook forward method of original linear, but how do we undo the hook when we are done? def apply_to(self): - self.org_forward = self.org_module[0].forward - #self.org_module[0].forward = self.forward - self.org_module[0].register_forward_pre_hook(self.pre_forward_hook) - self.org_module[0].register_forward_hook(self.forward_hook) + if not self.applied: + self.org_forward = self.org_module[0].forward + #self.org_module[0].forward = self.forward + prehook = self.org_module[0].register_forward_pre_hook(self.pre_forward_hook) + hook = self.org_module[0].register_forward_hook(self.forward_hook) + self.hooks.append(prehook) + self.hooks.append(hook) + self.applied = True + + def remove_from(self): + if self.applied: + for hook in self.hooks: + hook.remove() + self.hooks = [] + self.applied = False def get_weight(self, oft_blocks, multiplier=None): multiplier = multiplier.to(oft_blocks.device, dtype=oft_blocks.dtype) @@ -82,14 +98,22 @@ class NetworkModuleOFT(network.NetworkModule): return R def calc_updown(self, orig_weight): + if not self.applied: + self.apply_to() + + self.merged_weight = self.merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) + updown = torch.zeros_like(orig_weight, device=orig_weight.device, dtype=orig_weight.dtype) output_shape = orig_weight.shape - orig_weight = self.merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) + orig_weight = self.merged_weight #output_shape = self.oft_blocks.shape return self.finalize_updown(updown, orig_weight, output_shape) def pre_forward_hook(self, module, input): + #if not self.applied: + # self.apply_to() + multiplier = self.multiplier() * self.calc_scale() if not multiplier==self.last_multiplier or not self.merged: @@ -98,6 +122,5 @@ class NetworkModuleOFT(network.NetworkModule): self.merged_weight = self.merge_weight() self.replace_weight(self.merged_weight) - def forward_hook(self, module, args, output): - pass + pass \ No newline at end of file