From dec791d35ddcd02ca33563d3d0355e05e45de8ad Mon Sep 17 00:00:00 2001 From: CodeHatchling Date: Tue, 28 Nov 2023 15:05:01 -0700 Subject: [PATCH] Removed code which forces the inpainting mask to be 0 or 1. Now fractional values (e.g. 0.5) are accepted. --- modules/processing.py | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/modules/processing.py b/modules/processing.py index e124e7f0d..317458f58 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -83,7 +83,7 @@ def apply_overlay(image, paste_loc, index, overlays): def create_binary_mask(image): if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255): - image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0) + image = image.split()[-1].convert("L") else: image = image.convert('L') return image @@ -319,9 +319,6 @@ class StableDiffusionProcessing: conditioning_mask = np.array(image_mask.convert("L")) conditioning_mask = conditioning_mask.astype(np.float32) / 255.0 conditioning_mask = torch.from_numpy(conditioning_mask[None, None]) - - # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0 - conditioning_mask = torch.round(conditioning_mask) else: conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:]) @@ -1504,7 +1501,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2])) latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255 latmask = latmask[0] - latmask = np.around(latmask) latmask = np.tile(latmask[None], (4, 1, 1)) self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)