mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
Merge branch 'master' into notification-sound
This commit is contained in:
commit
e4145c8453
1
.gitignore
vendored
1
.gitignore
vendored
@ -21,3 +21,4 @@ __pycache__
|
||||
/user.css
|
||||
/.idea
|
||||
notification.mp3
|
||||
/SwinIR
|
||||
|
24
javascript/dragdrop.js
vendored
24
javascript/dragdrop.js
vendored
@ -68,13 +68,19 @@ window.addEventListener('paste', e => {
|
||||
if ( ! isValidImageList( files ) ) {
|
||||
return;
|
||||
}
|
||||
[...gradioApp().querySelectorAll('input[type=file][accept="image/x-png,image/gif,image/jpeg"]')]
|
||||
.filter(input => !input.matches('.\\!hidden input[type=file]'))
|
||||
.forEach(input => {
|
||||
input.files = files;
|
||||
input.dispatchEvent(new Event('change'))
|
||||
});
|
||||
[...gradioApp().querySelectorAll('[data-testid="image"]')]
|
||||
.filter(imgWrap => !imgWrap.closest('.\\!hidden'))
|
||||
.forEach(imgWrap => dropReplaceImage( imgWrap, files ));
|
||||
|
||||
const visibleImageFields = [...gradioApp().querySelectorAll('[data-testid="image"]')]
|
||||
.filter(el => uiElementIsVisible(el));
|
||||
if ( ! visibleImageFields.length ) {
|
||||
return;
|
||||
}
|
||||
|
||||
const firstFreeImageField = visibleImageFields
|
||||
.filter(el => el.querySelector('input[type=file]'))?.[0];
|
||||
|
||||
dropReplaceImage(
|
||||
firstFreeImageField ?
|
||||
firstFreeImageField :
|
||||
visibleImageFields[visibleImageFields.length - 1]
|
||||
, files );
|
||||
});
|
||||
|
@ -1,9 +1,8 @@
|
||||
// various functions for interation with ui.py not large enough to warrant putting them in separate files
|
||||
|
||||
function selected_gallery_index(){
|
||||
var gr = gradioApp()
|
||||
var buttons = gradioApp().querySelectorAll(".gallery-item")
|
||||
var button = gr.querySelector(".gallery-item.\\!ring-2")
|
||||
var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem .gallery-item')
|
||||
var button = gradioApp().querySelector('[style="display: block;"].tabitem .gallery-item.\\!ring-2')
|
||||
|
||||
var result = -1
|
||||
buttons.forEach(function(v, i){ if(v==button) { result = i } })
|
||||
|
@ -406,7 +406,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
index_of_first_image = 1
|
||||
|
||||
if opts.grid_save:
|
||||
images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p)
|
||||
images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
|
||||
|
||||
devices.torch_gc()
|
||||
return Processed(p, output_images, all_seeds[0], infotext(), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image)
|
||||
|
@ -66,7 +66,7 @@ class State:
|
||||
job = ""
|
||||
job_no = 0
|
||||
job_count = 0
|
||||
job_timestamp = 0
|
||||
job_timestamp = '0'
|
||||
sampling_step = 0
|
||||
sampling_steps = 0
|
||||
current_latent = None
|
||||
@ -80,6 +80,7 @@ class State:
|
||||
self.job_no += 1
|
||||
self.sampling_step = 0
|
||||
self.current_image_sampling_step = 0
|
||||
|
||||
def get_job_timestamp(self):
|
||||
return datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
||||
|
||||
|
21
script.js
21
script.js
@ -39,3 +39,24 @@ document.addEventListener("DOMContentLoaded", function() {
|
||||
});
|
||||
mutationObserver.observe( gradioApp(), { childList:true, subtree:true })
|
||||
});
|
||||
|
||||
/**
|
||||
* checks that a UI element is not in another hidden element or tab content
|
||||
*/
|
||||
function uiElementIsVisible(el) {
|
||||
let isVisible = !el.closest('.\\!hidden');
|
||||
if ( ! isVisible ) {
|
||||
return false;
|
||||
}
|
||||
|
||||
while( isVisible = el.closest('.tabitem')?.style.display !== 'none' ) {
|
||||
if ( ! isVisible ) {
|
||||
return false;
|
||||
} else if ( el.parentElement ) {
|
||||
el = el.parentElement
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return isVisible;
|
||||
}
|
@ -59,7 +59,55 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
|
||||
return x / x.std()
|
||||
|
||||
|
||||
Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt"])
|
||||
Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"])
|
||||
|
||||
|
||||
# Based on changes suggested by briansemrau in https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/736
|
||||
def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
|
||||
x = p.init_latent
|
||||
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
dnw = K.external.CompVisDenoiser(shared.sd_model)
|
||||
sigmas = dnw.get_sigmas(steps).flip(0)
|
||||
|
||||
shared.state.sampling_steps = steps
|
||||
|
||||
for i in trange(1, len(sigmas)):
|
||||
shared.state.sampling_step += 1
|
||||
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
|
||||
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
|
||||
|
||||
if i == 1:
|
||||
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
|
||||
else:
|
||||
t = dnw.sigma_to_t(sigma_in)
|
||||
|
||||
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
|
||||
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
|
||||
|
||||
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
|
||||
|
||||
if i == 1:
|
||||
d = (x - denoised) / (2 * sigmas[i])
|
||||
else:
|
||||
d = (x - denoised) / sigmas[i - 1]
|
||||
|
||||
dt = sigmas[i] - sigmas[i - 1]
|
||||
x = x + d * dt
|
||||
|
||||
sd_samplers.store_latent(x)
|
||||
|
||||
# This shouldn't be necessary, but solved some VRAM issues
|
||||
del x_in, sigma_in, cond_in, c_out, c_in, t,
|
||||
del eps, denoised_uncond, denoised_cond, denoised, d, dt
|
||||
|
||||
shared.state.nextjob()
|
||||
|
||||
return x / sigmas[-1]
|
||||
|
||||
|
||||
class Script(scripts.Script):
|
||||
@ -78,9 +126,10 @@ class Script(scripts.Script):
|
||||
cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0)
|
||||
st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50)
|
||||
randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0)
|
||||
return [original_prompt, original_negative_prompt, cfg, st, randomness]
|
||||
sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False)
|
||||
return [original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment]
|
||||
|
||||
def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness):
|
||||
def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment):
|
||||
p.batch_size = 1
|
||||
p.batch_count = 1
|
||||
|
||||
@ -88,7 +137,10 @@ class Script(scripts.Script):
|
||||
def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
||||
lat = (p.init_latent.cpu().numpy() * 10).astype(int)
|
||||
|
||||
same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st and self.cache.original_prompt == original_prompt and self.cache.original_negative_prompt == original_negative_prompt
|
||||
same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
|
||||
and self.cache.original_prompt == original_prompt \
|
||||
and self.cache.original_negative_prompt == original_negative_prompt \
|
||||
and self.cache.sigma_adjustment == sigma_adjustment
|
||||
same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100
|
||||
|
||||
if same_everything:
|
||||
@ -97,8 +149,11 @@ class Script(scripts.Script):
|
||||
shared.state.job_count += 1
|
||||
cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
|
||||
uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
|
||||
if sigma_adjustment:
|
||||
rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st)
|
||||
else:
|
||||
rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
|
||||
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt)
|
||||
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
|
||||
|
||||
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])])
|
||||
|
||||
@ -121,6 +176,7 @@ class Script(scripts.Script):
|
||||
p.extra_generation_params["Decode CFG scale"] = cfg
|
||||
p.extra_generation_params["Decode steps"] = st
|
||||
p.extra_generation_params["Randomness"] = randomness
|
||||
p.extra_generation_params["Sigma Adjustment"] = sigma_adjustment
|
||||
|
||||
processed = processing.process_images(p)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user