fix missing infotext cased by conda cache

some generation params such as TI hashes or Emphasis is added in sd_hijack / sd_hijack_clip
if conda are fetche from cache sd_hijack_clip will not be executed and it won't have a chance to to add generation params

the generation params will also be missing if in non low-vram mode because the hijack.extra_generation_params was never read after calculate_hr_conds
This commit is contained in:
w-e-w 2024-11-23 17:31:01 +09:00
parent 023454b49e
commit e72a6c411a
4 changed files with 76 additions and 7 deletions

View File

@ -187,6 +187,7 @@ class StableDiffusionProcessing:
cached_uc = [None, None]
cached_c = [None, None]
hijack_generation_params_state_list = []
comments: dict = None
sampler: sd_samplers_common.Sampler | None = field(default=None, init=False)
@ -480,6 +481,10 @@ class StableDiffusionProcessing:
for cache in caches:
if cache[0] is not None and cached_params == cache[0]:
if len(cache) == 3:
generation_params_state, cached_params_2 = cache[2]
if cached_params == cached_params_2:
self.hijack_generation_params_state_list.extend(generation_params_state)
return cache[1]
cache = caches[0]
@ -487,9 +492,25 @@ class StableDiffusionProcessing:
with devices.autocast():
cache[1] = function(shared.sd_model, required_prompts, steps, hires_steps, shared.opts.use_old_scheduling)
generation_params_state = model_hijack.capture_generation_params_state()
self.hijack_generation_params_state_list.extend(generation_params_state)
if len(cache) == 2:
cache.append((generation_params_state, cached_params))
else:
cache[2] = (generation_params_state, cached_params)
cache[0] = cached_params
return cache[1]
def apply_hijack_generation_params(self):
self.extra_generation_params.update(model_hijack.extra_generation_params)
for func in self.hijack_generation_params_state_list:
try:
func(self.extra_generation_params)
except Exception:
errors.report(f"Failed to apply hijack generation params state", exc_info=True)
self.hijack_generation_params_state_list.clear()
def setup_conds(self):
prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
@ -502,6 +523,8 @@ class StableDiffusionProcessing:
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, total_steps, [self.cached_uc], self.extra_network_data)
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, total_steps, [self.cached_c], self.extra_network_data)
self.apply_hijack_generation_params()
def get_conds(self):
return self.c, self.uc
@ -965,8 +988,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.setup_conds()
p.extra_generation_params.update(model_hijack.extra_generation_params)
# params.txt should be saved after scripts.process_batch, since the
# infotext could be modified by that callback
# Example: a wildcard processed by process_batch sets an extra model
@ -1513,6 +1534,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, self.firstpass_steps, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data, total_steps)
self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, self.firstpass_steps, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data, total_steps)
self.apply_hijack_generation_params()
def setup_conds(self):
if self.is_hr_pass:
# if we are in hr pass right now, the call is being made from the refiner, and we don't need to setup firstpass cons or switch model

View File

@ -6,6 +6,7 @@ from modules import devices, sd_hijack_optimizations, shared, script_callbacks,
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr, xlmr_m18
from modules.util import GenerationParamsState
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
@ -321,6 +322,13 @@ class StableDiffusionModelHijack:
self.comments = []
self.extra_generation_params = {}
def capture_generation_params_state(self):
state = []
for key in list(self.extra_generation_params):
if isinstance(self.extra_generation_params[key], GenerationParamsState):
state.append(self.extra_generation_params.pop(key))
return state
def get_prompt_lengths(self, text):
if self.clip is None:
return "-", "-"

View File

@ -5,6 +5,7 @@ import torch
from modules import prompt_parser, devices, sd_hijack, sd_emphasis
from modules.shared import opts
from modules.util import GenerationParamsState
class PromptChunk:
@ -27,6 +28,31 @@ chunk. Those objects are found in PromptChunk.fixes and, are placed into FrozenC
are applied by sd_hijack.EmbeddingsWithFixes's forward function."""
class EmbeddingHashes(GenerationParamsState):
def __init__(self, hashes: list):
super().__init__()
self.hashes = hashes
def __call__(self, extra_generation_params):
unique_hashes = dict.fromkeys(self.hashes)
if existing_ti_hashes := extra_generation_params.get('TI hashes'):
unique_hashes.update(dict.fromkeys(existing_ti_hashes.split(', ')))
extra_generation_params['TI hashes'] = ', '.join(unique_hashes)
class EmphasisMode(GenerationParamsState):
def __init__(self, texts):
super().__init__()
if opts.emphasis != 'Original' and any(x for x in texts if '(' in x or '[' in x):
self.emphasis = opts.emphasis
else:
self.emphasis = None
def __call__(self, extra_generation_params):
if self.emphasis:
extra_generation_params['Emphasis'] = self.emphasis
class TextConditionalModel(torch.nn.Module):
def __init__(self):
super().__init__()
@ -238,12 +264,9 @@ class TextConditionalModel(torch.nn.Module):
hashes.append(f"{name}: {shorthash}")
if hashes:
if self.hijack.extra_generation_params.get("TI hashes"):
hashes.append(self.hijack.extra_generation_params.get("TI hashes"))
self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes)
self.hijack.extra_generation_params["TI hashes"] = EmbeddingHashes(hashes)
if any(x for x in texts if "(" in x or "[" in x) and opts.emphasis != "Original":
self.hijack.extra_generation_params["Emphasis"] = opts.emphasis
self.hijack.extra_generation_params["Emphasis"] = EmphasisMode(texts)
if self.return_pooled:
return torch.hstack(zs), zs[0].pooled

View File

@ -288,3 +288,18 @@ def compare_sha256(file_path: str, hash_prefix: str) -> bool:
for chunk in iter(lambda: f.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest().startswith(hash_prefix.strip().lower())
class GenerationParamsState:
"""A custom class used in StableDiffusionModelHijack for assigning extra_generation_params
generation_params assigned using this class will work properly with StableDiffusionProcessing.get_conds_with_caching()
if assigned directly the generation_params will not be populated if conda cache is used
Generation_params of this class will be captured (see StableDiffusionModelHijack.capture_generation_params_state) and stored with conda cache, and will be extracted in StableDiffusionProcessing.apply_hijack_generation_params()
To use this class, create a subclass with a __call__ method that takes extra_generation_params: dict as input
Example usage: sd_hijack_clip.EmbeddingHashes, sd_hijack_clip.EmphasisMode
"""
def __call__(self, extra_generation_params: dict):
raise NotImplementedError