mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 03:40:14 +08:00
A custom blending function can be provided by p, replacing the use of soft_inpainting.
This commit is contained in:
parent
38864816fa
commit
e90d4334ad
@ -6,7 +6,6 @@ import modules.shared as shared
|
||||
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
|
||||
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
|
||||
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
|
||||
import modules.soft_inpainting as si
|
||||
|
||||
|
||||
def catenate_conds(conds):
|
||||
@ -44,7 +43,6 @@ class CFGDenoiser(torch.nn.Module):
|
||||
self.model_wrap = None
|
||||
self.mask = None
|
||||
self.nmask = None
|
||||
self.soft_inpainting: si.SoftInpaintingParameters = None
|
||||
self.init_latent = None
|
||||
self.steps = None
|
||||
"""number of steps as specified by user in UI"""
|
||||
@ -94,7 +92,6 @@ class CFGDenoiser(torch.nn.Module):
|
||||
self.sampler.sampler_extra_args['uncond'] = uc
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
|
||||
|
||||
if state.interrupted or state.skipped:
|
||||
raise sd_samplers_common.InterruptedException
|
||||
|
||||
@ -111,15 +108,24 @@ class CFGDenoiser(torch.nn.Module):
|
||||
|
||||
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
|
||||
|
||||
# If we use masks, blending between the denoised and original latent images occurs here.
|
||||
def apply_blend(latent):
|
||||
if hasattr(self.p, "denoiser_masked_blend_function") and callable(self.p.denoiser_masked_blend_function):
|
||||
return self.p.denoiser_masked_blend_function(
|
||||
self,
|
||||
# Using an argument dictionary so that arguments can be added without breaking extensions.
|
||||
args=
|
||||
{
|
||||
"denoiser": self,
|
||||
"current_latent": latent,
|
||||
"sigma": sigma
|
||||
})
|
||||
else:
|
||||
return self.init_latent * self.mask + self.nmask * latent
|
||||
|
||||
# Blend in the original latents (before)
|
||||
if self.mask_before_denoising and self.mask is not None:
|
||||
if self.soft_inpainting is None:
|
||||
x = self.init_latent * self.mask + self.nmask * x
|
||||
else:
|
||||
x = si.latent_blend(self.soft_inpainting,
|
||||
self.init_latent,
|
||||
x,
|
||||
si.get_modified_nmask(self.soft_inpainting, self.nmask, sigma))
|
||||
x = apply_blend(x)
|
||||
|
||||
batch_size = len(conds_list)
|
||||
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
||||
@ -222,13 +228,7 @@ class CFGDenoiser(torch.nn.Module):
|
||||
|
||||
# Blend in the original latents (after)
|
||||
if not self.mask_before_denoising and self.mask is not None:
|
||||
if self.soft_inpainting is None:
|
||||
denoised = self.init_latent * self.mask + self.nmask * denoised
|
||||
else:
|
||||
denoised = si.latent_blend(self.soft_inpainting,
|
||||
self.init_latent,
|
||||
denoised,
|
||||
si.get_modified_nmask(self.soft_inpainting, self.nmask, sigma))
|
||||
denoised = apply_blend(denoised)
|
||||
|
||||
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
|
||||
|
||||
|
@ -277,7 +277,6 @@ class Sampler:
|
||||
self.model_wrap_cfg.p = p
|
||||
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
||||
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
||||
self.model_wrap_cfg.soft_inpainting = p.soft_inpainting if hasattr(p, 'soft_inpainting') else None
|
||||
self.model_wrap_cfg.step = 0
|
||||
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
|
||||
self.eta = p.eta if p.eta is not None else getattr(opts, self.eta_option_field, 0.0)
|
||||
|
Loading…
Reference in New Issue
Block a user