diff --git a/.github/ISSUE_TEMPLATE/feature_request.yml b/.github/ISSUE_TEMPLATE/feature_request.yml index 8ca6e21f5..35a887408 100644 --- a/.github/ISSUE_TEMPLATE/feature_request.yml +++ b/.github/ISSUE_TEMPLATE/feature_request.yml @@ -1,7 +1,7 @@ name: Feature request description: Suggest an idea for this project title: "[Feature Request]: " -labels: ["suggestion"] +labels: ["enhancement"] body: - type: checkboxes diff --git a/README.md b/README.md index 88250a6bd..d783fdf0f 100644 --- a/README.md +++ b/README.md @@ -1,9 +1,7 @@ # Stable Diffusion web UI A browser interface based on Gradio library for Stable Diffusion. -![](txt2img_Screenshot.png) - -Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) wiki page for extra scripts developed by users. +![](screenshot.png) ## Features [Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features): @@ -97,9 +95,8 @@ Alternatively, use online services (like Google Colab): 1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH" 2. Install [git](https://git-scm.com/download/win). 3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`. -4. Place `model.ckpt` in the `models` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it). -5. _*(Optional)*_ Place `GFPGANv1.4.pth` in the base directory, alongside `webui.py` (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it). -6. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user. +4. Place stable diffusion checkpoint (`model.ckpt`) in the `models/Stable-diffusion` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it). +5. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user. ### Automatic Installation on Linux 1. Install the dependencies: @@ -141,6 +138,7 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al - Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. - Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion) +- Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention) - Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas). - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot diff --git a/html/licenses.html b/html/licenses.html index 9eeaa0726..570630eb4 100644 --- a/html/licenses.html +++ b/html/licenses.html @@ -184,7 +184,7 @@ SOFTWARE.
Apache License @@ -390,3 +390,30 @@ SOFTWARE. limitations under the License.+
+MIT License + +Copyright (c) 2023 Alex Birch +Copyright (c) 2023 Amin Rezaei + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. ++ diff --git a/modules/api/api.py b/modules/api/api.py index 2103709b0..5b6125f8c 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -11,7 +11,7 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials from secrets import compare_digest import modules.shared as shared -from modules import sd_samplers, deepbooru, sd_hijack, images +from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui from modules.api.models import * from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.extras import run_extras @@ -28,8 +28,13 @@ def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) except: - raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}") + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}") +def script_name_to_index(name, scripts): + try: + return [script.title().lower() for script in scripts].index(name.lower()) + except: + raise HTTPException(status_code=422, detail=f"Script '{name}' not found") def validate_sampler_name(name): config = sd_samplers.all_samplers_map.get(name, None) @@ -143,7 +148,21 @@ class Api: raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"}) + def get_script(self, script_name, script_runner): + if script_name is None: + return None, None + + if not script_runner.scripts: + script_runner.initialize_scripts(False) + ui.create_ui() + + script_idx = script_name_to_index(script_name, script_runner.selectable_scripts) + script = script_runner.selectable_scripts[script_idx] + return script, script_idx + def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): + script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img) + populate = txt2imgreq.copy(update={ # Override __init__ params "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index), "do_not_save_samples": True, @@ -153,14 +172,22 @@ class Api: if populate.sampler_name: populate.sampler_index = None # prevent a warning later on + args = vars(populate) + args.pop('script_name', None) + with self.queue_lock: - p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate)) + p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args) shared.state.begin() - processed = process_images(p) + if script is not None: + p.outpath_grids = opts.outdir_txt2img_grids + p.outpath_samples = opts.outdir_txt2img_samples + p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args + processed = scripts.scripts_txt2img.run(p, *p.script_args) + else: + processed = process_images(p) shared.state.end() - b64images = list(map(encode_pil_to_base64, processed.images)) return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) @@ -170,6 +197,8 @@ class Api: if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") + script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img) + mask = img2imgreq.mask if mask: mask = decode_base64_to_image(mask) @@ -186,13 +215,20 @@ class Api: args = vars(populate) args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine. + args.pop('script_name', None) with self.queue_lock: p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args) p.init_images = [decode_base64_to_image(x) for x in init_images] shared.state.begin() - processed = process_images(p) + if script is not None: + p.outpath_grids = opts.outdir_img2img_grids + p.outpath_samples = opts.outdir_img2img_samples + p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args + processed = scripts.scripts_img2img.run(p, *p.script_args) + else: + processed = process_images(p) shared.state.end() b64images = list(map(encode_pil_to_base64, processed.images)) diff --git a/modules/api/models.py b/modules/api/models.py index d8198a27d..ce43c8582 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -100,13 +100,13 @@ class PydanticModelGenerator: StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingTxt2Img", StableDiffusionProcessingTxt2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}] + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] ).generate_model() StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingImg2Img", StableDiffusionProcessingImg2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}] + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] ).generate_model() class TextToImageResponse(BaseModel): @@ -125,7 +125,7 @@ class ExtrasBaseRequest(BaseModel): gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.") codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.") codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.") - upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.") + upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.") upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.") upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.") upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?") diff --git a/modules/processing.py b/modules/processing.py index 82157bc98..1d23b15fd 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -98,7 +98,7 @@ class StableDiffusionProcessing(): """ The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing """ - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None): + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): if sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) @@ -149,7 +149,7 @@ class StableDiffusionProcessing(): self.seed_resize_from_w = 0 self.scripts = None - self.script_args = None + self.script_args = script_args self.all_prompts = None self.all_negative_prompts = None self.all_seeds = None diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 71cc145a1..6b0d95af9 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -7,8 +7,6 @@ from modules.hypernetworks import hypernetwork from modules.shared import cmd_opts from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr -from modules.sd_hijack_optimizations import invokeAI_mps_available - import ldm.modules.attention import ldm.modules.diffusionmodules.model import ldm.modules.diffusionmodules.openaimodel @@ -43,20 +41,19 @@ def apply_optimizations(): ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward optimization_method = 'xformers' + elif cmd_opts.opt_sub_quad_attention: + print("Applying sub-quadratic cross attention optimization.") + ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward + ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sub_quad_attnblock_forward + optimization_method = 'sub-quadratic' elif cmd_opts.opt_split_attention_v1: print("Applying v1 cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 optimization_method = 'V1' - elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()): - if not invokeAI_mps_available and shared.device.type == 'mps': - print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.") - print("Applying v1 cross attention optimization.") - ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 - optimization_method = 'V1' - else: - print("Applying cross attention optimization (InvokeAI).") - ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI - optimization_method = 'InvokeAI' + elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not cmd_opts.opt_split_attention and not torch.cuda.is_available()): + print("Applying cross attention optimization (InvokeAI).") + ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI + optimization_method = 'InvokeAI' elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): print("Applying cross attention optimization (Doggettx).") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward @@ -86,10 +83,12 @@ class StableDiffusionModelHijack: clip = None optimization_method = None - embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir) + embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase() + + def __init__(self): + self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir) def hijack(self, m): - if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: model_embeddings = m.cond_stage_model.roberta.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) @@ -120,7 +119,6 @@ class StableDiffusionModelHijack: self.layers = flatten(m) def undo_hijack(self, m): - if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: m.cond_stage_model = m.cond_stage_model.wrapped diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py index 5520c9b2f..852afc665 100644 --- a/modules/sd_hijack_clip.py +++ b/modules/sd_hijack_clip.py @@ -247,9 +247,9 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise batch_multipliers = torch.asarray(batch_multipliers).to(devices.device) original_mean = z.mean() - z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) + z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) new_mean = z.mean() - z *= original_mean / new_mean + z = z * (original_mean / new_mean) return z diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 02c87f404..cdc63ed74 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -1,7 +1,7 @@ import math import sys import traceback -import importlib +import psutil import torch from torch import einsum @@ -12,6 +12,8 @@ from einops import rearrange from modules import shared from modules.hypernetworks import hypernetwork +from .sub_quadratic_attention import efficient_dot_product_attention + if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: try: @@ -22,6 +24,19 @@ if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: print(traceback.format_exc(), file=sys.stderr) +def get_available_vram(): + if shared.device.type == 'cuda': + stats = torch.cuda.memory_stats(shared.device) + mem_active = stats['active_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) + mem_free_torch = mem_reserved - mem_active + mem_free_total = mem_free_cuda + mem_free_torch + return mem_free_total + else: + return psutil.virtual_memory().available + + # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion def split_cross_attention_forward_v1(self, x, context=None, mask=None): h = self.heads @@ -76,12 +91,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None): r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) - stats = torch.cuda.memory_stats(q.device) - mem_active = stats['active_bytes.all.current'] - mem_reserved = stats['reserved_bytes.all.current'] - mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) - mem_free_torch = mem_reserved - mem_active - mem_free_total = mem_free_cuda + mem_free_torch + mem_free_total = get_available_vram() gb = 1024 ** 3 tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() @@ -118,19 +128,8 @@ def split_cross_attention_forward(self, x, context=None, mask=None): return self.to_out(r2) -def check_for_psutil(): - try: - spec = importlib.util.find_spec('psutil') - return spec is not None - except ModuleNotFoundError: - return False - -invokeAI_mps_available = check_for_psutil() - # -- Taken from https://github.com/invoke-ai/InvokeAI and modified -- -if invokeAI_mps_available: - import psutil - mem_total_gb = psutil.virtual_memory().total // (1 << 30) +mem_total_gb = psutil.virtual_memory().total // (1 << 30) def einsum_op_compvis(q, k, v): s = einsum('b i d, b j d -> b i j', q, k) @@ -215,6 +214,71 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): # -- End of code from https://github.com/invoke-ai/InvokeAI -- + +# Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1 +# The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface +def sub_quad_attention_forward(self, x, context=None, mask=None): + assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor." + + h = self.heads + + q = self.to_q(x) + context = default(context, x) + + context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + k = self.to_k(context_k) + v = self.to_v(context_v) + del context, context_k, context_v, x + + q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) + k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) + v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) + + x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) + + x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2) + + out_proj, dropout = self.to_out + x = out_proj(x) + x = dropout(x) + + return x + +def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True): + bytes_per_token = torch.finfo(q.dtype).bits//8 + batch_x_heads, q_tokens, _ = q.shape + _, k_tokens, _ = k.shape + qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens + + if chunk_threshold is None: + chunk_threshold_bytes = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7) + elif chunk_threshold == 0: + chunk_threshold_bytes = None + else: + chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram()) + + if kv_chunk_size_min is None and chunk_threshold_bytes is not None: + kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2])) + elif kv_chunk_size_min == 0: + kv_chunk_size_min = None + + if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes: + # the big matmul fits into our memory limit; do everything in 1 chunk, + # i.e. send it down the unchunked fast-path + query_chunk_size = q_tokens + kv_chunk_size = k_tokens + + return efficient_dot_product_attention( + q, + k, + v, + query_chunk_size=q_chunk_size, + kv_chunk_size=kv_chunk_size, + kv_chunk_size_min = kv_chunk_size_min, + use_checkpoint=use_checkpoint, + ) + + def xformers_attention_forward(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) @@ -252,12 +316,7 @@ def cross_attention_attnblock_forward(self, x): h_ = torch.zeros_like(k, device=q.device) - stats = torch.cuda.memory_stats(q.device) - mem_active = stats['active_bytes.all.current'] - mem_reserved = stats['reserved_bytes.all.current'] - mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) - mem_free_torch = mem_reserved - mem_active - mem_free_total = mem_free_cuda + mem_free_torch + mem_free_total = get_available_vram() tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() mem_required = tensor_size * 2.5 @@ -312,3 +371,19 @@ def xformers_attnblock_forward(self, x): return x + out except NotImplementedError: return cross_attention_attnblock_forward(self, x) + +def sub_quad_attnblock_forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + b, c, h, w = q.shape + q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) + q = q.contiguous() + k = k.contiguous() + v = v.contiguous() + out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) + out = rearrange(out, 'b (h w) c -> b c h w', h=h) + out = self.proj_out(out) + return x + out diff --git a/modules/shared.py b/modules/shared.py index 865c3c070..a6712dae9 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -56,6 +56,10 @@ parser.add_argument("--xformers", action='store_true', help="enable xformers for parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work") parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything") parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.") +parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization") +parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024) +parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None) +parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None) parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.") parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find") parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization") diff --git a/modules/sub_quadratic_attention.py b/modules/sub_quadratic_attention.py new file mode 100644 index 000000000..fea7aaacc --- /dev/null +++ b/modules/sub_quadratic_attention.py @@ -0,0 +1,205 @@ +# original source: +# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py +# license: +# MIT License (see Memory Efficient Attention under the Licenses section in the web UI interface for the full license) +# credit: +# Amin Rezaei (original author) +# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks) +# brkirch (modified to use torch.narrow instead of dynamic_slice implementation) +# implementation of: +# Self-attention Does Not Need O(n2) Memory": +# https://arxiv.org/abs/2112.05682v2 + +from functools import partial +import torch +from torch import Tensor +from torch.utils.checkpoint import checkpoint +import math +from typing import Optional, NamedTuple, Protocol, List + +def narrow_trunc( + input: Tensor, + dim: int, + start: int, + length: int +) -> Tensor: + return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start) + +class AttnChunk(NamedTuple): + exp_values: Tensor + exp_weights_sum: Tensor + max_score: Tensor + +class SummarizeChunk(Protocol): + @staticmethod + def __call__( + query: Tensor, + key: Tensor, + value: Tensor, + ) -> AttnChunk: ... + +class ComputeQueryChunkAttn(Protocol): + @staticmethod + def __call__( + query: Tensor, + key: Tensor, + value: Tensor, + ) -> Tensor: ... + +def _summarize_chunk( + query: Tensor, + key: Tensor, + value: Tensor, + scale: float, +) -> AttnChunk: + attn_weights = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key.transpose(1,2), + alpha=scale, + beta=0, + ) + max_score, _ = torch.max(attn_weights, -1, keepdim=True) + max_score = max_score.detach() + exp_weights = torch.exp(attn_weights - max_score) + exp_values = torch.bmm(exp_weights, value) + max_score = max_score.squeeze(-1) + return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) + +def _query_chunk_attention( + query: Tensor, + key: Tensor, + value: Tensor, + summarize_chunk: SummarizeChunk, + kv_chunk_size: int, +) -> Tensor: + batch_x_heads, k_tokens, k_channels_per_head = key.shape + _, _, v_channels_per_head = value.shape + + def chunk_scanner(chunk_idx: int) -> AttnChunk: + key_chunk = narrow_trunc( + key, + 1, + chunk_idx, + kv_chunk_size + ) + value_chunk = narrow_trunc( + value, + 1, + chunk_idx, + kv_chunk_size + ) + return summarize_chunk(query, key_chunk, value_chunk) + + chunks: List[AttnChunk] = [ + chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, kv_chunk_size) + ] + acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks))) + chunk_values, chunk_weights, chunk_max = acc_chunk + + global_max, _ = torch.max(chunk_max, 0, keepdim=True) + max_diffs = torch.exp(chunk_max - global_max) + chunk_values *= torch.unsqueeze(max_diffs, -1) + chunk_weights *= max_diffs + + all_values = chunk_values.sum(dim=0) + all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0) + return all_values / all_weights + +# TODO: refactor CrossAttention#get_attention_scores to share code with this +def _get_attention_scores_no_kv_chunking( + query: Tensor, + key: Tensor, + value: Tensor, + scale: float, +) -> Tensor: + attn_scores = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key.transpose(1,2), + alpha=scale, + beta=0, + ) + attn_probs = attn_scores.softmax(dim=-1) + del attn_scores + hidden_states_slice = torch.bmm(attn_probs, value) + return hidden_states_slice + +class ScannedChunk(NamedTuple): + chunk_idx: int + attn_chunk: AttnChunk + +def efficient_dot_product_attention( + query: Tensor, + key: Tensor, + value: Tensor, + query_chunk_size=1024, + kv_chunk_size: Optional[int] = None, + kv_chunk_size_min: Optional[int] = None, + use_checkpoint=True, +): + """Computes efficient dot-product attention given query, key, and value. + This is efficient version of attention presented in + https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements. + Args: + query: queries for calculating attention with shape of + `[batch * num_heads, tokens, channels_per_head]`. + key: keys for calculating attention with shape of + `[batch * num_heads, tokens, channels_per_head]`. + value: values to be used in attention with shape of + `[batch * num_heads, tokens, channels_per_head]`. + query_chunk_size: int: query chunks size + kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens) + kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done). + use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference) + Returns: + Output of shape `[batch * num_heads, query_tokens, channels_per_head]`. + """ + batch_x_heads, q_tokens, q_channels_per_head = query.shape + _, k_tokens, _ = key.shape + scale = q_channels_per_head ** -0.5 + + kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens) + if kv_chunk_size_min is not None: + kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min) + + def get_query_chunk(chunk_idx: int) -> Tensor: + return narrow_trunc( + query, + 1, + chunk_idx, + min(query_chunk_size, q_tokens) + ) + + summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale) + summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk + compute_query_chunk_attn: ComputeQueryChunkAttn = partial( + _get_attention_scores_no_kv_chunking, + scale=scale + ) if k_tokens <= kv_chunk_size else ( + # fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw) + partial( + _query_chunk_attention, + kv_chunk_size=kv_chunk_size, + summarize_chunk=summarize_chunk, + ) + ) + + if q_tokens <= query_chunk_size: + # fast-path for when there's just 1 query chunk + return compute_query_chunk_attn( + query=query, + key=key, + value=value, + ) + + # TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance, + # and pass slices to be mutated, instead of torch.cat()ing the returned slices + res = torch.cat([ + compute_query_chunk_attn( + query=get_query_chunk(i * query_chunk_size), + key=key, + value=value, + ) for i in range(math.ceil(q_tokens / query_chunk_size)) + ], dim=1) + return res diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 45882ed68..217fe9eb1 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -66,17 +66,41 @@ class Embedding: return self.cached_checksum +class DirWithTextualInversionEmbeddings: + def __init__(self, path): + self.path = path + self.mtime = None + + def has_changed(self): + if not os.path.isdir(self.path): + return False + + mt = os.path.getmtime(self.path) + if self.mtime is None or mt > self.mtime: + return True + + def update(self): + if not os.path.isdir(self.path): + return + + self.mtime = os.path.getmtime(self.path) + + class EmbeddingDatabase: - def __init__(self, embeddings_dir): + def __init__(self): self.ids_lookup = {} self.word_embeddings = {} self.skipped_embeddings = {} - self.dir_mtime = None - self.embeddings_dir = embeddings_dir self.expected_shape = -1 + self.embedding_dirs = {} + + def add_embedding_dir(self, path): + self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path) + + def clear_embedding_dirs(self): + self.embedding_dirs.clear() def register_embedding(self, embedding, model): - self.word_embeddings[embedding.name] = embedding ids = model.cond_stage_model.tokenize([embedding.name])[0] @@ -93,65 +117,62 @@ class EmbeddingDatabase: vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1) return vec.shape[1] - def load_textual_inversion_embeddings(self, force_reload = False): - mt = os.path.getmtime(self.embeddings_dir) - if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime: - return + def load_from_file(self, path, filename): + name, ext = os.path.splitext(filename) + ext = ext.upper() - self.dir_mtime = mt - self.ids_lookup.clear() - self.word_embeddings.clear() - self.skipped_embeddings.clear() - self.expected_shape = self.get_expected_shape() - - def process_file(path, filename): - name, ext = os.path.splitext(filename) - ext = ext.upper() - - if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']: - embed_image = Image.open(path) - if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text: - data = embedding_from_b64(embed_image.text['sd-ti-embedding']) - name = data.get('name', name) - else: - data = extract_image_data_embed(embed_image) - name = data.get('name', name) - elif ext in ['.BIN', '.PT']: - data = torch.load(path, map_location="cpu") - else: + if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']: + _, second_ext = os.path.splitext(name) + if second_ext.upper() == '.PREVIEW': return - # textual inversion embeddings - if 'string_to_param' in data: - param_dict = data['string_to_param'] - if hasattr(param_dict, '_parameters'): - param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11 - assert len(param_dict) == 1, 'embedding file has multiple terms in it' - emb = next(iter(param_dict.items()))[1] - # diffuser concepts - elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: - assert len(data.keys()) == 1, 'embedding file has multiple terms in it' - - emb = next(iter(data.values())) - if len(emb.shape) == 1: - emb = emb.unsqueeze(0) + embed_image = Image.open(path) + if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text: + data = embedding_from_b64(embed_image.text['sd-ti-embedding']) + name = data.get('name', name) else: - raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.") + data = extract_image_data_embed(embed_image) + name = data.get('name', name) + elif ext in ['.BIN', '.PT']: + data = torch.load(path, map_location="cpu") + else: + return - vec = emb.detach().to(devices.device, dtype=torch.float32) - embedding = Embedding(vec, name) - embedding.step = data.get('step', None) - embedding.sd_checkpoint = data.get('sd_checkpoint', None) - embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) - embedding.vectors = vec.shape[0] - embedding.shape = vec.shape[-1] + # textual inversion embeddings + if 'string_to_param' in data: + param_dict = data['string_to_param'] + if hasattr(param_dict, '_parameters'): + param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11 + assert len(param_dict) == 1, 'embedding file has multiple terms in it' + emb = next(iter(param_dict.items()))[1] + # diffuser concepts + elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: + assert len(data.keys()) == 1, 'embedding file has multiple terms in it' - if self.expected_shape == -1 or self.expected_shape == embedding.shape: - self.register_embedding(embedding, shared.sd_model) - else: - self.skipped_embeddings[name] = embedding + emb = next(iter(data.values())) + if len(emb.shape) == 1: + emb = emb.unsqueeze(0) + else: + raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.") - for root, dirs, fns in os.walk(self.embeddings_dir): + vec = emb.detach().to(devices.device, dtype=torch.float32) + embedding = Embedding(vec, name) + embedding.step = data.get('step', None) + embedding.sd_checkpoint = data.get('sd_checkpoint', None) + embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) + embedding.vectors = vec.shape[0] + embedding.shape = vec.shape[-1] + + if self.expected_shape == -1 or self.expected_shape == embedding.shape: + self.register_embedding(embedding, shared.sd_model) + else: + self.skipped_embeddings[name] = embedding + + def load_from_dir(self, embdir): + if not os.path.isdir(embdir.path): + return + + for root, dirs, fns in os.walk(embdir.path): for fn in fns: try: fullfn = os.path.join(root, fn) @@ -159,12 +180,32 @@ class EmbeddingDatabase: if os.stat(fullfn).st_size == 0: continue - process_file(fullfn, fn) + self.load_from_file(fullfn, fn) except Exception: print(f"Error loading embedding {fn}:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) continue + def load_textual_inversion_embeddings(self, force_reload=False): + if not force_reload: + need_reload = False + for path, embdir in self.embedding_dirs.items(): + if embdir.has_changed(): + need_reload = True + break + + if not need_reload: + return + + self.ids_lookup.clear() + self.word_embeddings.clear() + self.skipped_embeddings.clear() + self.expected_shape = self.get_expected_shape() + + for path, embdir in self.embedding_dirs.items(): + self.load_from_dir(embdir) + embdir.update() + print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") if len(self.skipped_embeddings) > 0: print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}") @@ -247,14 +288,15 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat assert os.path.isfile(template_file), "Prompt template file doesn't exist" assert steps, "Max steps is empty or 0" assert isinstance(steps, int), "Max steps must be integer" - assert steps > 0 , "Max steps must be positive" + assert steps > 0, "Max steps must be positive" assert isinstance(save_model_every, int), "Save {name} must be integer" - assert save_model_every >= 0 , "Save {name} must be positive or 0" + assert save_model_every >= 0, "Save {name} must be positive or 0" assert isinstance(create_image_every, int), "Create image must be integer" - assert create_image_every >= 0 , "Create image must be positive or 0" + assert create_image_every >= 0, "Create image must be positive or 0" if save_model_every or create_image_every: assert log_directory, "Log directory is empty" + def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): save_embedding_every = save_embedding_every or 0 create_image_every = create_image_every or 0 diff --git a/modules/ui.py b/modules/ui.py index 6c765262b..99483130c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -267,7 +267,7 @@ def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resiz with devices.autocast(): p.init([""], [0], [0]) - return f"resize to: {p.hr_upscale_to_x}x{p.hr_upscale_to_y}" + return f"resize: from {width}x{height} to {p.hr_upscale_to_x}x{p.hr_upscale_to_y}" def apply_styles(prompt, prompt_neg, style1_name, style2_name): diff --git a/requirements.txt b/requirements.txt index 4f09385f4..e1dbf8e58 100644 --- a/requirements.txt +++ b/requirements.txt @@ -30,4 +30,4 @@ inflection GitPython torchsde safetensors -psutil; sys_platform == 'darwin' +psutil diff --git a/screenshot.png b/screenshot.png index 86c3209fe..47a1be4ec 100644 Binary files a/screenshot.png and b/screenshot.png differ diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py index 9b8ffd854..332d76d91 100644 --- a/scripts/sd_upscale.py +++ b/scripts/sd_upscale.py @@ -25,6 +25,8 @@ class Script(scripts.Script): return [info, overlap, upscaler_index, scale_factor] def run(self, p, _, overlap, upscaler_index, scale_factor): + if isinstance(upscaler_index, str): + upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower()) processing.fix_seed(p) upscaler = shared.sd_upscalers[upscaler_index] diff --git a/style.css b/style.css index 76721756c..d796cbe99 100644 --- a/style.css +++ b/style.css @@ -512,7 +512,7 @@ input[type="range"]{ border: none; background: none; flex: unset; - gap: 0.5em; + gap: 1em; } #quicksettings > div > div{ @@ -521,6 +521,17 @@ input[type="range"]{ padding: 0; } +#quicksettings > div > div > div > div > label > span { + position: relative; + margin-right: 9em; + margin-bottom: -1em; +} + +#quicksettings > div > div > label > span { + position: relative; + margin-bottom: -1em; +} + canvas[key="mask"] { z-index: 12 !important; filter: invert(); diff --git a/test/basic_features/img2img_test.py b/test/basic_features/img2img_test.py index 0a9c1e8ad..bd520b139 100644 --- a/test/basic_features/img2img_test.py +++ b/test/basic_features/img2img_test.py @@ -50,6 +50,12 @@ class TestImg2ImgWorking(unittest.TestCase): self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(r"test/test_files/mask_basic.png")) self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200) + def test_img2img_sd_upscale_performed(self): + self.simple_img2img["script_name"] = "sd upscale" + self.simple_img2img["script_args"] = ["", 8, "Lanczos", 2.0] + + self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200) + if __name__ == "__main__": unittest.main() diff --git a/txt2img_Screenshot.png b/txt2img_Screenshot.png deleted file mode 100644 index 6e2759a4c..000000000 Binary files a/txt2img_Screenshot.png and /dev/null differ