mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 20:00:12 +08:00
Merge pull request #10201 from brkirch/mps-nan-fixes
Fix MPS on PyTorch 2.0.1, Intel Macs
This commit is contained in:
commit
ea05ddfec8
@ -54,6 +54,11 @@ if has_mps:
|
|||||||
CondFunc('torch.cumsum', cumsum_fix_func, None)
|
CondFunc('torch.cumsum', cumsum_fix_func, None)
|
||||||
CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None)
|
CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None)
|
||||||
CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None)
|
CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None)
|
||||||
if version.parse(torch.__version__) == version.parse("2.0"):
|
|
||||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/96113
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/96113
|
||||||
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda *args, **kwargs: len(args) == 6)
|
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda _, input, *args, **kwargs: len(args) == 4 and input.device.type == 'mps')
|
||||||
|
|
||||||
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/92311
|
||||||
|
if platform.processor() == 'i386':
|
||||||
|
for funcName in ['torch.argmax', 'torch.Tensor.argmax']:
|
||||||
|
CondFunc(funcName, lambda _, input, *args, **kwargs: torch.max(input.float() if input.dtype == torch.int64 else input, *args, **kwargs)[1], lambda _, input, *args, **kwargs: input.device.type == 'mps')
|
@ -256,6 +256,9 @@ def sub_quad_attention_forward(self, x, context=None, mask=None):
|
|||||||
k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
|
k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
|
||||||
v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
|
v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
|
||||||
|
|
||||||
|
if q.device.type == 'mps':
|
||||||
|
q, k, v = q.contiguous(), k.contiguous(), v.contiguous()
|
||||||
|
|
||||||
dtype = q.dtype
|
dtype = q.dtype
|
||||||
if shared.opts.upcast_attn:
|
if shared.opts.upcast_attn:
|
||||||
q, k = q.float(), k.float()
|
q, k = q.float(), k.float()
|
||||||
|
Loading…
Reference in New Issue
Block a user