diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index 83933639e..d488b5ae4 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -245,6 +245,19 @@ def lora_calc_updown(lora, module, target): return updown +def lora_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): + weights_backup = getattr(self, "lora_weights_backup", None) + + if weights_backup is None: + return + + if isinstance(self, torch.nn.MultiheadAttention): + self.in_proj_weight.copy_(weights_backup[0]) + self.out_proj.weight.copy_(weights_backup[1]) + else: + self.weight.copy_(weights_backup) + + def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): """ Applies the currently selected set of Loras to the weights of torch layer self. @@ -269,12 +282,7 @@ def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.Mu self.lora_weights_backup = weights_backup if current_names != wanted_names: - if weights_backup is not None: - if isinstance(self, torch.nn.MultiheadAttention): - self.in_proj_weight.copy_(weights_backup[0]) - self.out_proj.weight.copy_(weights_backup[1]) - else: - self.weight.copy_(weights_backup) + lora_restore_weights_from_backup(self) for lora in loaded_loras: module = lora.modules.get(lora_layer_name, None) @@ -305,12 +313,45 @@ def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.Mu setattr(self, "lora_current_names", wanted_names) +def lora_forward(module, input, original_forward): + """ + Old way of applying Lora by executing operations during layer's forward. + Stacking many loras this way results in big performance degradation. + """ + + if len(loaded_loras) == 0: + return original_forward(module, input) + + input = devices.cond_cast_unet(input) + + lora_restore_weights_from_backup(module) + lora_reset_cached_weight(module) + + res = original_forward(module, input) + + lora_layer_name = getattr(module, 'lora_layer_name', None) + for lora in loaded_loras: + module = lora.modules.get(lora_layer_name, None) + if module is None: + continue + + module.up.to(device=devices.device) + module.down.to(device=devices.device) + + res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) + + return res + + def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): setattr(self, "lora_current_names", ()) setattr(self, "lora_weights_backup", None) def lora_Linear_forward(self, input): + if shared.opts.lora_functional: + return lora_forward(self, input, torch.nn.Linear_forward_before_lora) + lora_apply_weights(self) return torch.nn.Linear_forward_before_lora(self, input) @@ -323,6 +364,9 @@ def lora_Linear_load_state_dict(self, *args, **kwargs): def lora_Conv2d_forward(self, input): + if shared.opts.lora_functional: + return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora) + lora_apply_weights(self) return torch.nn.Conv2d_forward_before_lora(self, input) diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index 2f2267a2f..a67b8a690 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -55,3 +55,8 @@ script_callbacks.on_infotext_pasted(lora.infotext_pasted) shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras), })) + + +shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), { + "lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"), +}))